Development and Production of High-Oleic Palm Oil Alternative by Fermentation of Microalgae
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Development of High-Oleic Palm Oil Alternative Strain
3.2. Fermentation Trials
3.3. Fatty Acid (FA) and Triacylglycerol (TAG) Profile
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faure, J.-D.; Napier, J.A. Point of View: Europe’s first and last field trial of gene-edited plants? eLife 2018, 7, e42379. [Google Scholar] [CrossRef] [PubMed]
- Mozzon, M.; Foligni, R.; Mannozzi, C. Current Knowledge on Interspecific Hybrid Palm Oils as Food and Food Ingredient. Foods 2020, 9, 631. [Google Scholar] [CrossRef] [PubMed]
- Rincon, S.M.; Hormaza, P.A.; Moreno, L.P.; Prada, F.; Portillo, D.J.; García, J.A.; Romero, H.M. Use of phenological stages of the fruits and physicochemical characteristics of the oil to determine the optimal harvest time of oil palm interspecific OxG hybrid fruits. Ind. Crops Prod. 2013, 49, 204–210. [Google Scholar] [CrossRef]
- Fedepalma. Statistical Yearbook 2019. In The Oil Palm Agroindustry in Colombia and the World 2014–2018; Federación Colombiana de Cultivadores de Palma de Aceite: Bogota, Colombia, 2019; p. 236. [Google Scholar]
- Mosquera-Montoya, M.; Ruiz, E.; Munevar-Martínez, D.E.; Castro, L.; Moreno, L.P.; López-Alfonso, D.F. Oil palm agroindustry 2019 production costs: A benchmarking study among companies that have adopted good practices. Rev. Palmas 2020, 41, 4–14. [Google Scholar]
- Hormaza, P.; Fuquen, E.M.; Romero, H.M. Phenology of the oil palm interspecific hybrid Elaeis oleifera × Elaeis guineensis. Sci. Agric. 2012, 69, 275–280. [Google Scholar] [CrossRef]
- Mosquera-Montoya, M.; Ruiz-Alvarez, E.; Castros-Zamudio, L.E.; López-Alfonso, D.F.; Munevar-Martínez, D.E. Estimación del costo de producción para productores de palma de aceite de Colombia que han adoptado buenas prácticas agrícolas. Rev. Palmas 2019, 40, 3–15. [Google Scholar]
- Yarra, R.; Jin, L.; Zhao, Z.; Cao, H. Progress in tissue culture and genetic transformation of oil palm: An overview. Int. J. Mol. Sci. 2019, 20, 5353. [Google Scholar] [CrossRef]
- Mogollon, D.I.N.; Venturini, O.J.; Batlle, E.A.O.; González, A.M.; Munar-Florez, D.A.; Ramírez-Contreras, N.E.; García-Nuñez, J.A.; Borges, P.T.; Lora, E.E.S. Environmental and energy issues in biodiesel production using palm oil from the interspecific hybrid OxG and Elaeis guineensis: A case study in Colombia. OCL 2024, 31, 25. [Google Scholar] [CrossRef]
- Perez-Santana, M.; Cagampang, G.B.; Nieves, C.; Cedeño, V.; MacIntosh, A.J. Use of high oleic palm oils in fluid shortenings and effect on physical properties of cookies. Foods 2022, 11, 2793. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, X.; Parker, L.; Derkach, P.; Correa, M.; Benites, V.; Miller, R.; Athanasiadis, D.; Doherty, B.; Alnozaili, G. Development and large-scale production of human milk fat analog by fermentation of microalgae. Front. Nutr. 2024, 11, 1341527. [Google Scholar] [CrossRef]
- Parker, L.; Ward, K.; Pilarski, T.; Price, J.; Derkach, P.; Correa, M.; Miller, R.; Benites, V.; Athanasiadis, D.; Doherty, B. Development and large-scale production of high-oleic acid oil by fermentation of microalgae. Fermentation 2024, 10, 566. [Google Scholar] [CrossRef]
- Byrdwell, W.C. The Updated Bottom Up Solution applied to mass spectrometry of soybean oil in a dietary supplement gelcap. Anal. Bioanal. Chem. 2015, 407, 5143–5160. [Google Scholar] [CrossRef] [PubMed]
- Riley, T.; Petersen, K.; Kris-Etherton, P. Health aspects of high-oleic oils. In High Oleic Oils; AOCS Press: Champaign, IL, USA, 2022; pp. 201–243. [Google Scholar]
- Silva, J.D.M.E.; Martins, L.H.D.S.; Moreira, D.K.T.; Silva, L.D.P.; Barbosa, P.D.P.M.; Komesu, A.; Ferreira, N.R.; Oliveira, J.A.R.D. Microbial lipid-based biorefinery concepts: A review of status and prospects. Foods 2023, 12, 2074. [Google Scholar] [CrossRef] [PubMed]
- Ghazani, S.M.; Marangoni, A.G. Microbial lipids for foods. Trends Food Sci. Technol. 2022, 119, 593–607. [Google Scholar] [CrossRef]
- Wang, K.; Shi, T.Q.; Wang, J.; Wei, P.; Ledesma-Amaro, R.; Ji, X.J. Engineering the lipid and fatty acid metabolism in Yarrowia lipolytica for sustainable production of high oleic oils. ACS Synth. Biol. 2022, 11, 1542–1554. [Google Scholar] [CrossRef]
- Wu, H.; Li, Y.; Chen, L.; Zong, M. Production of microbial oil with high oleic acid content by Trichosporon capitatum. Appl. Energy 2011, 88, 138–142. [Google Scholar] [CrossRef]
- Sakamoto, T.; Sakuradani, E.; Okuda, T.; Kikukawa, H.; Ando, A.; Kishino, S.; Izumi, Y.; Bamba, T.; Shima, J.; Ogawa, J. Metabolic engineering of oleaginous fungus Mortierella alpina for high production of oleic and linoleic acids. Bioresour. Technol. 2017, 245, 1610–1615. [Google Scholar] [CrossRef]
- Duman-Özdamar, Z.E.; Veloo, R.M.; Tsepani, E.; Julsing, M.K.; Martins dos Santos, V.A.; Hugenholtz, J.; Suarez-Diez, M. Combining metabolic engineering and fermentation optimization to achieve cost-effective oil production by Cutaneotrichosporon oleaginosus. bioRxiv 2024, 2024, 2024-11. [Google Scholar]
- El-Imam, A.; Yafetto, L.; Odamtten, G.T.; Wafe-Kwagyan, M. Valorization of agro-industrial wastes into animal feed through microbial fermentation: A review of the global and Ghanaian case. Heliyon 2019, 9, 4. [Google Scholar]
- Roy, M.; Mohanty, K. Byproducts of a Microalgal Biorefinery as a Resource for a Circular Bioeconomy; Biotic Resources; CRC Press: Boca Raton, FL, USA, 2020; pp. 109–138. [Google Scholar]
- Meijaard, E.; Brooks, T.M.; Carlson, K.M.; Slade, E.M.; Garcia-Ulloa, J.; Gaveau, D.L.; Lee, J.S.H.; Santika, T.; Juffe-Bignoli, D.; Struebig, M.J. The environmental impacts of palm oil in context. Nat. Plants 2020, 6, 1418–1426. [Google Scholar] [CrossRef]
- Carsanba, E.; Papanikolaou, S.; Erten, H. Production of oils and fats by oleaginous microorganisms with an emphasis on the potential of the nonconventional yeast Yarrowia lipolytica. Crit. Rev. Biotechnol. 2018, 38, 1230–1243. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.; Morao, A.; Johnson, J.K.; Shen, L. Life cycle assessment of heterotrophic algae omega-3. Algal Res. 2021, 60, 102494. [Google Scholar] [CrossRef]
- Patel, A.K.; Chauhan, A.S.; Kumar, P.; Michaud, P.; Gupta, V.K.; Chang, J.S.; Chen, C.W.; Dong, C.D.; Singhania, R.R. Emerging prospects of microbial production of omega fatty acids: Recent updates. Bioresour. Technol. 2022, 360, 127534. [Google Scholar] [CrossRef] [PubMed]
Fermentation Run | Oleic Acid (% of Total FA) | Palmitic Acid (% of Total FA) | Dry Cell Weight (DCW, g/kg) | Oil Titer (g/L) | Oil Content (% of DCW) |
---|---|---|---|---|---|
Parental strain, 1 L | 60.47 | 28.00 | 197.00 | 132.50 | 67.25 |
High-oleic palm oil alternative strain | |||||
Run 1, 1 L | 57.00 | 30.55 | 204.00 | 142.20 | 69.71 |
Run 2, 1 L | 56.90 | 29.98 | 186.30 | 131.00 | 70.32 |
Run 3, 1 L | 57.35 | 29.67 | 200.30 | 139.90 | 69.85 |
Run 4, 1 L | 55.29 | 31.34 | 201.70 | 142.50 | 70.65 |
Run 5, 20 L | 55.70 | 31.10 | 192.70 | 129.30 | 67.10 |
Run 6, 50 L | 56.14 | 31.60 | 194.10 | 134.10 | 69.09 |
Average | 56.40 | 30.71 | 196.52 | 136.50 | 69.45 |
SD | 0.81 | 0.77 | 6.66 | 5.79 | 1.27 |
Coeff. of var. (%) | 1.44 | 2.51 | 3.39 | 4.25 | 1.83 |
% of differences vs. parental strain | −6.7% | +9.7% | −0.2% | +3.0% | +3.3% |
p-value | <0.001 | <0.001 | 0.846 | 0.152 | 0.008 |
Fatty Acids | High-Oleic Palm Oil Alternative | High-Oleic Palm Oil | Regular Palm Oil |
---|---|---|---|
12:0 | 0.03 | 0.06 | 0.40 |
14:0 | 1.24 | 0.50 | 1.00 |
16:0 | 32.05 | 32.71 | 42.83 |
16:1 n-7 | 1.34 | 0.38 | 0.18 |
17:0 | 0.07 | 0.10 | 0.10 |
18:0 | 2.41 | 3.08 | 4.85 |
18:1 n-9 | 55.53 | 49.21 | 39.07 |
18:2 n-6 | 6.30 | 12.84 | 10.39 |
18:3 n-3 | 0.30 | 0.40 | 0.28 |
20:0 | 0.28 | 0.28 | 0.36 |
20:1 | 0.11 | 0.14 | 0.15 |
22:0 | 0.08 | 0.06 | 0.07 |
24:0 | 0.05 | 0.09 | 0.08 |
Other FA | 0.22 | 0.18 | 0.25 |
Saturated FA | 36.21 | 36.86 | 49.68 |
Unsaturated FA | 63.57 | 62.96 | 50.07 |
Comparison of Unsaturated/Saturated Proportions (Chi-Square): | |||
High-Oleic Palm Oil Alternative vs. High-Oleic Palm Oil: p = 0.926 | |||
High-Oleic Palm Oil Alternative vs. Regular Palm Oil: p = 0.054 | |||
High-Oleic Palm Oil vs. Regular Palm Oil: p = 0.066 |
TAG Species | High-Oleic Palm Oil Alternative | High-Oleic Palm Oil | Regular Palm Oil |
---|---|---|---|
LLL | 0.00 | 0.19 | 0.19 |
OLnL | 0.00 | 0.15 | 0.00 |
PLnL | 0.00 | 0.18 | 0.00 |
LOL | 0.68 | 2.04 | 0.92 |
OOLn | 0.21 | 0.00 | 0.00 |
LLP | 0.77 | 3.38 | 2.92 |
MOL (+POLn) | 0.58 | 0.00 | 0.00 |
POLn | 0.38 | 0.45 | 0.00 |
MLP | 0.00 | 0.18 | 0.24 |
OOL | 4.26 | 6.21 | 2.58 |
POPo + PoLS | 1.17 | 0.00 | 0.00 |
POL | 7.41 | 14.16 | 11.12 |
OOM | 3.03 | 0.00 | 0.00 |
PLP | 2.30 | 5.81 | 7.43 |
MOP | 1.48 | 0.00 | 0.89 |
OOO | 15.17 | 11.73 | 5.70 |
SOL | 0.00 | 0.00 | 1.32 |
sn-OOP | 35.62 | 30.63 | 21.76 |
PLS | 0.17 | 0.61 | 1.41 |
sn-POP | 17.79 | 13.91 | 23.29 |
sn-PPO | 0.56 | 1.83 | 2.41 |
PPP | 0.28 | 0.66 | 4.08 |
OOS | 2.81 | 2.75 | 3.66 |
POS | 2.58 | 2.71 | 5.59 |
PPS | 0.00 | 0.09 | 0.91 |
OOA | 0.30 | 0.18 | 0.24 |
SOS + POA | 0.30 | 0.29 | 0.60 |
Other TAG | 2.15 | 1.86 | 2.74 |
Sat–Sat–Sat | 0.28 | 0.75 | 4.99 |
Sat–Sat–Unsat | 25.18 | 25.34 | 41.86 |
Sat–Unsat–Unsat | 50.90 | 51.73 | 41.02 |
Unsat–Unsat–Unsat | 20.32 | 20.32 | 9.39 |
Comparison of Unsaturated/Saturated Proportions (Chi-Square): | |||
High-Oleic Palm Oil Alternative vs. High-Oleic Palm Oil: p = 0.976 | |||
High-Oleic Palm Oil Alternative vs. Regular Palm Oil: p = 0.004 | |||
High-Oleic Palm Oil vs. Regular Palm Oil: p = 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parker, L.; Ward, K.; Pilarski, T.; Price, J.; Derkach, P.; Correa, M.; Miller, R.; Benites, V.; Athanasiadis, D.; Doherty, B.; et al. Development and Production of High-Oleic Palm Oil Alternative by Fermentation of Microalgae. Fermentation 2025, 11, 207. https://doi.org/10.3390/fermentation11040207
Parker L, Ward K, Pilarski T, Price J, Derkach P, Correa M, Miller R, Benites V, Athanasiadis D, Doherty B, et al. Development and Production of High-Oleic Palm Oil Alternative by Fermentation of Microalgae. Fermentation. 2025; 11(4):207. https://doi.org/10.3390/fermentation11040207
Chicago/Turabian StyleParker, Leon, Kevin Ward, Thomas Pilarski, James Price, Paul Derkach, Mona Correa, Roberta Miller, Veronica Benites, Dino Athanasiadis, Bryce Doherty, and et al. 2025. "Development and Production of High-Oleic Palm Oil Alternative by Fermentation of Microalgae" Fermentation 11, no. 4: 207. https://doi.org/10.3390/fermentation11040207
APA StyleParker, L., Ward, K., Pilarski, T., Price, J., Derkach, P., Correa, M., Miller, R., Benites, V., Athanasiadis, D., Doherty, B., Edy, L., Alnozaili, G., Reyes, N., Wittenberg, J., Eliares, G., Destaillats, F., Rakitsky, W., & Franklin, S. (2025). Development and Production of High-Oleic Palm Oil Alternative by Fermentation of Microalgae. Fermentation, 11(4), 207. https://doi.org/10.3390/fermentation11040207