A Novel Pyrazinone Derivative with Anti-MRSA Activity, Produced by Streptomyces anulatus Isolated from the Rhizosphere of Malus trilobata in Lebanon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Metabolite Production and Extraction
2.2. Antibacterial Activity Testing
2.3. Bioguided Purification
2.4. Analytical Techniques for the Structural Elucidation of the Bioactive Compound
2.4.1. Liquid Chromatography–Mass Spectrometry
2.4.2. Nuclear Magnetic Resonance Spectroscopy
2.5. Strain Identification and Characterization
2.5.1. Morphological Characterization and Microscopic Visualization
2.5.2. Physiological and Biochemical Tests
Resistance Toward Sodium Chloride
pH Tolerance
Api 20 E
2.5.3. Genomic Characterization: DNA Extraction, Sequencing, and Data Analysis
DNA Extraction
Whole-Genome Sequencing
Data Analysis
3. Results
3.1. Crude Extract from Soil-Isolated Bacteria Showed Activity Against MRSA
3.2. Pure Compound Showed Antibacterial Activity Against MRSA
3.3. Structure Elucidation of the Bioactive Compound
3.4. Characterization of the Producer Strain
3.4.1. Colony Morphology
3.4.2. Growth Conditions and Biochemical Properties of MR7S4
3.4.3. Genomic Characterization
Characterization and Functional Analysis
Strain Identification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
°C | Degree Celsius |
A. baumannii | Acinetobacter baumannii |
AMR | Antimicrobial resistance |
ANI | Average nucleotide identity |
B. subtilis | Bacillus subtilis |
BGCs | Biosynthetic gene clusters |
BMD | Broth microdilution test |
CDC | Centers for Disease Control and Prevention |
CFU | Colony forming unit |
COGs | Clusters of orthologous genes |
DMSO | Dimethyl sulfoxide |
DNA | Deoxyribonucleic acid |
E. coli | Escherichia coli |
E. faecalis | Enterococcus faecalis |
E. faecium | Enterococcus faecium |
FA | Formic acid |
GC | Guanine–cytosine content |
gDNA | Genomic DNA |
H2O | Eau |
HPLC | High-performance liquid chromatography |
ISP2 | International Streptomyces Project Medium 2 |
ISP3 | International Streptomyces Project Medium 3 |
K. pneumoniae | Klebsiella pneumoniae |
M. smegmatis | Mycobacterium smegmatis |
MENA | Middle East and North Africa |
MHCAB | Adjusted Mueller–Hinton broth |
MIC | Minimum inhibitory concentration |
mRNA | Messenger ribonucleic acid |
MRSA | Methicillin-resistant Staphylococcus aureus |
NaCl | Sodium chloride |
NCBI | National Center for Biotechnology Information |
NPs | Natural products |
NRPS | Non-ribosomal peptides synthetase |
P. aeruginosa | Pseudomonas aeruginosa |
PBP2a | Penicillin-binding protein 2a |
PBS | Phosphate-buffered saline |
PDA | Photodiode array detector |
pH | Potential of hydrogen |
S. aureus | Staphylococcus aureus |
SAR | Structure–activity relationship |
SEM | Scanning electron microscopy |
SMs | Secondary metabolites |
TLC | Thin liquid chromatography |
tRNA | Transfer ribonucleic acid |
WHO | World Health Organization |
References
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014; Available online: https://apps.who.int/iris/handle/10665/112642 (accessed on 30 March 2023).
- Ma, F.; Xu, S.; Tang, Z.; Li, Z.; Zhang, L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf. Health 2021, 3, 32–38. [Google Scholar] [CrossRef]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Wellcome Trust: London, UK, 2016. [Google Scholar]
- Lee, A.S.; De Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primer. 2018, 4, 18033. [Google Scholar] [CrossRef]
- Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Awada, B.; Chahine, D.A.; Derbaj, G.; Khalek, P.A.; Awad, M.K.; Fayad, A.A. Antimicrobial Natural Products Derived from Microorganisms Inhabiting the MENA Region. Nat. Prod. Commun. 2023, 18, 1934578X2311549. [Google Scholar] [CrossRef]
- Khoury, E.; Abou Fayad, A.; Karam Sarkis, D.; Fahs, H.; Gunsalus, K.C.; Kallassy Awad, M. The Microbiome of the Lebanese Wild Apple, Malus trilobata, is a Rich Source of Potential Biocontrol Agents for Fungal Post-Harvest Pathogens of Apples. Curr. Microbiol. 2021, 78, 1388–1398. [Google Scholar] [CrossRef]
- Turner, T.R.; James, E.K.; Poole, P.S. The plant microbiome. Genome Biol. 2013, 14, 209. [Google Scholar] [CrossRef]
- Traxler, M.F.; Kolter, R. Natural products in soil microbe interactions and evolution. Nat. Prod. Rep. 2015, 32, 956–970. [Google Scholar] [CrossRef]
- Demain, A.L.; Fang, A. The Natural Functions of Secondary Metabolites. In History of Modern Biotechnology I; Fiechter, A., Ed.; Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2000; Volume 69, pp. 1–39. ISBN 978-3-540-67793-2. [Google Scholar]
- Awada, B.; Hamie, M.; El Hajj, R.; Derbaj, G.; Najm, R.; Makhoul, P.; Ali, D.H.; Abou Fayad, A.G.; El Hajj, H. HAS 1: A natural product from soil-isolated Streptomyces species with potent activity against cutaneous leishmaniasis caused by Leishmania tropica. Front. Pharmacol. 2022, 13, 1023114. [Google Scholar] [CrossRef]
- Greiner-Mai, E.; Kroppenstedt, R.M.; Korn-Wendisch, F.; Kutzner, H.J. Morphological and biochemical characterization and emended descriptions of thermophilic actinomycetes species. Syst. Appl. Microbiol. 1987, 9, 97–109. [Google Scholar] [CrossRef]
- Ewels, P.A.; Peltzer, A.; Fillinger, S.; Patel, H.; Alneberg, J.; Wilm, A.; Garcia, M.U.; Di Tommaso, P.; Nahnsen, S. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 2020, 38, 276–278. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Hasman, H.; Saputra, D.; Sicheritz-Ponten, T.; Lund, O.; Svendsen, C.A.; Frimodt-Møller, N.; Aarestrup, F.M. Rapid Whole-Genome Sequencing for Detection and Characterization of Microorganisms Directly from Clinical Samples. J. Clin. Microbiol. 2014, 52, 139–146. [Google Scholar] [CrossRef]
- Page, A.J.; Hunt, M.; Seemann, T.; Keane, J.A. SaffronTree: Fast, reference-free pseudo-phylogenomic trees from reads or contigs. J. Open Source Softw. 2017, 2, 243. [Google Scholar] [CrossRef]
- Pritchard, L.; Glover, R.H.; Humphris, S.; Elphinstone, J.G.; Toth, I.K. Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. Anal. Methods 2016, 8, 12–24. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef]
- Shimoyama, Y. COGclassifier: A Tool for Classifying Prokaryote Protein Sequences into COG Functional Category. March 2022. Available online: https://github.com/moshi4/COGclassifier (accessed on 3 July 2024).
- Carver, T.; Harris, S.R.; Berriman, M.; Parkhill, J.; McQuillan, J.A. Artemis: An integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012, 28, 464–469. [Google Scholar] [CrossRef]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef]
- amr-factsheet.pdf. Available online: https://www.who.int/docs/default-source/antimicrobial-resistance/amr-factsheet.pdf?utm_source=chatgpt.com (accessed on 31 March 2025).
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- WHO. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Wu, S.-C.; Liu, F.; Zhu, K.; Shen, J.-Z. Natural Products That Target Virulence Factors in Antibiotic-Resistant Staphylococcus aureus. J. Agric. Food Chem. 2019, 67, 13195–13211. [Google Scholar] [CrossRef]
- Alam, K.; Mazumder, A.; Sikdar, S.; Zhao, Y.-M.; Hao, J.; Song, C.; Wang, Y.; Sarkar, R.; Islam, S.; Zhang, Y.; et al. Streptomyces: The biofactory of secondary metabolites. Front. Microbiol. 2022, 13, 968053. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Srinivas, V.; Prasanna, S.L. Chapter 5—Streptomyces. In Beneficial Microbes in Agro-Ecology; Amaresan, N., Senthil Kumar, M., Annapurna, K., Kumar, K., Sankaranarayanan, A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 55–71. ISBN 978-0-12-823414-3. [Google Scholar]
- El Euch, I.Z.; Frese, M.; Sewald, N.; Smaoui, S.; Shaaban, M.; Mellouli, L. Bioactive secondary metabolites from new terrestrial Streptomyces sp. TN82 strain: Isolation, structure elucidation and biological activity. Med. Chem. Res. 2018, 27, 1085–1092. [Google Scholar] [CrossRef]
- Nicault, M.; Zaiter, A.; Dumarcay, S.; Chaimbault, P.; Gelhaye, E.; Leblond, P.; Bontemps, C. Elicitation of Antimicrobial Active Compounds by Streptomyces-Fungus Co-Cultures. Microorganisms 2021, 9, 178. [Google Scholar] [CrossRef]
- Demain, A.L. From natural products discovery to commercialization: A success story. J. Ind. Microbiol. Biotechnol. 2006, 33, 486–495. [Google Scholar] [CrossRef]
- Shepherdson, E.M.; Baglio, C.R.; Elliot, M.A. Streptomyces behavior and competition in the natural environment. Curr. Opin. Microbiol. 2023, 71, 102257. [Google Scholar] [CrossRef]
- Kyeremeh, K.; Acquah, K.; Camas, M.; Tabudravu, J.; Houssen, W.; Deng, H.; Jaspars, M. Butrepyrazinone, a New Pyrazinone with an Unusual Methylation Pattern from a Ghanaian Verrucosispora sp. K51G. Mar. Drugs 2014, 12, 5197–5208. [Google Scholar] [CrossRef]
- Riesco-Llach, G.; Planas, M.; Feliu, L.; Joule, J.A. 2(1H)-Pyrazinones from acyclic building blocks: Methods of synthesis and further derivatizations. RSC Adv. 2023, 13, 1162–1184. [Google Scholar] [CrossRef]
- Reina, J.; Reina, N. Favipiravir, a new concept of antiviral drug against influenza viruses. Rev. Esp. Quimioter. 2017, 30, 79–83. [Google Scholar]
- Jansen, R.; Sood, S.; Mohr, K.I.; Kunze, B.; Irschik, H.; Stadler, M.; Müller, R. Nannozinones and sorazinones, unprecedented pyrazinones from myxobacteria. J. Nat. Prod. 2014, 77, 2545–2552. [Google Scholar] [CrossRef]
- Ma, X.-Y.; Zhang, Z.; Wang, L.; Hu, X.; Liu, X.; Huang, S.-X. Two New 2(1H)-Pyrazinone Derivatives from the Plant Endophyte Streptomyces sp. KIB-H1992. Rec. Nat. Prod. 2020, 14, 196–200. [Google Scholar] [CrossRef]
- Shaala, L.; Youssef, D.; Badr, J.; Harakeh, S. Bioactive 2(1H)-Pyrazinones and Diketopiperazine Alkaloids from a Tunicate-Derived Actinomycete Streptomyces sp. Molecules 2016, 21, 1116. [Google Scholar] [CrossRef] [PubMed]
- Motohashi, K.; Inaba, K.; Fuse, S.; Doi, T.; Izumikawa, M.; Khan, S.T.; Takagi, M.; Takahashi, T.; Shin-ya, K. JBIR-56 and JBIR-57, 2(1H)-Pyrazinones from a Marine Sponge-Derived Streptomyces sp. SpD081030SC-03. J. Nat. Prod. 2011, 74, 1630–1635. [Google Scholar] [CrossRef] [PubMed]
- Rudolf, J.D.; Loesgen, S. Pyrazinone Biosynthesis and Signaling─Myxo Style. ACS Cent. Sci. 2024, 10, 511–513. [Google Scholar] [CrossRef] [PubMed]
Bacteria | MIC (μg/mL) |
---|---|
S. aureus ATCC 29213 | 8 |
S. aureus Newman | 8 |
S. aureus N315 | 8 |
E. feacalis ATCC 19433 | 8 |
K. pneumonaie DSM | >250 |
K. pneumonaie ATCC 13883 | >250 |
A. baumannii DSM 30008 | >250 |
P. aeruginosa ATCC 27853 | >250 |
P. aeruginosa ATCC 10145 | >250 |
P. aeruginosa mexAB | 250 |
E. coli ATCC 25922 | >250 |
E. coli ATCC 3521 | >250 |
E. coli J53 | >250 |
E. faecium DSM 17050 VRE | 16 |
E. faecium DSM 20478 | 16 |
B. subtilis ATCC 6633 | 4 |
M. smegmatis 89 | >250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abi Chahine, D.; Awada, B.; Derbaj, G.; Hanna, A.; Fayad, A.A.; Awad, M.K. A Novel Pyrazinone Derivative with Anti-MRSA Activity, Produced by Streptomyces anulatus Isolated from the Rhizosphere of Malus trilobata in Lebanon. Fermentation 2025, 11, 222. https://doi.org/10.3390/fermentation11040222
Abi Chahine D, Awada B, Derbaj G, Hanna A, Fayad AA, Awad MK. A Novel Pyrazinone Derivative with Anti-MRSA Activity, Produced by Streptomyces anulatus Isolated from the Rhizosphere of Malus trilobata in Lebanon. Fermentation. 2025; 11(4):222. https://doi.org/10.3390/fermentation11040222
Chicago/Turabian StyleAbi Chahine, Dany, Bassel Awada, Ghada Derbaj, Aya Hanna, Antoine Abou Fayad, and Mireille Kallassy Awad. 2025. "A Novel Pyrazinone Derivative with Anti-MRSA Activity, Produced by Streptomyces anulatus Isolated from the Rhizosphere of Malus trilobata in Lebanon" Fermentation 11, no. 4: 222. https://doi.org/10.3390/fermentation11040222
APA StyleAbi Chahine, D., Awada, B., Derbaj, G., Hanna, A., Fayad, A. A., & Awad, M. K. (2025). A Novel Pyrazinone Derivative with Anti-MRSA Activity, Produced by Streptomyces anulatus Isolated from the Rhizosphere of Malus trilobata in Lebanon. Fermentation, 11(4), 222. https://doi.org/10.3390/fermentation11040222