Olive Pruning: Waste or Growth Media? Expanding the Metabolic Potential of Phyllospheric Rhodococcus sp. 24CO
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Strain 24CO
2.2. Morphology and Growth Characteristics
2.3. Genome Sequencing, Assembly and Annotation
2.4. Phylogenetic Analysis
2.5. Reconstruction of Catabolic Pathways
2.6. Neutral Lipid Accumulation from Selected Carbon Sources
2.7. Gas Chromatography-Mass Spectrometry
2.8. Pruning Waste Media Preparation, Chemical Characterization and Conversion to Value-Added Compounds
2.9. Transmission Electron Microscopy
2.10. Oleagenicity Potential of 24CO and Comparison with Model TAG Producers
2.11. 24CO Genome Sequence
3. Results
3.1. Isolation and Physiological Features of 24CO
3.2. Genome Analysis
3.3. Phylogenetic Analysis
3.4. Cell Biomass and Synthesis of Neutral Lipids
3.5. Catabolic Reconstruction for Main Carbon Sources Used by 24CO
3.6. Agricultural Waste Revalorization
3.7. Oleagenicity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zopf, W. Über Ausscheidung von Fettfarbstoffen (Lipochromen) seitens gewisser Spaltpilze. Ber. Dtsch. Bot. Ges. 1891, 9, 22–28. [Google Scholar]
- Cappelletti, M.; Zampolli, J.; Di Gennaro, P.; Zannoni, D. Genomics of Rhodococcus. In Biology of Rhodococcus; Alvarez, H.M., Ed.; Springer: Cham, Switzerland, 2019; pp. 23–60. [Google Scholar] [CrossRef]
- Ruberto, L.A.; Vazquez, S.; Lobalbo, A.; Mac Cormack, W.P. Psychrotolerant hydrocarbon-degrading Rhodococcus strains isolated from polluted Antarctic soils. Antarct. Sci. 2005, 17, 47–56. [Google Scholar] [CrossRef]
- Silva, R.A.; Grossi, V.; Olivera, N.L.; Alvarez, H.M. Characterization of indigenous Rhodococcus sp. 602, a strain able to accumulate triacylglycerides from naphthyl compounds under nitrogen-starved conditions. Res. Microbiol. 2010, 161, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.; Lindow, S.E. Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl. Environ. Microbiol. 1994, 60, 4468–4477. [Google Scholar] [CrossRef]
- Kirkwood, R.C. Recent developments in our understanding of the plant cuticle as a barrier to the foliar uptake of pesticides. Pestic. Sci. 1999, 55, 69–77. [Google Scholar] [CrossRef]
- Koskella, B. The phyllosphere. Cur. Biol. 2020, 30, R1143–R1146. [Google Scholar] [CrossRef]
- Stone, B.W.; Weingarten, E.A.; Jackson, C.R. The Role of the Phyllosphere Microbiome in Plant Health and Function. Annu. Rev. Plant Biol. 2018, 1, 533–556. [Google Scholar] [CrossRef]
- Chaudhary, D.; Kumar, R.; Sihag, K.; Kumari, A. Phyllospheric microflora and its impact on plant growth: A review. Agric. Rev. 2017, 38, 51–59. [Google Scholar] [CrossRef]
- Kämpfer, P.; Wellner, S.; Lohse, K.; Lodders, N.; Martin, K. Rhodococcus cerastii sp. nov. and Rhodococcus trifolii sp. nov., two novel species isolated from leaf surfaces. Int. J. Syst. Evol. Microbiol. 2013, 63 Pt 3, 1024–1029. [Google Scholar] [CrossRef]
- Dhaouadi, S.; Mougou, A.H.; Wu, C.J.; Gleason, M.L.; Rhouma, A. Sequence analysis of 16S rDNA, gyrB and alkB genes of plant-associated Rhodococcus species from Tunisia. Int. J. Syst. Evol. Microbiol. 2020, 70, 6491–6507. [Google Scholar] [CrossRef]
- Crombie, A.T.; Larke-Mejia, N.L.; Emery, H.; Dawson, R.; Pratscher, J.; Murphy, G.P.; McGenity, T.J.; Murrell, J.C. Poplar phyllosphere harbors disparate isoprene-degrading bacteria. Proc. Natl. Acad. Sci. USA 2018, 115, 13081–13086. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, A.; Halverson, L.J.; Beattie, G.A. Identification and Genetic Characterization of Phenol-Degrading Bacteria from Leaf Microbial Communities. Microb. Ecol. 2009, 57, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, H.M.; Hernández, M.A.; Lanfranconi, M.P.; Silva, R.A.; Villalba, M.S. Rhodococcus as biofactories for microbial oil production. Molecules 2021, 26, 4871. [Google Scholar] [CrossRef] [PubMed]
- Pátek, M.; Grulich, M.; Nešvera, J. Stress response in Rhodococcus strains. Biotechnol. Adv. 2021, 53, 107698. [Google Scholar] [CrossRef]
- Huang, J.; Ai, G.; Liu, N.; Huang, Y. Environmental Adaptability and Organic Pollutant Degradation Capacity of a Novel Rhodococcus Species Derived from Soil in the Uninhabited Area of the Qinghai-Tibet Plateau. Microorganisms 2022, 10, 1935. [Google Scholar] [CrossRef]
- Ghosh, A.; Khurana, M.; Chauhan, A.; Takeo, M.; Chakraborti, A.; Jain, R. Degradation of 4-nitrophenol, 2-chloro-4-nitrophenol, and 2,4-dinitrophenol by Rhodococcus imtechensis strain RKJ300. Environ. Sci. Technol. 2010, 44, 1069–1077. [Google Scholar] [CrossRef]
- Cappelletti, M.; Presentato, A.; Piacenza, E.; Firrincieli, A.; Turner, R.J.; Zannoni, D. Biotechnology of Rhodococcus for the production of valuable compounds. Appl. Environ. Microbiol. 2020, 104, 8567–8594. [Google Scholar] [CrossRef]
- Bequer Urbano, S.; Albarracín, V.H.; Ordoñez, O.F.; Farías, M.E.; Alvarez, H.M. Lipid storage in high-altitude Andean Lakes extremophiles and its mobilization under stress conditions in Rhodococcus sp. A5, a UV-resistant actinobacterium. Extremophiles 2013, 17, 217–227. [Google Scholar] [CrossRef]
- Herrero, O.M.; Alvarez, H.M. Fruit residues as substrates for single-cell oil production by Rhodococcus species: Physiology and genomics of carbohydrate catabolism. World J. Microbiol. Biotechnol. 2024, 40, 61. [Google Scholar] [CrossRef]
- Hosseini, S.V.; Dastgerdi, H.E.; Tahergorabi, R. Marine Mannitol: Extraction, Structures, Properties, and Applications. Processes 2024, 12, 1613. [Google Scholar] [CrossRef]
- Medina, E.; Romero, C.; García, P.; Brenes, M. Characterization of bioactive compounds in commercial olive leaf extracts, and olive leaves and their infusions. Food Funct. 2019, 10, 4716–4724. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Gonzalez, S.; Ruiz-Jimenez, J.; Priego-Capote, F.; Luque de Castro, M.D. Qualitative and quantitative sugar profiling in olive fruits, leaves, and stems by gas chromatography-tandem mass spectrometry (GC-MS/MS) after ultrasound-assisted leaching. J. Agric. Food Chem. 2010, 58, 12292–12299. [Google Scholar] [CrossRef] [PubMed]
- Pharr, D.M.; Stoop, J.M.H.; Williamson, J.D.; Studer Feusi, M.E.; Massel, M.O.; Conkling, M.A. The dual role of mannitol as osmoprotectant and photoassimilate in celery. Hortic. Sci. 1995, 30, 1182–1188. [Google Scholar] [CrossRef]
- Arias, N.S.; Scholz, F.G.; Goldstein, G.; Bucci, S. The cost of avoiding freezing in stems: Trade-off between xylem resistance to cavitation and supercooling capacity in woody plants. Tree Physiol. 2017, 37, 1251–1262. [Google Scholar] [CrossRef]
- Galliou, F.; Markakis, N.; Fountoulakis, M.S.; Nikolaidis, N.; Manios, T. Production of Organic Fertilizer from Olive Mill Wastewater by Combining Solar Greenhouse Drying and Composting. Waste Manag. 2018, 75, 305–311. [Google Scholar] [CrossRef]
- Mira-Urios, M.Á.; Sáez, J.A.; Orden, L.; Marhuenda-Egea, F.C.; Andreu-Rodríguez, F.J.; Toribio, A.J.; Agulló, E.; López, M.J.; Moral, R. Composting of Olive Mill Wastewater Sludge Using a Combination of Multiple Strategies: Assessment of Improvement in Biodegradability, GHG Emissions, and Characteristics of the End Product. Agronomy 2025, 15, 808. [Google Scholar] [CrossRef]
- Roig, A.; Cayuela, M.L.; Sánchez-Monedero, M.A. An overview on olive mill wastes and their valorisation methods. Waste Manag. 2006, 26, 960–969. [Google Scholar] [CrossRef]
- Enaime, G.; Dababat, S.; Wichern, M.; Lübken, M. Olive mill wastes: From wastes to resources. Environ. Sci. Pollut. Res. 2024, 31, 20853–20880. [Google Scholar] [CrossRef]
- Espeso, J.; Isaza, A.; Lee, J.Y.; Sörensen, P.M.; Jurado, P.; Avena-Bustillos, R.D.J.; Olaizola, M.; Arboleya, J.C. Olive leaf waste management. Front. Sustain. Food Syst. 2021, 5, 660582. [Google Scholar] [CrossRef]
- Schlegel, H.G.; Kaltwasser, H.; Gottschalk, G. Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch. Mikrobiol. 1961, 38, 209–222. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Bushnell, B. BBTools Software Package. 2014. Available online: https://sourceforge.net/projects/bbmap/ (accessed on 27 June 2022).
- Arkin, A.P.; Cottingham, R.W.; Henry, C.S.; Harris, N.L.; Stevens, R.L.; Maslov, S.; Dehal, P.; Ware, D.; Perez, F.; Canon, S.; et al. KBase: The United States department of energy systems biology knowledgebase. Nat. Biotechnol. 2018, 36, 566–569. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef]
- Olson, R.D.; Assaf, R.; Brettin, T.; Conrad, N.; Cucinell, C.; Davis, J.J.; Dempsey, D.M.; Dickerman, A.; Dietrich, E.M.; Kenyon, R.W.; et al. IIntroducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): A resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 2023, 51, D678–D689. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Shang, J.; Ji, Y.; Sun, Y. PLASMe: A tool to identify PLASMid contigs from short-read assemblies using transformer. Nucleic Acids Res. 2023, 51, e83. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef]
- Moriya, Y.; Itoh, M.; Okuda, S.; Yoshizawa, A.; Kanehisa, M. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007, 35, W182–W185. [Google Scholar] [CrossRef]
- Ceniceros, A.; Dijkhuizen, L.; Petrusma, M.; Medema, M.H. Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus. BMC Genom. 2017, 18, 593. [Google Scholar] [CrossRef]
- Lepage, G.; Roy, C.C. Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res. 1986, 27, 114–120. [Google Scholar] [CrossRef]
- Rice, E.W.; Baird, R.; Eaton, A.D.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Cheirsilp, B.; Louhasakul, Y. Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel. Biores. Technol. 2013, 142, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Villalba, M.S.; Alvarez, H.M. Identification of a novel ATP-binding cassette transporter involved in long-chain fatty acid import and its role in triacylglycerol accumulation in Rhodococcus jostii RHA1. Microbiology 2014, 160, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Ying, H.; Beifang, N.; Ying, G.; Limin, F.; Weizhong, L. CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics 2010, 26, 680–682. [Google Scholar] [CrossRef]
- Titgemeyer, F.; Amon, J.; Parche, S.; Mahfoud, M.; Bail, J.; Schlicht, M.; Rehm, N.; Hillmann, D.; Stephan, J.; Walter, B.; et al. A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis. J. Bacteriol. 2007, 189, 5903–5915. [Google Scholar] [CrossRef] [PubMed]
- Dávila Costa, J.S.; Herrero, O.M.; Alvarez, H.M.; Leichert, L. Label-free and redox proteomic analyses of the triacylglycerol-accumulating Rhodococcus jostii RHA1. Microbiology 2015, 161 Pt 3, 593–610. [Google Scholar] [CrossRef]
- Dávila Costa, J.S.; Silva, R.A.; Leichert, L.; Alvarez, H.M. Proteome analysis reveals differential expression of proteins involved in triacylglycerol accumulation by Rhodococcus jostii RHA1 after addition of methyl viologen. Microbiology 2017, 163, 343–354. [Google Scholar] [CrossRef]
- Juarez, A.; Villa, J.A.; Lanza, V.F.; Lázaro, B.; de la Cruz, F.; Alvarez, H.M.; Moncalián, G. Nutrient starvation leading to triglyceride accumulation activates the Entner Doudoroff pathway in Rhodococcus jostii RHA1. Microb. Cell Factories 2017, 16, 35. [Google Scholar] [CrossRef]
- Mina, D.; Pereira, J.A.; Lino-Neto, T.; Baptista, P. Epiphytic and endophytic bacteria on olive tree phyllosphere: Exploring tissue and cultivar effect. Microb. Ecol. 2020, 80, 145–157. [Google Scholar] [CrossRef]
- Guodong, R.; Xiaoxia, L.; Weiwei, Z.; Wenjun, W.; Jianguo, Z. Metabolomics reveals variation and correlation among different tissues of olive (Olea europaea L.). Biol. Open 2017, 6, 1317–1323. [Google Scholar] [CrossRef]
- Gnaim, R.; Unis, R.; Gnayem, N.; Das, J.; Gozin, M.; Golberg, A. Turning mannitol-rich agricultural waste to poly (3-hydroxybutyrate) with Cobetia amphilecti fermentation and recovery with methyl levulinate as a green solvent. Biores. Technol. 2022, 352, 127075. [Google Scholar] [CrossRef]
- Herrero, O.M.; Villalba, M.S.; Lanfranconi, M.P.; Alvarez, H.M. Rhodococcus bacteria as a promising source of oils from olive mill wastes. World J. Microbiol. Biotechnol. 2018, 34, 114. [Google Scholar] [CrossRef] [PubMed]
- Negrete, P.S.; Ghilardi, C.; Pineda, L.R.; Pérez, E.; Herrera, M.L.; Borroni, V. Biosurfactant Production by Rhodococcus ALDO1 Isolated from Olive Mill Wastes. Biocatal. Agric. Biotechnol. 2024, 57, 103106. [Google Scholar] [CrossRef]
- Cavalheiro, C.V.; Picoloto, R.S.; Cichoski, A.J.; Wagner, R.; de Menezes, C.R.; Zepka, L.Q.; Da Croce, D.M.; Barin, J.S. Olive leaves offer more than phenolic compounds–Fatty acids and mineral composition of varieties from Southern Brazil. Ind. Crops Prod. 2015, 71, 122–127. [Google Scholar] [CrossRef]
- Bahloul, N.; Kechaou, N.; Mihoubi, N.B. Comparative investigation of minerals, chlorophylls contents, fatty acid composition and thermal profiles of olive leaves (Olea europeae L.) as by-product. Grasas Aceites 2014, 65, e035. [Google Scholar] [CrossRef]
- Alvarez, H.M.; Herrero, O.M.; Silva, R.A.; Hernández, M.A.; Lanfranconi, M.P.; Villalba, M.S. Insights into the metabolism of oleaginous Rhodococcus spp. Appl. Environ. Microbiol. 2019, 85, e00498-19. [Google Scholar] [CrossRef]
- Herrero, O.M.; Moncalian, G.; Alvarez, H.M. Physiological and genetic differences amongst Rhodococcus species for using glycerol as a source for growth and triacylglycerol production. Microbiology 2016, 162, 384–397. [Google Scholar] [CrossRef]
- Alvarez, H.M.; Mayer, F.; Fabritius, D.; Steinbüchel, A. Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch. Microbiol. 1996, 165, 377–386. [Google Scholar] [CrossRef]
- Herrero, O.M.; Alvarez, H.M. Whey as a renewable source for lipid production by Rhodococcus strains: Physiology and genomics of lactose and galactose utilization. Eur. J. Lipid Sci. Technol. 2016, 118, 262–272. [Google Scholar] [CrossRef]
- Van Wezel, G.P.; White, J.; Young, P.; Postma, P.W.; Bibb, M.J. Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3 (2) is controlled by malR, a member of the lacI–galR family of regulatory genes. Mol. Microbiol. 1997, 23, 537–549. [Google Scholar] [CrossRef]
- Alvarez, H.M.; Kalscheuer, R.; Steinbüchel, A. Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Lipid/Fett 1997, 99, 239–246. [Google Scholar] [CrossRef]
- Wältermann, M.; Luftmann, H.; Baumeister, D.; Kalscheuer, R.; Steinbüchel, A. Rhodococcus opacus strain PD630 as a new source of high-value single-cell oil? Isolation and characterization of triacylglycerols and other storage lipids. Microbiology 2000, 146, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Kohlmeier, M.G.; Oresnik, I.J. The transport of mannitol in Sinorhizobium meliloti is carried out by a broad-substrate polyol transporter SmoEFGK and is affected by the ability to transport and metabolize fructose. Microbiology 2023, 169, 001371. [Google Scholar] [CrossRef] [PubMed]
- Sola-Carvajal, A.; García-García, M.I.; García-Carmona, F.; Sánchez-Ferrer, Á. Insights into the evolution of sorbitol metabolism: Phylogenetic analysis of SDR196C family. BMC Evol. Biol. 2012, 12, 147. [Google Scholar] [CrossRef] [PubMed]
- Amara, S.; Seghezzi, N.; Otani, H.; Diaz-Salazar, C.; Liu, J.; Eltis, L.D. Characterization of key triacylglycerol biosynthesis processes in rhodococci. Sci. Rep. 2016, 6, 24985. [Google Scholar] [CrossRef]
Strain | Rhodococcus sp. 24CO |
---|---|
Domain | Bacteria |
Taxonomy | Actinomycetota; Actinomycetes; Mycobacteriales; Nocardiaceae; Rhodococcus |
G + C content | 61.77 |
Completeness | 99.9 |
Contamination | 0.6 |
Number of coding sequences (CDSs) in PATRIC | 6560 |
Proteins with functional assignments | 4160 |
Hypothetical proteins | 2400 |
Proteins with EC number assignments | 1375 |
Proteins with KEGG pathway assignments | 1087 |
Number of tRNA | 50 |
Number of rRNA | 4 |
Genome length | 6,603,836 |
N50 value | 554,488 |
L50 value | 5 |
Carbon Source | Harvest Time (h) | Biomass (g CDW/L) | TAG (g/g CDW) |
---|---|---|---|
Fructose 1% a | 48 | 0.46 | 0.47 |
Mannitol 1% a | 24 | 0.25 | 0.28 |
Sorbitol 1% a | 24 | 0.30 | 0.21 |
Glucose 1% a | 240 | 0.17 | 0.17 |
Gluconate 1% a | 96 | 0.18 | 0.19 |
Glycerol 0.3% a | 504 | 0.30 | 0.23 |
Mannitol 1% b | 48 | 1.49 | 0.21 |
COD (mg/L) | Total Nitrogen (mg/L) | C/N Ratio | Total Sugar (g/L) | Phenol Content (mg/L) | |
---|---|---|---|---|---|
Fresh Infusion (FI) | 29,550 | 119 | 248.3 | 21.0 | 5.8 |
Dewatered Infusion (DWI) | 7410 | 29 | 255.5 | 19.9 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandoval, N.E.; Gomila, M.; Arias, N.S.; Alvarez, H.M.; Lanfranconi, M.P. Olive Pruning: Waste or Growth Media? Expanding the Metabolic Potential of Phyllospheric Rhodococcus sp. 24CO. Fermentation 2025, 11, 237. https://doi.org/10.3390/fermentation11050237
Sandoval NE, Gomila M, Arias NS, Alvarez HM, Lanfranconi MP. Olive Pruning: Waste or Growth Media? Expanding the Metabolic Potential of Phyllospheric Rhodococcus sp. 24CO. Fermentation. 2025; 11(5):237. https://doi.org/10.3390/fermentation11050237
Chicago/Turabian StyleSandoval, Natalia E., Margarita Gomila, Nadia S. Arias, Héctor M. Alvarez, and Mariana P. Lanfranconi. 2025. "Olive Pruning: Waste or Growth Media? Expanding the Metabolic Potential of Phyllospheric Rhodococcus sp. 24CO" Fermentation 11, no. 5: 237. https://doi.org/10.3390/fermentation11050237
APA StyleSandoval, N. E., Gomila, M., Arias, N. S., Alvarez, H. M., & Lanfranconi, M. P. (2025). Olive Pruning: Waste or Growth Media? Expanding the Metabolic Potential of Phyllospheric Rhodococcus sp. 24CO. Fermentation, 11(5), 237. https://doi.org/10.3390/fermentation11050237