Development of Selenized Lactic Acid Bacteria and their Selenium Bioaccummulation Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Strain Confirmation Using 16S rRNA
2.3. Preparation of Se-Enriched Strains, Enumeration, and Optical Density (OD)
2.4. Lactic Acid Production
2.5. Determination of Total Se Content
2.6. Determination of Se Species
2.7. DPPH Radical-Scavenging Activity/Antioxidant Activity
2.8. Hydrophobicity
2.9. Statistical Analyses
3. Results and Discussion
3.1. Confirmation of S. thermophillus CCDM 144 and E. faecium CCDM 922A Strain Identity
3.2. Selenization of S. thermophillus CCDM 144 and E. faecium CCDM 922A Strains
3.3. Effects of S. thermophillus CCDM 144 and E. faecium CCDM 922A Selenization on Cell Viability and Growth
3.4. Effects of S. thermophillus CCDM 144 and E. faecium CCDM 922A Selenization on Antioxidant Properties
3.5. Effects of S. thermophillus CCDM 144 and E. faecium CCDM 922A Selenization on Cell Surface Hydrophobicity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mrvčić, J.; Stanzer, D.; Solić, E.; Stehlik-Tomas, V. Interaction of lactic acid bacteria with metal ions: Opportunities for improving food safety and quality. World J. Microbiol. Biotechnol. 2012, 28, 2771–2782. [Google Scholar] [CrossRef]
- Chojnacka, K.; Mikulewicz, M.; Cieplik, J. Biofortification of food with microelements. Am. J. Agric. Biol. Sci. 2011, 6, 544–548. [Google Scholar]
- Pescuma, M.; Gomez-Gomez, B.; Perez-Corona, T.; Font, G.; Madrid, Y.; Mozzi, F. Food prospects of selenium enriched Lactobacillus acidophilus CRL 636 and Lactobacillus reuteri CRL 1101. J. Funct. Foods 2017, 35, 466–473. [Google Scholar] [CrossRef]
- Rayman, M.P. The importance of selenium to human health. Lancet 2000, 356, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Commission Regulation (EC) No 1170/2009 of 30 November 2009 Amending Directive 2002/46/EC of the European Parliament and of Council and Regulation (EC) No 1925/2006 of the European Parliament and of the Council as Regards the Lists of Vitamin and Minerals and Their Forms that can Be Added to Foods, Including Food Supplements. Available online: https://op.europa.eu/en/publication-detail/-/publication/45405cb0-0fc6-48ec-b8a0-8f93b50d6a82/language-en (accessed on 15 July 2020).
- Rother, M. Selenium metabolism in prokaryotes. In Selenium; Hatfield, D.L., Berry, M.J., Gladyshev, V.N., Eds.; Springer: New York, NY, USA, 2011; pp. 457–470. [Google Scholar]
- Zhang, B.; Zhou, K.; Zhang, J.; Chen, Q.; Liu, G.; Shang, N.; Qin, W.; Li, P.; Lin, F. Accumulation and species distribution of selenium in Se-enriched bacterial cells of the Bifidobacterium animalis 01. Food Chem. 2009, 115, 727–734. [Google Scholar] [CrossRef]
- Shakibaie, M.; Khorramizadeh, M.R.; Faramarzi, M.A.; Sabzevari, O.; Shahverdi, A.R. Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase-2 expression. Biotechnol. Appl. Biochem. 2010, 56, 7–15. [Google Scholar] [CrossRef]
- Pophaly, S.D.; Poonam; Singh, P.; Kumar, H.; Tomar, S.K.; Singh, R. Selenium enrichment of lactic acid bacteria and bifidobacteria: A functional food perspective. Trends Food Sci. Technol. 2014, 39, 135–145. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Yang, K.; Liu, M.; Qi, Y.; Zhang, T.; Fan, M.; Wei, X. Antibacterial activity of selenium-enriched lactic acid bacteria against common food-borne pathogens in vitro. J. Dairy Sci. 2018, 101, 1930–1942. [Google Scholar] [CrossRef] [Green Version]
- Zare, H.; Vahidi, H.; Owlia, P.; Khujin, M.H.; Khamisabad, A. Yeast enriched with selenium: A promising source of selenomethionine and seleno-proteins. Trends Pept. Protein Sci. 2017, 1, 130–134. [Google Scholar]
- Kieliszek, M.; Błażejak, S.; Gientka, I.; Bzducha-Wróbel, A. Accumulation and metabolism of selenium by yeast cells. Appl. Microbiol. Biotechnol. 2015, 99, 5373–5382. [Google Scholar] [CrossRef] [Green Version]
- Schrauzer, G.N. Selenium yeast: Composition, quality, analysis, and safety. Pure Appl. Chem. 2006, 78, 105–109. [Google Scholar] [CrossRef] [Green Version]
- Shu, G.; Mei, S.; Chen, L.; Zhang, B.; Guo, M.; Cui, X.; Chen, H. Screening, identification, and application of selenium-enriched Lactobacillus in goat milk powder and tablet. J. Food Process. Preserv. 2020, 44, e14470. [Google Scholar] [CrossRef]
- Xu, X.; Bao, Y.; Wu, B.; Lao, F.; Hu, X.; Wu, J. Chemical analysis and flavor properties of blended orange, carrot, apple, and Chinese jujube juice fermented by selenium-enriched probiotics. Food Chem. 2019, 289, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, Y.; Zhang, L.; Fan, M.; Wei, X. Response surface design for accumulation of selenium by different lactic acid bacteria. 3 Biotech 2017, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Ouwehand, A.C.; Vesterlund, S.A. Antimicrobial components from lactic acid bacteria. Food Sci. Technol. 2004, 139, 375–396. [Google Scholar]
- Hyrslova, I.; Krausova, G.; Bartova, J.; Kolesar, L.; Jaglic, Z.; Stankova, B.; Curda, L. Characterization of Enterococcus faecium CCDM 922 in respect of its technological and probiotic properties. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 474–482. [Google Scholar] [CrossRef]
- Li, B.; Zhan, M.; Evivie, S.E.; Jin, D.; Zhao, L.; Chowdhury, S.; Sarker, S.K.; Huo, G.; Liu, F. Evaluating the safety of potential probiotic Enterococcus durans KLDS6.0930 using whole genome sequencing and oral toxicity study. Front. Microbiol. 2018, 9, 1943. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, L.C.S.; Casarotii, S.N.; Todorov, S.D.; Penna, A.L.B. Probiotic potential and safety of enterococci strains. Ann. Microbiol. 2019, 69, 241–252. [Google Scholar] [CrossRef]
- Herman, L.; Chemaly, M.; Cocconcelli, P.S.; Fernandez, P.; Klein, G.; Peixe, L.; Prieto, M.; Querol, A.; Suarez, J.E.; Sundh, I.; et al. The qualified presumption of safety assessment and its role in EFSA risk evaluations: 15 years past. FEMS Microbiol. Lett. 2019, 366, fny260. [Google Scholar] [CrossRef]
- Salminen, S.; von Wright, A.; Ouwehand, A. Lactic acid bacteria. In Microbiological and Functional Aspects, 3rd ed.; Salminen, S., von Wright, A., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2004; p. 633. [Google Scholar]
- Nachtigall, C.; Weber, C.; Rothenburger, S.; Jaros, D.; Rohm, H. Test parameters and cell chain length of Streptococcus thermophilus affect the microbial adhesion to hydrocarbon assay: A methodical approach. FEMS Microbiol. Lett. 2019, 366, fnz150. [Google Scholar] [CrossRef]
- Weisburg, W.G.; Barns, S.D.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stackebrandt, E.; Goebel, B.M. Taxonomic Note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 1994, 44, 846–849. [Google Scholar] [CrossRef] [Green Version]
- Eichler, Š.; Kaňa, A.; Kalousová, M.; Vosmanská, M.; Korotvička, M.; Zima, T.; Mestek, O. Speciation analysis of selenium in human urine by liquid chromatography and inductively coupled plasma mass spectroetry for monitoring of selenium in body fluids. Chem. Spec. Bioavail. 2015, 27, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Rajab, S.; Tabandeh, F.; Shahraky, M.K.; Alahyaribeik, S. Effect of Lactobacillus cell size on probiotic characteristics. Anaerobe 2020, 62, 102103. [Google Scholar] [CrossRef]
- Son, S.H.; Yang, S.J.; Jeon, H.L.; Yu, H.S.; Lee, N.K.; Park, Y.S.; Paik, H.D. Antioxidant and immunostimulatory effect of potential probiotic Lactobacillus paraplantarum SC61 isolated from Korean traditional fermented food, jangajji. Microb. Pathog. 2018, 125, 486–492. [Google Scholar] [CrossRef]
- Vinderola, C.; Medici, M.; Perdigón, G. Relationship between interaction sites in the gut, hydrophobicity, mucosal immunomodulating capacities, and cell wall protein profiles in indigenous and exogenous bacteria. J. Appl. Microbiol. 2004, 96, 230–243. [Google Scholar] [CrossRef]
- Pieniz, S.; Andreazza, R.; Mann, M.B.; Camargo, F.; Brandelli, A. Bioaccumulation and distribution of selenium in Enterococcus durans. J. Trace Elem. Med. Biol. 2017, 40, 37–45. [Google Scholar] [CrossRef]
- Xia, K.S.; Chen, L.; Liang, J.Q. Enriched selenium and its effects on growth and biochemical composition in L. bulgaricus. J. Agric. Food Chem. 2007, 55, 2413–2417. [Google Scholar] [CrossRef]
- Saini, K.; Tomar, S.K. In vitro evaluation of probiotic potential of Lactobacillus cultures of human origin capable of selenium bioaccumulation. LWT 2017, 84, 497–504. [Google Scholar] [CrossRef]
- Adadi, P.; Barakova, N.V.; Muravyov, K.Y.; Krivoshapkina, E.F. Designing selenium functional foods and beverages: A review. Food Res. Int. 2019, 120, 708–725. [Google Scholar] [CrossRef]
- Alzate, A.; Canas, B.; Perez-Munguia, S.; Hernandez-Mendoza, H.; Perez-Conde, C.; Gutierez, A.M.; Camara, C. Evaluation of the inorganic selenium biotransformation in selenium-enriched yogurt by HPLC-ICP-MS. J. Agric. Food Chem. 2007, 55, 9776–9783. [Google Scholar] [CrossRef] [PubMed]
- Alzate, A.; Fernandez-Fernandez, A.; Perez-Conce, M.C.; Gutierez, A.M.; Camara, A. Comparison of biotranformation of inorganic selenium by Lactobacillus and Saccharomyces in lactic fermentation process of yoghurt and kefir. J. Agric. Food Chem. 2008, 56, 8728–8736. [Google Scholar] [CrossRef] [PubMed]
- Kousha, M.; Yeganeh, S.; Amirkolaie, A.K. Effect of sodium selenite on the bacteria growth, selenium accumulation, and biotransformation in Pediococcus acidilactici. Food Sci. Biotechnol. 2017, 26, 1013–1018. [Google Scholar] [CrossRef]
- Kurek, E.; Ruszczynska, A.; Wojciechowski, M.; Łuciuk, A.; Michalska-Kacymirow, M.; Motyl, O.; Bulska, E. Bio-transformation of selenium in Se-enriched bacterial strains of Lactobacillus casei. Rocz. Panstw. Zakl. Hig. 2016, 67, 253–262. [Google Scholar] [PubMed]
- Peñas, E.; Martinez-Villaluenga, C.; Frias, J.; Sánchez-Martínez, M.J.; Pérez-Corona, M.T.; Madrid, Y.; Cámara, C.; Vidal-Valverde, C. Se improves indole glucosinolate hydrolysis products content Se-methylselenocysteine content, antioxidant capacity, and potential anti-inflammatory properties of sauerkraut. Food. Chem. 2012, 132, 907–914. [Google Scholar] [CrossRef] [Green Version]
- Pusztahely, T.; Kovács, S.; Pócsi, I.; Prokisch, J. Selenite-stress selected mutant strains of probiotic bacteria for Se source production. J. Trace Elem. Med. Biol. 2015, 30, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Estrada, A.M.; Olivares, L.G.G.; Lopez, E.C.; Serrano, G.R. SelA and SelD genes involved in selenium absorption metabolism in lactic acid bacteria isolated from Mexican cheeses. Int. Dairy J. 2020, 103, 104629. [Google Scholar] [CrossRef]
- Zhang, Y.; Turanov, A.A.; Hatfield, D.L.; Gladyshev, V.N. In silico identification of genes involved in selenium metabolism: Evidence for a third selenium utilization trait. BMC Genom. 2008, 9, 251. [Google Scholar] [CrossRef] [Green Version]
- Amaretti, A.; di Nunzio, M.; Pompei, A.; Raimondi, S.; Rossi, M.; Bordoni, A. Antioxidant properties of potentially probiotic bacteria: In vitro and in vivo activities. Appl. Microbiol. Biotechnol. 2013, 97, 809–817. [Google Scholar] [CrossRef]
- European Parliament and Council Directive No 95/2/EC of 20 February 1995 on Food Additives Other than Colours and Sweeteners. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32006L0129 (accessed on 15 July 2020).
- Iyer, R.; Tomar, S.K.; Kapila, S.; Mani, J.; Singh, R. Probiotic properties of folate producing Streptococcus thermophilus strains. Food Res. Int. 2010, 43, 103–110. [Google Scholar] [CrossRef]
- Pan, M.; Kumaree, K.K.; Shah, N.P. Physiological changes of surface membrane in Lactobacillus with prebiotics. J. Food Sci. 2017, 82, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Pan, D.; Li, H.; Sun, Y.; Zeng, X.; Yan, B. Antioxidant and immunomodulatory activity of selenium exopolysaccharide produced by Lactococcus lactis subsp. Lactis. Food Chem. 2013, 138, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Korakli, M.; Pavlovic, M.; Gänzle, M.G.; Vogel, R.F. Exopolysaccharide and ketose production by Lactobacillus sanfranciscensis LTH 2590. Appl. Environ. Microbiol. 2003, 69, 2073–2079. [Google Scholar] [CrossRef] [Green Version]
- Ruas-Madiedo, P.; Hugenholtz, J.; Zoon, P. Overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J. 2002, 12, 163–171. [Google Scholar] [CrossRef]
- Mörschbächer, A.P.; Dullius, A.; Dullius, C.H.; Brandt, C.R.; Kuhn, D.; Brietzke, D.T.; Malmann Kuffel, F.J.; Etgeton, H.P.; Altmayer, T.; Gonçalves, T.E.; et al. Assessment of selenium bioaccumulation in lactic acid bacteria. J. Dairy Sci. 2018, 101, 10626–10635. [Google Scholar]
- Palomo-Siguero, M.; Gutiérrez, A.M.; Pérez-Conde, C.; Madrid, Y. Effect of selenite and selenium nanoparticles on lactic bacteria: A multi-analytical study. Microchem. J. 2016, 126, 488–495. [Google Scholar] [CrossRef]
Strain + Na2SeO3 (mg/L) | Selenium Content (μg/g) | Optical Density (620 nm) | Viable Counts (log CFU/mL) | pH | Lactic Acid (mg/L) |
---|---|---|---|---|---|
144—0 | <LOD | 7.82 | 7.68 | 5.81 | 389 |
144—1 | 38 ± 13 | 7.91 | 7.65 | 5.80 | 385 |
144—5 | 330 ± 132 | 7.72 | 7.32 | 5.81 | 385 |
144—10 | 956 ± 309 | 7.79 | 7.38 | 5.81 | 388 |
144—30 | 5172 ± 1630 | 7.79 | 7.36 | 5.82 | 390 |
144—50 | 7348 ± 2395 | 7.77 | 7.33 | 5.81 | 397 |
922A—0 | 0.20 ± 0.07 | 9.08 | 8.93 | 5.67 | 300 |
922A—1 | 33.4 ± 8.7 | 9.51 | 9.00 | 5.68 | 289 |
922A—5 | 248 ± 39 | 9.11 | 8.71 | 5.68 | 318 |
922A—10 | 464 ± 70 | 9.19 | 8.95 | 5.69 | 292 |
922A—30 | 4595 ± 711 | 9.23 | 8.81 | 5.66 | 299 |
922A—50 | 6491 ± 1158 | 9.22 | 8.00 | 5.65 | 296 |
Strain | Antioxidant Effect DPPH (%) |
---|---|
144 | 3.45 ± 1.90 AB |
144 Se | 4.06 ± 0.70 B |
922A | 1.59 ± 1.73 A |
922A Se | 3.14 ± 1.06 AB |
BHT | 15.21 ± 2.23 C |
Strains | Hydrophobicity (%) |
---|---|
144 | 7.97 ± 2.77 A |
144 Se | 17.02 ± 4.16 B |
922A | 2.13 ± 0.48 A |
922A Se | 17.26 ± 4.91 B |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krausova, G.; Kana, A.; Hyrslova, I.; Mrvikova, I.; Kavkova, M. Development of Selenized Lactic Acid Bacteria and their Selenium Bioaccummulation Capacity. Fermentation 2020, 6, 91. https://doi.org/10.3390/fermentation6030091
Krausova G, Kana A, Hyrslova I, Mrvikova I, Kavkova M. Development of Selenized Lactic Acid Bacteria and their Selenium Bioaccummulation Capacity. Fermentation. 2020; 6(3):91. https://doi.org/10.3390/fermentation6030091
Chicago/Turabian StyleKrausova, Gabriela, Antonin Kana, Ivana Hyrslova, Iva Mrvikova, and Miloslava Kavkova. 2020. "Development of Selenized Lactic Acid Bacteria and their Selenium Bioaccummulation Capacity" Fermentation 6, no. 3: 91. https://doi.org/10.3390/fermentation6030091
APA StyleKrausova, G., Kana, A., Hyrslova, I., Mrvikova, I., & Kavkova, M. (2020). Development of Selenized Lactic Acid Bacteria and their Selenium Bioaccummulation Capacity. Fermentation, 6(3), 91. https://doi.org/10.3390/fermentation6030091