Improvement of Enantiomeric l-Lactic Acid Production from Mixed Hexose-Pentose Sugars by Coculture of Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Screening of Pentose-Utilizing LAB
2.2. Selection of LAB for Optically Pure l-LA Production
2.3. Furfural Tolerance and Inhibitory Effect on l-LA Production
2.4. Identification of LAB by 16S rRNA Gene Sequence Analysis
2.5. Effect of Different Glucose/Xylose Ratio on l-LA Production by Enterococcus mundtii WX1
2.6. l-LA Production from Mixed Glucose and Xylose by Coculture Fermentation
2.7. Statistical Medium Optimization for l-LA Production by Coculture Fermentation
2.8. Comparative Study on l-LA Production by the Optimized Medium
2.9. Statical Analysis
3. Results and Discussion
3.1. Bacterial Isolation and Screening of Xylose-Utilizing LAB
3.2. Screening of LAB for Optically Pure l-LA Production
3.3. Furfural Tolerance and Inhibitory Effect on l-LA Production
3.4. Molecular Identification of LAB
3.5. Effect of Glucose and Xylose Concentrations on l-LA Production from E. mundtii WX1
3.6. l-LA Production from Mixed Glucose and Xylose by Coculture Fermentation
3.7. Medium Optimization for l-LA Production by Coculture Using Experimental Designs
3.8. Comparative Study on l-LA Production by the Optimized Medium
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Narayanan, N.; Roychoudhury, P.K.; Srivastava, A. L (+) lactic acid fermentation and its product polymerization. Electron. J. Biotechnol. 2004, 7, 167–178. [Google Scholar]
- Abdel-Rahman, M.A.; Sonomoto, K. Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J. Biotechnol. 2016, 236, 176–192. [Google Scholar] [CrossRef] [PubMed]
- Datta, R.; Henry, M. Lactic acid: Recent advances in products, processes and technologies—A review. J. Chem. Technol. Biotechnol. 2006, 81, 1119–1129. [Google Scholar] [CrossRef]
- Reddy, G.; Altaf, M.; Naveena, B.J.; Venkateshwar, M.; Kumar, E.V. Amylolytic bacterial lactic acid fermentation—A review. Biotechnol. Adv. 2008, 26, 22–34. [Google Scholar] [CrossRef]
- Mora-Villalobos, J.A.; Montero-Zamora, J.; Barboza, N.; Rojas-Garbanzo, C.; Usaga, J.; Redondo-Solano, M.; Schroedter, L.; Olszewska-Widdrat, A.; Lopez-Gomez, J.P. Multi-product lactic acid bacteria fermentations: A review. Fermentation 2020, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 2013, 31, 877–902. [Google Scholar] [CrossRef] [PubMed]
- Hofvendahl, K.; Hahn–Hägerdal, B. Factors affecting the fermentative lactic acid production from renewable resources 1. Enzyme Microb. Technol. 2000, 26, 87–107. [Google Scholar] [CrossRef]
- Martinez, F.A.C.; Balciunas, E.M.; Salgado, J.M.; González, J.M.D.; Converti, A.; de Souza Oliveira, R.P. Lactic acid properties, applications and production: A review. Trends Food Sci. Technol. 2013, 30, 70–83. [Google Scholar] [CrossRef]
- John, R.P.; Nampoothiri, K.M.; Pandey, A. Fermentative production of lactic acid from biomass: An overview on process developments and future perspectives. Appl. Microbiol. Biotechnol. 2007, 74, 524–534. [Google Scholar] [CrossRef]
- Juturu, V.; Wu, J.C. Microbial production of lactic acid: The latest development. Crit. Rev. Biotechnol. 2016, 36, 967–977. [Google Scholar] [CrossRef]
- Isikgor, F.H.; Becer, C.R. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015, 6, 4497–4559. [Google Scholar] [CrossRef] [Green Version]
- Ravindran, R.; Jaiswal, A.K. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities. Bioresour. Technol. 2016, 199, 92–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-H.; Block, D.E.; Mills, D.A. Simultaneous consumption of pentose and hexose sugars: An optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl. Microbiol. Biotechnol. 2010, 88, 1077–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bizzi, C.A.; Santos, D.; Sieben, T.C.; Motta, G.V.; Mello, P.A.; Flores, E.M. Furfural production from lignocellulosic biomass by ultrasound-assisted acid hydrolysis. Ultrason. Sonochem. 2019, 51, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.; Arora, R.; Nandhagopal, N.; Kumar, S. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2014, 36, 91–106. [Google Scholar] [CrossRef]
- Liang, X.; Fu, Y.; Liu, H. Isolation and characterization of enzyme-producing bacteria of the silkworm larval gut in bioregenerative life support system. Acta Astronaut. 2015, 116, 247–253. [Google Scholar] [CrossRef]
- Unban, K.; Kodchasee, P.; Shetty, K.; Khanongnuch, C. Tannin-tolerant and extracellular tannase producing Bacillus isolated from traditional fermented tea leaves and their probiotic functional properties. Foods 2020, 9, 490. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Molecular Clonging: A Laboratory Mannual, 3rd ed.; Cold Spring Harbor Press: New York, NY, USA, 2001. [Google Scholar]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematic; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley & Sons: New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 2007, 24, 1596–1599. [Google Scholar] [CrossRef]
- Unban, K.; Puangkhankham, N.; Kanpiengjai, A.; Govindarajan, R.K.; Kalaimurugan, D.; Khanongnuch, C. Improvement of polymer grade L-lactic acid production using Lactobacillus rhamnosus SCJ9 from low-grade cassava chips by simultaneous saccharification and fermentation. Processes 2020, 8, 1143. [Google Scholar] [CrossRef]
- Lloyd, T.A.; Wyman, C.E. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour. Technol. 2005, 96, 1967–1977. [Google Scholar] [CrossRef]
- Yang, J.; Corscadden, K.; He, Q.S.; Caldwell, C. The optimization of alkali-catalyzed biodiesel production from Camelina sativa oil using a response surface methodology. J. Bioprocess. Biotech. 2015, 5, 1000235. [Google Scholar]
- MsangoSoko, K.; Gandotra, S.; Chandel, R.K.; Sharma, K.; Ramakrishinan, B.; Subramanian, S. Composition and diversity of gut bacteria associated with the eri silk moth, Samia ricini, (Lepidoptera: Saturniidae) as revealed by culture-dependent and metagenomics analysis. J. Microbiol. Biotechnol. 2020, 30, 1367–1378. [Google Scholar] [CrossRef]
- Steinbach, D.; Kruse, A.; Sauer, J. Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production-a review. Biomass Conv. Bioref. 2017, 7, 247–274. [Google Scholar] [CrossRef]
- Weiss, N.D.; Nagle, N.J.; Tucker, M.P.; Elander, R.T. High xylose yields from dilute acid pretreatment of corn stover under process-relevant conditions. Appl. Biochem. Biotechnol. 2009, 155, 115–125. [Google Scholar] [CrossRef]
- Fehér, A.; Fehér, C.; Rozbach, M.; Barta, Z. Combined approaches to xylose production from corn stover by dilute acid hydrolysis. Chem. Biochem. Eng. Q. 2017, 31, 77–87. [Google Scholar] [CrossRef]
- Tang, Y.; Bu, L.; He, J.; Jiang, J. L (+)-Lactic acid production from furfural residues and corn kernels with treated yeast as nutrients. Eur. Food Res. Technol. 2013, 236, 365–371. [Google Scholar] [CrossRef]
- Yeruva, T.; Vankadara, S.; Ramasamy, S.; Lingaiah, K. Identification of potential probiotics in the midgut of mulberry silkworm, Bombyx mori through metagenomic approach. Probiotics Antimicro. Prot. 2020, 12, 635–640. [Google Scholar] [CrossRef]
- Wang, Y.; Abdel-Rahman, M.A.; Tashiro, Y.; Xiao, Y.; Zendo, T.; Sakai, K.; Sonomoto, K. L-(+)-Lactic acid production by co-fermentation of cellobiose and xylose without carbon catabolite repression using Enterococcus mundtii QU 25. RSC Adv. 2014, 4, 22013–22021. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Tashiro, Y.; Zendo, T.; Sakai, K.; Sonomoto, K. Highly efficient L-lactic acid production from xylose in cell recycle continuous fermentation using Enterococcus mundtii QU 25. RSC Adv. 2016, 6, 17659–17668. [Google Scholar] [CrossRef]
- Mahr, K.; Hillen, W.; Titgemeyer, F. Carbon catabolite repression in Lactobacillus pentosus: Analysis of the ccpA region. Appl. Environ. Microbiol. 2000, 66, 277–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-H.; Shoemaker, S.P.; Mills, D.A. Relaxed control of sugar utilization in Lactobacillus brevis. Microbiology 2009, 155, 1351–1359. [Google Scholar] [CrossRef] [Green Version]
- Yanase, H.; Araya-Kojima, T.; Shiwa, Y.; Watanabe, S.; Zendo, T.; Chibazakura, T.; Shimizu-Kadota, M.; Sonomoto, K.; Yoshikawa, H. Transcriptional regulation of xylose utilization in Enterococcus mundtii QU 25. RSC Adv. 2015, 5, 93283–93292. [Google Scholar] [CrossRef]
- Wyman, C.E.; Dale, B.E.; Elander, R.T.; Holtzapple, M.; Ladisch, M.R.; Lee, Y. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour. Technol. 2005, 96, 2026–2032. [Google Scholar] [CrossRef]
- Taniguchi, M.; Tokunaga, T.; Horiuchi, K.; Hoshino, K.; Sakai, K.; Tanaka, T. Production of L-lactic acid from a mixture of xylose and glucose by co-cultivation of lactic acid bacteria. Appl. Microbiol. Biotechnol. 2004, 66, 160–165. [Google Scholar] [CrossRef]
- Reese, E.; Maguire, A. Surfactants as stimulants of enzyme production by microorganisms. Appl. Microbiol. 1969, 17, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-Y.; Zhang, L.-W.; Du, M.; Han, X.; Yi, H.-X.; Guo, C.-F.; Zhang, Y.-C.; Luo, X.; Zhang, Y.-H.; Shan, Y.-J. Effect of tween series on growth and cis-9, trans-11 conjugated linoleic acid production of Lactobacillus acidophilus F0221 in the presence of bile salts. Int. J. Mol. Sci. 2011, 12, 9138–9154. [Google Scholar] [CrossRef] [PubMed]
- Nagarjun, P.A.; Rao, R.S.; Rajesham, S.; Rao, L.V. Optimization of lactic acid production in SSF by Lactobacillus amylovorus NRRL B-4542 using Taguchi methodology. J. Microbiol. 2005, 43, 38–43. [Google Scholar]
- Naveena, B.J.; Altaf, M.; Bhadriah, K.; Reddy, G. Selection of medium components by Plackett-Burman design for production of L(+) lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran. Bioresour. Technol. 2005, 96, 485–490. [Google Scholar] [CrossRef]
- Kanpiengjai, A.; Lumyong, S.; Pathom-aree, W.; Khanongnuch, C. Starchy effluent from rice noodle manufacturing process as feasible substrate for direct lactic acid production by Lactobacillus plantarum S21. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 217–220. [Google Scholar] [CrossRef]
- Leroy, F.; De Vuyst, L. Growth of the bacteriocin-producing Lactobacillus sakei strain CTC 494 in MRS broth is strongly reduced due to nutrient exhaustion: A nutrient depletion model for the growth of lactic acid bacteria. Appl. Environ. Microbiol. 2001, 67, 4407–4413. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Li, M.; Liu, J.; Guo, D.; Pei, L.; Zhao, X. Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics. J. Phys. D Appl. Phys. 2008, 41, 065003. [Google Scholar] [CrossRef]
- El Gherab, F.Z.R.; Hassaine, O.; Zadi-Karam, H.; Karam, N.-E. Statistical optimization for the development of a culture medium based on the juice of waste-dates for growth of Lactococcus lactis LCL strain by using the Plackett–Burman and response surface methodology. Waste Biomass Valor. 2019, 10, 2943–2957. [Google Scholar] [CrossRef]
- Norizan, N.A.B.M.; Halim, M.; Tan, J.S.; Abbasiliasi, S.; Mat Sahri, M.; Othman, F.; Ariff, A.B. Enhancement of β-mannanase production by Bacillus subtilis ATCC11774 through optimization of medium composition. Molecules 2020, 25, 3516. [Google Scholar] [CrossRef] [PubMed]
- Unban, K.; Kanpiengjai, A.; Khatthongngam, N.; Saenjum, C.; Khanongnuch, C. Simultaneous bioconversion of gelatinized starchy waste from the rice noodle manufacturing process to lactic acid and maltose-forming α-amylase by Lactobacillus plantarum S21, using a low-cost medium. Fermentation 2019, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Penkhrue, W.; Jendrossek, D.; Khanongnuch, C.; Pathom-aree, W.; Aizawa, T.; Behrens, R.L.; Lumyong, S. Response surface method for polyhydroxybutyrate (PHB) bioplastic accumulation in Bacillus drentensis BP17 using pineapple peel. PLoS ONE 2020, 15, e0230443. [Google Scholar]
- Azaizeh, H.; Abu Tayeh, H.N.; Schneider, R.; Klongklaew, A.; Venus, J. Production of lactic acid from carob, banana and sugarcane lignocellulose biomass. Molecules 2020, 25, 2956. [Google Scholar] [CrossRef]
- Lu, Z.; He, F.; Shi, Y.; Lu, M.; Yu, L. Fermentative production of L (+)-lactic acid using hydrolyzed acorn starch, persimmon juice and wheat bran hydrolysate as nutrients. Bioresour. Technol. 2010, 101, 3642–3648. [Google Scholar] [CrossRef]
Isolates | Optical Pure l-Lactic Acid (%) | l-Lactic Acid Production (g/L) at 48 h | ||||
---|---|---|---|---|---|---|
MRS Glucose | MRS Xylose | MRS Arabinose | MRS Glucose | MRS Xylose | MRS Arabinose | |
MJG2 | 100 | 100 | 100 | 7.75 ± 0.02 f | 3.40 ± 0.04 e | 1.38 ± 0.01 i |
SC1 | 96.3 | 95.9 | 94.5 | 8.11 ± 0.12 e | 3.37 ± 0.12 e | 1.15 ± 0.02 j |
SCT2 | 97.2 | 97.6 | 94.3 | 9.41 ± 0.10 a | 3.20 ± 0.05 e | 1.15 ± 0.02 j |
SX2 | 95.2 | 97.1 | 96.7 | 8.65 ± 0.03 c | 3.20 ± 0.06 e | 1.92 ± 0.01 g |
UDX1 | 100 | 100 | 100 | 7.31 ± 0.05 g | 6.41 ± 0.12 b | 5.86 ± 0.03 b |
WES1 | 100 | 100 | 100 | 8.37 ± 0.03 d | 3.68 ± 0.09 d | 1.78 ± 0.01 h |
WG1 | 100 | 100 | 100 | 8.97 ± 0.11 b | 6.47 ± 0.10 b | 4.68 ± 0.04 c |
WG2-3 | 100 | 100 | 100 | 7.40 ± 0.05 g | 6.54 ± 0.09 b | 4.20 ± 0.04 d |
WX1 | 100 | 100 | 100 | 9.27 ± 0.13 a | 6.80 ± 0.05 a | 6.00 ± 0.07 a |
WX2 | 100 | 100 | 100 | 8.98 ± 0.11 b | 3.36 ± 0.02 e | 2.56 ± 0.02 f |
WX3 | 100 | 100 | 100 | 8.93 ± 0.12 b | 2.61 ± 0.01 f | 2.53 ± 0.01 f |
WX4 | 100 | 100 | 100 | 8.62 ± 0.06 cd | 5.40 ± 0.05 c | 3.49 ± 0.02 e |
Treatment | Time (h) | Glucose (g/L) | Xylose (g/L) | Total Sugar (g/L) | l-Lactic Acid (g/L) | Yield (g/g) |
---|---|---|---|---|---|---|
G20 | 0 | 20.00 ± 0.01 | 0 | 20.00 ± 0.02 | 0 | - |
24 | 5.51 ± 0.02 | 0 | 5.51 ± 0.02 | 14.02 ± 0.02 | 0.97 | |
48 | 1.45 ± 0.01 | 0 | 1.45 ± 0.02 | 17.94 ± 0.02 | 0.97 | |
G15X5 | 0 | 15.00 ± 0.05 | 5.00 ± 0.02 | 20.00 ± 0.02 | 0 | - |
24 | 0 | 4.25 ± 0.02 | 4.25 ± 0.01 | 10.89 ± 0.01 | 0.69 | |
48 | 0 | 2.82 ± 0.03 | 2.82 ± 0.03 | 11.37 ± 0.02 | 0.66 | |
G10X10 | 0 | 10.00 ± 0.02 | 10.00 ± 0.02 | 20.00 ± 0.02 | 0 | - |
24 | 0.14 ± 0.01 | 6.93 ± 0.01 | 7.07 ± 0.01 | 8.33 ± 0.02 | 0.64 | |
48 | 0 | 2.39 ± 0.01 | 2.39 ± 0.01 | 10.89 ± 0.02 | 0.61 | |
G5X15 | 0 | 5.00 ± 0.02 | 15.00 ± 0.01 | 20.00 ± 0.01 | 0 | - |
24 | 0 | 12.17 ± 0.01 | 12.17 ± 0.01 | 7.37 ± 0.01 | 0.94 | |
48 | 0 | 7.99 ± 0.01 | 7.99 ± 0.01 | 9.77 ± 0.02 | 0.81 | |
X20 | 0 | 0 | 20.00 ± 0.01 | 20.00 ± 0.01 | 0 | - |
24 | 0 | 9.48 ± 0.02 | 9.48 ± 0.02 | 10.09 ± 0.02 | 0.96 | |
48 | 0 | 5.66 ± 0.02 | 5.66 ± 0.02 | 13.05 ± 0.03 | 0.91 |
Variable Code | Medium Components | Coefficient Estimate | Sum of Squares | df | F-Value | p-Value (Prob > F) |
---|---|---|---|---|---|---|
Model/Intercept | 12.22 | 105.03 | 10 | 12.65 | 0.0132 | |
A | Tween 80 | 1.34 | 21.55 | 1 | 23.36 | 0.0084 |
C | Peptone | −0.40 | 3.05 | 1 | 3.31 | 0.1431 |
D | Beef extract | 0.024 | 0.011 | 1 | 0.012 | 0.9197 |
E | MgSO4∙7H2O | −0.34 | 1.41 | 1 | 1.53 | 0.2840 |
F | MnSO4∙H2O | 1.71 | 34.91 | 1 | 37.84 | 0.0035 |
G | K2HPO4 | 0.26 | 0.83 | 1 | 0.90 | 0.3958 |
H | Tri-ammonium citrate | 0.11 | 0.15 | 1 | 0.16 | 0.7106 |
K | Sodium acetate | −0.97 | 11.20 | 1 | 12.14 | 0.0253 |
L | YE | 1.63 | 31.91 | 1 | 34.58 | 0.0042 |
Run | X1: YE (g/L) | X2: Tween 80 (g/L) | X3: MnSO4∙H2O (g/L) | Lactic Acid (g/L) |
---|---|---|---|---|
1 | 9 | 1 | 0.6 | 20.02 |
2 | 31 | 1 | 0.6 | 19.45 |
3 | 9 | 2 | 0.6 | 16.29 |
4 | 31 | 2 | 0.6 | 17.20 |
5 | 9 | 1 | 2.2 | 14.87 |
6 | 31 | 1 | 2.2 | 15.48 |
7 | 9 | 2 | 2.2 | 15.57 |
8 | 31 | 2 | 2.2 | 19.24 |
9 | 1.5 | 1.5 | 1.4 | 14.35 |
10 | 38.5 | 1.5 | 1.4 | 15.30 |
11 | 20 | 0.66 | 1.4 | 17.98 |
12 | 20 | 2.34 | 1.4 | 16.99 |
13 | 20 | 1.5 | 0.05 | 16.63 |
14 | 20 | 1.5 | 2.75 | 16.02 |
15 | 20 | 1.5 | 1.4 | 23.97 |
16 | 20 | 1.5 | 1.4 | 22.95 |
17 | 20 | 1.5 | 1.4 | 24.08 |
18 | 20 | 1.5 | 1.4 | 24.10 |
19 | 20 | 1.5 | 1.4 | 24.10 |
20 | 20 | 1.5 | 1.4 | 22.97 |
Source | Coefficient Estimate | df | MS | F Value | p-Value (Prob > F) |
---|---|---|---|---|---|
Model | 23.65 | 9 | 25.55 | 21.98 | <0.0001 |
X1 | 0.45 | 1 | 2.83 | 2.43 | 0.1498 |
X2 | −0.23 | 1 | 0.73 | 0.63 | 0.4457 |
X3 | −0.65 | 1 | 5.68 | 4.89 | 0.0515 |
X1 X2 | 0.57 | 1 | 2.57 | 2.21 | 0.1682 |
X1 X3 | 0.49 | 1 | 1.95 | 1.68 | 0.2240 |
X2 X3 | 1.31 | 1 | 13.64 | 11.74 | 0.0065 |
X12 | −2.82 | 1 | 114.43 | 98.44 | <0.0001 |
X22 | −1.88 | 1 | 50.78 | 43.69 | <0.0001 |
X32 | −2.29 | 1 | 75.40 | 64.87 | <0.0001 |
Residual | 10 | 1.16 | |||
Lack of fit | 5 | 2.00 | 6.12 | 0.0343 | |
Pure error | 5 | 0.33 |
Parameter | Fermentation Strategy | |||||
---|---|---|---|---|---|---|
WX1 | WX1 and SCJ9 | WX1 and SCJ9 | ||||
MRS | MRS | Optimized Medium | ||||
24 h | 48 h | 24 h | 48 h | 24 h | 48 h | |
Lactic acid (g/L) | 12.07 ± 0.5 | 15.51 ± 0.3 | 17.56 ± 0.4 | 19.82 ± 0.1 | 20.88 ± 0.8 | 23.59 ± 0.5 |
Production efficiency (g/g) | 0.49 ± 0.01 | 0.48 ± 0.01 | 0.59 ± 0.01 | 0.66 ± 0.04 | 0.70 ± 0.02 | 0.76 ± 0.01 |
Productivity (g/L/h) | 0.50 ± 0.02 | 0.30 ± 0.07 | 0.73 ± 0.01 | 0.41 ± 0.09 | 0.87 ± 0.03 | 0.48 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klongklaew, A.; Unban, K.; Kanpiengjai, A.; Wongputtisin, P.; Pamueangmun, P.; Shetty, K.; Khanongnuch, C. Improvement of Enantiomeric l-Lactic Acid Production from Mixed Hexose-Pentose Sugars by Coculture of Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9. Fermentation 2021, 7, 95. https://doi.org/10.3390/fermentation7020095
Klongklaew A, Unban K, Kanpiengjai A, Wongputtisin P, Pamueangmun P, Shetty K, Khanongnuch C. Improvement of Enantiomeric l-Lactic Acid Production from Mixed Hexose-Pentose Sugars by Coculture of Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9. Fermentation. 2021; 7(2):95. https://doi.org/10.3390/fermentation7020095
Chicago/Turabian StyleKlongklaew, Augchararat, Kridsada Unban, Apinun Kanpiengjai, Pairote Wongputtisin, Punnita Pamueangmun, Kalidas Shetty, and Chartchai Khanongnuch. 2021. "Improvement of Enantiomeric l-Lactic Acid Production from Mixed Hexose-Pentose Sugars by Coculture of Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9" Fermentation 7, no. 2: 95. https://doi.org/10.3390/fermentation7020095
APA StyleKlongklaew, A., Unban, K., Kanpiengjai, A., Wongputtisin, P., Pamueangmun, P., Shetty, K., & Khanongnuch, C. (2021). Improvement of Enantiomeric l-Lactic Acid Production from Mixed Hexose-Pentose Sugars by Coculture of Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9. Fermentation, 7(2), 95. https://doi.org/10.3390/fermentation7020095