Utilization of Yeast Waste Fermented Citric Waste as a Protein Source to Replace Soybean Meal and Various Roughage to Concentrate Ratios on In Vitro Rumen Fermentation, Gas Kinetic, and Feed Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Citric Waste Fermented Yeast Waste (CWYW)
2.2. Experimental Design and Dietary Treatments
2.3. Animals and Ruminal Inoculums Preparation
2.4. In Vitro Gas Production and Ruminal Fermentation Characteristics
2.5. Statistical Analysis
3. Results
3.1. Dietary Chemical Composition
3.2. Kinetics and Cumulative Production of Gas
3.3. In Vitro Digestibility
3.4. Ruminal NH3-N, pH and Protozoal Population
3.5. In Vitro VFAs Concentration
4. Discussion
4.1. Dietary Chemical Composition
4.2. Kinetics and Cumulative Production of Gas
4.3. In Vitro Digestibility
4.4. In Vitro Ruminal NH3-N Concentration and Ruminal pH
4.5. In Vitro Protozoal Population
4.6. In Vitro VFAs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsinas, A.; Tzora, A.; Peng, J. Alternative protein sources to soybean meal in pig diets. J. Food. Agric. Environ. 2014, 12, 655–660. [Google Scholar]
- Wanapat, M.; Rowlinson, P. Nutrition and feeding of swamp buffalo: Feed resources and rumen approach. Ital. J. Anim. Sci. 2007, 6, 67–73. [Google Scholar] [CrossRef]
- Polyorach, S.; Wanapat, M.; Cherdthong, A. Influence of yeast fermented cassava chip protein (YEFECAP) and roughage to concentrate ratio on ruminal fermentation and microorganisms using in vitro gas production technique. Asian-Australas. J. Anim. Sci. 2014, 27, 36–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Bio-processing of agro-byproducts to animal feed. Crit. Rev. Biotechnol. 2012, 32, 382–400. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.E.; Gois, G.N.; Silva, L.M.; Almeida, R.M.; Abud, A.K. Citric waste saccharification under different chemical treatments. Acta Sci. Technol. 2015, 37, 387–395. [Google Scholar] [CrossRef]
- Uriyapongson, S.; Wachirapakorn, C.; Nananukraw, C.; Phoemchalard, C.; Panatuk, J.; Tonuran, W. Digestibility and performance of buffalo fed total mixed ration with different levels of citric waste. Buffalo Bull. 2013, 32, 829–833. [Google Scholar]
- Tanpong, S.; Cherdthong, A.; Tengjaroenkul, B.; Tengjaroenkul, U.; Wongtangtintharn, S. Evaluation of physical and chemical properties of citric acid industrial waste. Trop. Anim. Health Prod. 2019, 51, 2167–2174. [Google Scholar] [CrossRef] [PubMed]
- Polyorach, S.; Wanapat, M.; Wanapat, S. Enrichment of protein content in cassava (Manihot esculenta Crantz) by supplementing with yeast for use as animal feed. Emir. J. Food Agric. 2013, 25, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Díaz, A.; Ranilla, M.J.; Saro, C.; Tejido, M.L.; Pérez-Quintana, M.; Carro, M.D. Influence of increasing doses of a yeast hydrolyzate obtained from sugarcane processing on in vitro rumen fermentation of two different diets and bacterial diversity in batch cultures and rusitec fermenters. Anim. Feed Sci. Technol. 2017, 232, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Cherdthong, A.; Prachumchai, R.; Supapong, C.; Khonkhaeng, B.; Wanapat, M.; Foiklang, S.; Milintawisamai, N.; Gunun, N.; Gunun, P.; Chanjula, P.; et al. Inclusion of yeast waste as a protein source to replace soybean meal in concentrate mixture on ruminal fermentation and gas kinetics using in vitro gas production technique. Anim. Prod. Sci. 2018, 59, 1682–1688. [Google Scholar] [CrossRef]
- Cherdthong, A.; Sumadong, P.; Foiklang, S.; Milintawisamai, N.; Wanapat, M.; Chanjula, P.; Gunun, N.; Gunun, P. Effect of post-fermentative yeast biomass as a substitute for soybean meal on feed utilization and rumen ecology in Thai native beef cattle. J. Anim. Feed Sci. 2019, 28, 238–243. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M.; Kongmun, P.; Pilajun, R.; Khejornsart, P. Rumen fermentation, microbial protein synthesis and cellulolytic bacterial population of swamp buffaloes as affected by roughage to concentrate ratio. J. Anim. Vet. Adv. 2010, 9, 1667–1675. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M.; Wachirapakorn, C. Influence of urea calcium mixture supplementation on ruminal fermentation characteristics of beef cattle fed on concentrates containing high levels of cassava chips and rice straw. Anim. Feed Sci. Technol. 2011, 163, 43–51. [Google Scholar] [CrossRef]
- Wanapat, M.; Gunun, P.; Anantasook, N.; Kang, S. Changes of rumen pH, fermentation and microbial population as influenced by different ratios of roughage (rice straw) to concentrate in dairy steers. J. Agric. Sci. 2014, 152, 675–685. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Blumme, M.; Becker, K. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. Br. J. Nutr. 1995, 73, 897–913. [Google Scholar] [CrossRef] [Green Version]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Samuel, M.; Sagathewan, S.; Thomus, J.; Mathen, G. An HPLC method for estimation of volatile fatty acids of rumen fluid. Indian J. Anim. Sci. 1997, 67, 805–807. [Google Scholar]
- Galyean, M. Laboratory Procedure in Animal Nutrition Research; Department of Animal and Range Sciences, New Mexico State University: Las Cruces, NM, USA, 1989. [Google Scholar]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the digestion of forage crops. J. Br. Grassl. Soc. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- SAS (Statistical Analysis System). SAS/STAT User’s Guide, 4th ed.; Statistical Analysis Systems Institute, Version 9; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometerial Approach, 2nd ed.; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Shewfelt, R.L. Sources of variation in the nutrient content of agricultural commodities from the farm to the consumer. J. Food Qual. 1990, 13, 37–54. [Google Scholar] [CrossRef]
- Haile, E.; Njonge, F.K.; Asgedom, G.; Gicheha, M. Chemical composition and nutritive value of agro-industrial by-products in ruminant nutrition. Open J. Anim. Sci. 2017, 7, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Bátori, V.; Ferreira, J.A.; Taherzadeh, M.J.; Lennartsson, P.R. Ethanol and protein from ethanol plant by-products using edible fungi Neurospora intermedia and Aspergillus oryzae. Biomed. Res. Int. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mumtaz, S.; Sheikh, M.A.; Iqbal, T.; Rehman, K.; Rashid, S. Bioconversion of distillery sludge (treated) to lysine and its biological evaluation. Int. J. Agri. Biol. 2000, 2, 274–277. [Google Scholar]
- Sharif, M.; Shahzad, M.A.; Rehman, S.; Khan, S.; Ali, R.; Khan, M.L.; Khan, K. Nutritional evaluation of distillery sludge and its effect as a substitute of canola meal on performance of broiler chickens. Asian-Australas. J. Anim. Sci. 2012, 25, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Sharif, M.; Shoaib, M.; Saif Ur Rehman, M.; Fawwad, A.; Asif, J. Use of distillery yeast sludge in poultry: A review. J. Agric. Sci. 2016, 6, 242–256. [Google Scholar]
- Azhara, S.H.M.; Abdullaab, R.; Jamboa, S.A.; Marbawia, H.; Gansaua, J.A.; Faika, A.A.M.; Rodriguesc, K.F. Yeasts in sustainable bioethanol production: A review. Biochem. Biophys. Rep. 2017, 10, 52–61. [Google Scholar]
- Khan, M.U.; Shariati, M.A.; Kadmi, Y.; Elmsellem, H.; Majeed, M.; Khan, M.R.; Fazel, M.; Rashidzadeh, S. Design, development and performance evaluation of distillery yeast sludge dryer. Process. Saf. Environ. Prot. 2017, 111, 733–739. [Google Scholar] [CrossRef]
- Suntara, C.; Cherdthong, A.; Uriyapongson, S.; Wanapat, M.; Chanjula, P. Comparison effects of ruminal crabtree-negative yeasts and crabtree-positive yeasts for improving ensiled rice straw quality and ruminal digestion using in vitro gas production. J. Fungi. 2020, 6, 109. [Google Scholar] [CrossRef] [PubMed]
- Mapato, C.; Wanapat, M.; Cherdthong, A. Effect of urea treatment of straw and dietary level of vegetable oil on lactating dairy cows. Trop. Anim. Health Prod. 2010, 42, 1635–1642. [Google Scholar] [CrossRef] [PubMed]
- Phesatcha, K.; Phesatcha, B.; Wanapat, M.; Cherdthong, A. Roughage to concentrate ratio and Saccharomyces cerevisiae inclusion could modulate feed digestion and in vitro ruminal fermentation. Vet. Sci. 2020, 7, 151. [Google Scholar] [CrossRef] [PubMed]
- Khazaal, K.; Dentinho, M.T.; Riberiro, J.M.; Ørskov, E.R. A comparison of gas production during incubation with rumen contents in vitro and nylon bag degradability as predictors of the apparent digestibility in vivo and the voluntary intake of hays. Anim. Sci. 1993, 57, 105–112. [Google Scholar] [CrossRef]
- Nocek, J.E.; Tamminga, S. Site of digestion of starch in the gastrointestinal tract of dairy cows and its effect on milk and composition. J. Dairy Sci. 1991, 74, 3598–3629. [Google Scholar] [CrossRef]
- Getachew, G.; Blummel, M.; Makkar, H.P.S.; Becker, K. In vitro gas measuring techniques for assessment of nutritional quality of feeds: A review. Anim. Feed Sci. Technol. 1998, 72, 261–281. [Google Scholar] [CrossRef]
- Chanthakhoun, V.; Wanapat, M. The in vitro gas production and ruminal fermentation of various feeds using rumen liquor from swamp buffalo and cattle. Asian J. Anim. Vet. Adv. 2012, 7, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Soriano, A.P.; Mamuad, L.L.; Kim, S.H.; Choi, Y.J.; Jeong, C.D.; Bae, C.D.; Chang, M.B.; Lee, S.S. Effect of Lactobacillus mucosae on in vitro rumen fermentation characteristics of dried brewers grain, methane production and bacterial diversity. Asian-Australas. J. Anim. Sci. 2014, 27, 1562–1570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blummel, M.; Becker, K. The degradability characteristics of fifty-four roughages and roughage neutral detergent fibres as described by in vitro gas production and their relationship to voluntary feed intake. Br. J. Nutr. 1997, 77, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Chumpawadee, S.; Sommart, K.; Vongpralub, T.; Pattarajinda, V. Nutritional evaluation of non-forage high fibrous tropical feeds for ruminant using in vitro gas production technique. Walailak J. Sci. Technol. 2005, 2, 209–218. [Google Scholar]
- Kricka, W.; Fitzpatrick, J.; Bond, U. Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: A perspective. Front. Microbiol. 2014, 5, 174. [Google Scholar] [CrossRef] [PubMed]
- Wanapat, M.; Polyorach, S.; Boonnop, K.; Mapato, C.; Cherdthong, A. Effects of treating rice straw with urea or urea and calcium hydroxide upon intake, digestibility, rumen fermentation and milk yield of dairy cows. Livest. Sci. 2009, 125, 238–243. [Google Scholar] [CrossRef]
- Hart, F.J.; Wanapat, M. Physiology of digestion of urea-treated rice straw in swamp buffalo. Asian-Australas. J. Anim. Sci. 1992, 5, 617–622. [Google Scholar] [CrossRef]
- Hungate, R.E. The Rumen and Its Microbes; Academic Press: New York, NY, USA, 1966. [Google Scholar]
- Suriyapha, C.; Ampapon, T.; Viennasay, B.; Matra, M.; Wann, C.; Wanapat, M. Manipulating rumen fermentation, microbial protein synthesis, and mitigating methane production using bamboo grass pellet in swamp buffaloes. Trop. Anim. Health Prod. 2020, 52, 1609–1615. [Google Scholar] [CrossRef] [PubMed]
- Zicarelli, F.; Calabro, S.; Piccolo, V.; D’Urso, S.; Tudisco, R.; Bovera, F.; Cutrignelli, M.I.; Infascelli, F. Diets with different forage/concentrate ratios for the Mediterranean Italian buffalo: In vivo and in vitro digestibility. Asian-Australas. J. Anim. Sci. 2008, 21, 75–82. [Google Scholar] [CrossRef]
- Oeztuerk, H.; Schroeder, B.; Bayerbach, M.; Breves, G. Influence of living and autoclaved yeasts of Saccharomyces boulardii on in vitro ruminal microbial metabolism. J. Dairy Sci. 2005, 88, 2594–2600. [Google Scholar] [CrossRef]
- Vyas, D.; Uwizeye, A.; Mohammed, R.; Yang, W.Z.; Walker, N.D.; Beauchemin, K.A. The effects of active dried and killed dried yeast on subacute ruminal acidosis, ruminal fermentation, and nutrient digestibility in beef heifers. J. Anim. Sci. 2014, 92, 724–732. [Google Scholar] [CrossRef]
- Miller-Webster, T.; Hoover, W.H.; Holt, M.; Nocek, J.E. Influence of yeast culture on ruminal microbiological metabolism in continuous culture. J. Dairy Sci. 2002, 85, 2009–2014. [Google Scholar] [CrossRef]
- Oeztuerk, H. Effect of live and autoclaved yeast cultures on ruminal fermentation in vitro. J. Anim. Feed Sci. 2009, 18, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Cunha, C.S.; Marcondes, M.I.; Silva, A.L.; Gionbelli, T.R.S.; Novaes, M.A.S.; Knupp, L.S.; Virginio, G.F., Jr.; Veloso, C.M. Do live or inactive yeasts improve cattle ruminal environment? R. Bras. Zootec. 2019, 48, e20180259. [Google Scholar] [CrossRef] [Green Version]
- Matra, M.; Wanapat, M.; Cherdthong, A.; Foiklang, S.; Mapato, C. Dietary dragon fruit (Hylocereus undatus) peel powder improved in vitro rumen fermentation and gas production kinetics. Trop. Anim. Health Prod. 2019, 51, 1531–1538. [Google Scholar] [CrossRef]
- Chaucheras-Durand, F.; Ameilbonne, A.; Auffret, P.; Bernard, M.; Mialon, M.M.; Duniere, L.; Forano, E. Supplementation of live yeast based feed additive in early life promotes rumen microbial colonization and fibrolytic potential in lambs. Sci. Rep. 2019, 9, 19216. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; O&B Books Inc.: Corvallis, OR, USA, 1982; pp. 22–39. [Google Scholar]
- Kang, S.; Wanapat, M.; Phesatcha, K.; Norrapoke, T.; Foiklang, S.; Ampapon, T.; Phesatcha, B. Using krabok (Irvingia malayana) seed oil and Flimingia macrophylla leaf meal as a rumen enhancer in an in vitro gas production system. Anim. Prod. Sci. 2017, 57, 327–333. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Cardozo, P.W.; Ferret, A.; Bach, A. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH. J. Anim. Sci. 2008, 86, 702–711. [Google Scholar] [CrossRef] [PubMed]
Item | SBM:CWYW 1 | RS 2 | YW 3 | CW 4 | CWYW 5 | ||||
---|---|---|---|---|---|---|---|---|---|
100:0 | 75:25 | 50:50 | 25:75 | 0:100 | |||||
Ingredients (kg of dry matter) | |||||||||
Cassava chips | 59.3 | 58.5 | 59.5 | 58.8 | 59.7 | - | - | - | - |
Rice bran | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | - | - | - | - |
Soybean meal | 15.0 | 12.3 | 7.5 | 3.8 | 0.0 | - | - | - | - |
Palm kernel meal | 13.0 | 13.0 | 13.0 | 13.0 | 13.0 | - | - | - | - |
CWYW 1 | 0.0 | 3.8 | 7.5 | 12.3 | 15.0 | - | - | - | - |
Urea | 1.3 | 1.0 | 1.0 | 0.7 | 0.8 | - | - | - | - |
Mineral premix | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | - | - | - | - |
Molasses, liquid | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | - | - | - | - |
Pure sulfur | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | - | - | - | - |
Salt | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | - | - | - | - |
Chemical composition | |||||||||
Dry matter (g/kg) | 926 | 923 | 922 | 922 | 918 | 944 | 360 | 919 | 882 |
g/kg of dry matter | |||||||||
Organic matter | 888 | 882 | 877 | 861 | 860 | 827 | 899 | 889 | 894 |
Ash | 112 | 118 | 123 | 139 | 140 | 173 | 101 | 111 | 106 |
Crude protein | 141 | 142 | 141 | 141 | 142 | 26 | 315 | 110 | 535 |
Neutral detergent fiber | 159 | 167 | 169 | 171 | 174 | 779 | 217 | 709 | 402 |
Acid detergent fiber | 72 | 84 | 91 | 94 | 99 | 536 | 44 | 426 | 294 |
R:C 1 | SBM:CWYW 2 | Gas Kinetics 3 | Cumulative Gas (mL/0.5g) | |||
---|---|---|---|---|---|---|
a | b | c | |a| + b | |||
60:40 | 100:0 | −3.9 | 70.4 | 0.06 | 74.4 | 74.7 |
75:25 | −3.8 | 70.2 | 0.06 | 74.0 | 73.9 | |
50:50 | −3.7 | 70.2 | 0.06 | 73.9 | 74.0 | |
25:75 | −3.8 | 70.4 | 0.06 | 74.2 | 73.6 | |
0:100 | −4.0 | 70.4 | 0.06 | 74.4 | 74.3 | |
50:50 | 100:0 | −4.9 | 69.8 | 0.07 | 74.8 | 74.8 |
75:25 | −5.0 | 69.8 | 0.07 | 74.9 | 75.7 | |
50:50 | −5.0 | 69.7 | 0.07 | 74.8 | 75.6 | |
25:75 | −5.0 | 69.9 | 0.07 | 74.9 | 76.0 | |
0:100 | −5.1 | 69.7 | 0.07 | 74.9 | 75.7 | |
40:60 | 100:0 | −5.3 | 69.9 | 0.07 | 75.3 | 76.4 |
75:25 | −5.4 | 69.2 | 0.08 | 74.6 | 77.1 | |
50:50 | −5.4 | 69.5 | 0.07 | 74.6 | 76.0 | |
25:75 | −5.2 | 69.5 | 0.07 | 74.8 | 75.8 | |
0:100 | −5.2 | 69.7 | 0.07 | 75.1 | 76.3 | |
SEM | 0.21 | 0.26 | 0.002 | 0.30 | 1.31 | |
Comparison | ||||||
R:C ratio | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |
60:40 | −3.8 a | 70.3 a | 0.063 c | 74.2 b | 74.5 c | |
50:50 | −5.0 b | 69.8 b | 0.068 b | 74.8 a | 75.8 b | |
40:60 | −5.3 c | 69.6 b | 0.071 a | 74.9 a | 77.0 a | |
SBM:CWYW ratio | 0.31 | 0.58 | 0.96 | 0.40 | 0.98 | |
100:0 | −4.6 | 70.1 | 0.07 | 74.8 | 75.9 | |
75:25 | −4.6 | 69.9 | 0.07 | 74.5 | 75.8 | |
50:50 | −4.7 | 69.9 | 0.07 | 74.4 | 75.8 | |
25:75 | −4.7 | 69.8 | 0.07 | 74.6 | 75.7 | |
0:100 | −4.8 | 69.7 | 0.07 | 74.8 | 75.6 | |
Interaction | 0.94 | 0.96 | 0.39 | 0.95 | 0.99 |
R:C 1 | SBM:CWYW 2 | IVDMD (g/kg) | IVOMD (g/kg) | ||||
---|---|---|---|---|---|---|---|
12 h | 24 h | Mean | 12 h | 24 h | Mean | ||
60:40 | 100:0 | 541 | 682 | 622 | 683 | 770 | 726 |
75:25 | 542 | 676 | 618 | 675 | 773 | 724 | |
50:50 | 540 | 675 | 612 | 675 | 774 | 725 | |
25:75 | 540 | 674 | 619 | 674 | 774 | 724 | |
0:100 | 539 | 678 | 611 | 679 | 768 | 723 | |
50:50 | 100:0 | 553 | 691 | 630 | 692 | 781 | 736 |
75:25 | 553 | 690 | 623 | 693 | 782 | 737 | |
50:50 | 551 | 688 | 621 | 692 | 781 | 736 | |
25:75 | 551 | 689 | 622 | 691 | 775 | 733 | |
0:100 | 551 | 688 | 622 | 691 | 775 | 733 | |
40:60 | 100:0 | 560 | 704 | 634 | 709 | 792 | 751 |
75:25 | 560 | 702 | 632 | 707 | 795 | 751 | |
50:50 | 559 | 702 | 630 | 706 | 793 | 749 | |
25:75 | 559 | 701 | 626 | 705 | 793 | 749 | |
0:100 | 559 | 700 | 621 | 705 | 793 | 748 | |
SEM | 0.21 | 0.13 | 0.10 | 0.33 | 0.31 | 0.19 | |
Comparison | |||||||
R:C ratio | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |
60:40 | 540 c | 677 c | 609 c | 677 c | 772 c | 724 c | |
50:50 | 552 b | 689 b | 621 b | 692 b | 778 b | 735 b | |
40:60 | 559 a | 701 a | 631 a | 706 a | 793 a | 750 a | |
SBM:CWYW ratio | 0.86 | <0.01 | 0.02 | 0.50 | 0.32 | 0.23 | |
100:0 | 551 | 692 a | 622 a | 693 | 781 | 738 | |
75:25 | 551 | 689 ab | 620 ab | 692 | 783 | 737 | |
50:50 | 551 | 688 ab | 620 ab | 690 | 782 | 737 | |
25:75 | 551 | 688 ab | 620 ab | 691 | 780 | 735 | |
0:100 | 549 | 686 c | 617 c | 692 | 779 | 735 | |
Interaction | 0.95 | 0.28 | 0.78 | 0.92 | 0.73 | 0.94 |
R:C 1 | SBM:CWYW 2 | NH3-N (mg/dL) | pH | Protozoal Count (×105 cell/mL) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
2 h | 4 h | Mean | 2 h | 4 h | Mean | 2 h | 4 h | Mean | ||
60:40 | 100:0 | 15.4 | 16.5 | 16.4 | 7.04 | 6.99 | 7.01 | 3.8 | 3.9 | 3.8 |
75:25 | 14.8 | 15.8 | 16.0 | 7.10 | 7.04 | 7.07 | 3.8 | 3.9 | 3.8 | |
50:50 | 15.6 | 16.6 | 16.6 | 7.11 | 7.05 | 7.08 | 3.7 | 4.0 | 3.9 | |
25:75 | 15.7 | 16.7 | 17.2 | 7.11 | 7.04 | 7.07 | 3.8 | 3.9 | 3.8 | |
0:100 | 16.0 | 17.1 | 17.2 | 7.10 | 7.04 | 7.08 | 3.7 | 4.0 | 3.9 | |
50:50 | 100:0 | 16.7 | 17.0 | 16.8 | 6.97 | 6.93 | 6.94 | 3.7 | 4.1 | 3.9 |
75:25 | 16.7 | 17.8 | 17.6 | 6.97 | 6.93 | 6.95 | 3.7 | 4.1 | 3.9 | |
50:50 | 17.3 | 17.7 | 17.4 | 7.00 | 6.93 | 6.95 | 3.7 | 4.1 | 3.9 | |
25:75 | 17.8 | 18.4 | 17.9 | 6.97 | 6.94 | 6.95 | 3.6 | 4.2 | 3.8 | |
0:100 | 17.8 | 18.9 | 18.3 | 6.97 | 6.92 | 6.94 | 3.7 | 4.2 | 4.0 | |
40:60 | 100:0 | 17.9 | 18.8 | 18.8 | 6.97 | 6.73 | 6.84 | 3.8 | 4.3 | 4.0 |
75:25 | 18.6 | 19.6 | 19.3 | 6.97 | 6.73 | 6.84 | 3.8 | 4.3 | 4.0 | |
50:50 | 19.2 | 20.2 | 19.7 | 6.97 | 6.74 | 6.85 | 3.7 | 4.3 | 4.0 | |
25:75 | 19.3 | 20.4 | 19.8 | 6.97 | 6.73 | 6.84 | 3.7 | 4.3 | 4.0 | |
0:100 | 19.3 | 20.4 | 19.8 | 6.99 | 6.74 | 6.87 | 3.9 | 4.3 | 4.1 | |
SEM | 0.42 | 0.45 | 0.44 | 0.04 | 0.04 | 0.06 | 0.48 | 0.07 | 0.26 | |
Comparison | ||||||||||
R:C ratio | <0.01 | <0.01 | <0.01 | 0.04 | <0.01 | <0.01 | 0.43 | <0.01 | 0.92 | |
60:40 | 15.4 b | 16.6 c | 16.0 c | 7.09 a | 7.03 a | 7.06 a | 3.8 | 3.9 b | 3.9 | |
50:50 | 16.9 b | 17.9 b | 17.4 b | 6.97 b | 6.90 b | 6.94 b | 3.7 | 4.1 b | 3.9 | |
40:60 | 18.9 a | 19.8 a | 19.4 a | 6.96 b | 6.83 c | 6.85 c | 3.6 | 4.2 a | 3.8 | |
SBM:CWYW ratio | 0.02 | 0.01 | 0.02 | 0.98 | 0.93 | 0.96 | 0.98 | 0.58 | 0.98 | |
100:0 | 16.4 c | 17.5 c | 16.9 c | 7.02 | 6.90 | 6.93 | 3.7 | 4.1 | 3.9 | |
75:25 | 16.9 bc | 17.6 bc | 17.2 bc | 7.01 | 6.90 | 6.95 | 3.7 | 4.1 | 3.9 | |
50:50 | 17.2 abc | 18.3 abc | 17.6 abc | 7.01 | 6.90 | 6.95 | 3.7 | 4.1 | 3.9 | |
25:75 | 17.4 ab | 18.5 ab | 18.0 ab | 7.00 | 6.90 | 6.96 | 3.7 | 4.1 | 3.9 | |
0:100 | 17.6 a | 19.4 a | 18.2 a | 6.98 | 6.88 | 6.96 | 3.8 | 4.2 | 4.0 | |
Interaction | 0.54 | 0.70 | 0.63 | 0.99 | 0.98 | 0.99 | 0.99 | 0.77 | 0.99 |
R:C 1 | SBM:CWYW 2 | Total VFA (mmol/L) | C2 (mol/100 mol) | C3 (mol/100 mol) | C4 (mol/100 mol) | C2:C3 Ratio | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 h | 4 h | Mean | 2 h | 4 h | Mean | 2 h | 4 h | Mean | 2 h | 4 h | Mean | 2 h | 4 h | Mean | ||
60:40 | 100:0 | 85.7 | 86.9 | 81.3 | 65.0 | 63.0 | 63.9 | 25.1 | 27.0 | 26.1 | 10.0 | 10.1 | 10.0 | 2.6 | 2.3 | 2.5 |
75:25 | 84.7 | 86.9 | 80.8 | 65.3 | 63.3 | 64.3 | 26.1 | 28.0 | 27.0 | 8.7 | 8.7 | 8.6 | 2.5 | 2.3 | 2.4 | |
50:50 | 84.6 | 86.8 | 80.7 | 65.8 | 63.8 | 63.7 | 25.9 | 27.8 | 26.8 | 8.4 | 8.5 | 8.4 | 2.5 | 2.3 | 2.4 | |
25:75 | 84.3 | 86.5 | 80.4 | 65.6 | 64.0 | 64.7 | 25.7 | 27.8 | 26.8 | 8.7 | 8.3 | 8.4 | 2.6 | 2.3 | 2.5 | |
0:100 | 84.1 | 86.6 | 80.3 | 65.8 | 63.8 | 64.8 | 25.6 | 27.5 | 26.6 | 8.6 | 8.7 | 8.6 | 2.6 | 2.3 | 2.5 | |
50:50 | 100:0 | 93.2 | 88.7 | 85.9 | 62.9 | 61.3 | 62.2 | 26.7 | 28.6 | 27.6 | 10.4 | 10.1 | 10.2 | 2.4 | 2.1 | 2.5 |
75:25 | 93.5 | 88.5 | 85.9 | 63.2 | 61.5 | 62.3 | 26.9 | 28.9 | 27.9 | 10.0 | 9.7 | 9.8 | 2.4 | 2.1 | 2.3 | |
50:50 | 93.1 | 88.6 | 85.8 | 63.5 | 61.0 | 62.3 | 26.6 | 28.6 | 27.6 | 10.0 | 10.4 | 10.1 | 2.4 | 2.1 | 2.3 | |
25:75 | 94.6 | 88.6 | 86.6 | 63.5 | 61.5 | 62.5 | 26.0 | 28.0 | 27.0 | 10.5 | 10.5 | 10.5 | 2.4 | 2.2 | 2.2 | |
0:100 | 93.2 | 87.7 | 85.4 | 63.6 | 61.6 | 62.6 | 26.1 | 27.9 | 26.9 | 10.3 | 10.6 | 10.4 | 2.4 | 2.2 | 2.3 | |
40:60 | 100:0 | 98.3 | 91.2 | 89.8 | 61.4 | 59.4 | 60.4 | 29.2 | 30.3 | 29.7 | 9.4 | 10.3 | 9.8 | 2.1 | 2.0 | 2.2 |
75:25 | 97.0 | 91.1 | 89.1 | 61.9 | 60.4 | 61.1 | 29.0 | 30.5 | 29.7 | 9.1 | 9.1 | 9.1 | 2.1 | 2.0 | 2.0 | |
50:50 | 97.7 | 90.6 | 88.8 | 61.5 | 59.5 | 60.5 | 28.8 | 30.1 | 29.4 | 9.7 | 10.5 | 10.0 | 2.1 | 2.0 | 2.1 | |
25:75 | 97.1 | 90.1 | 88.9 | 61.8 | 59.8 | 60.8 | 28.6 | 30.5 | 29.5 | 9.6 | 9.8 | 9.7 | 2.2 | 2.0 | 2.0 | |
0:100 | 97.2 | 90.5 | 88.8 | 62.0 | 60.2 | 61.2 | 28.6 | 29.6 | 29.3 | 9.4 | 9.9 | 9.6 | 2.2 | 2.0 | 2.1 | |
SEM | 0.52 | 0.93 | 0.60 | 0.73 | 0.61 | 0.65 | 1.14 | 1.13 | 1.14 | 1.39 | 1.26 | 1.31 | 0.11 | 0.10 | 0.10 | |
Comparison | ||||||||||||||||
R:C ratio | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.32 | 0.22 | 0.27 | <0.01 | <0.01 | <0.01 | |
60:40 | 74.7 c | 86.7 c | 80.7 c | 65.4 a | 63.5 a | 64.5 a | 25.7 b | 27.7 b | 26.7 b | 8.9 | 8.8 | 8.9 | 2.6 a | 2.3 a | 2.4 a | |
50:50 | 83.5 b | 88.4 b | 86.0 b | 63.4 b | 61.3 b | 62.4 b | 26.4 b | 28.2 b | 27.4 b | 9.4 | 10.2 | 10.2 | 2.3 b | 2.1 b | 2.2 b | |
40:60 | 87.3 a | 90.7 a | 89.1 a | 61.8 c | 59.8 c | 60.8 c | 28.8 a | 30.2 a | 29.5 a | 10.2 | 9.9 | 9.4 | 2.2 b | 1.9 c | 2.0 c | |
SBM:CWYW ratio | 0.18 | 0.88 | 0.60 | 0.76 | 0.72 | 0.75 | 0.97 | 0.95 | 0.97 | 0.97 | 0.90 | 0.95 | 0.92 | 0.97 | 0.93 | |
100:0 | 82.3 | 88.9 | 85.7 | 63.8 | 61.9 | 62.2 | 27.0 | 28.6 | 27.8 | 8.9 | 8.8 | 8.9 | 2.4 | 2.1 | 2.3 | |
75:25 | 82.2 | 88.8 | 85.3 | 63.6 | 61.8 | 62.6 | 27.3 | 29.1 | 28.2 | 9.4 | 10.2 | 10.2 | 2.3 | 2.1 | 2.3 | |
50:50 | 81.7 | 88.6 | 85.1 | 61.6 | 61.7 | 62.5 | 27.1 | 28.8 | 27.9 | 10.2 | 9.9 | 9.4 | 2.4 | 2.1 | 2.2 | |
25:75 | 81.6 | 88.3 | 85.3 | 65.4 | 61.4 | 62.7 | 26.8 | 28.7 | 27.8 | 8.9 | 8.8 | 8.9 | 2.4 | 2.1 | 2.3 | |
0:100 | 81.5 | 88.2 | 84.9 | 63.1 | 61.3 | 62.8 | 26.8 | 28.5 | 27.6 | 9.4 | 10.2 | 10.2 | 2.4 | 2.1 | 2.3 | |
Interaction | 0.42 | 0.98 | 0.95 | 0.98 | 0.96 | 0.998 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suriyapha, C.; Cherdthong, A.; Suntara, C.; Polyorach, S. Utilization of Yeast Waste Fermented Citric Waste as a Protein Source to Replace Soybean Meal and Various Roughage to Concentrate Ratios on In Vitro Rumen Fermentation, Gas Kinetic, and Feed Digestion. Fermentation 2021, 7, 120. https://doi.org/10.3390/fermentation7030120
Suriyapha C, Cherdthong A, Suntara C, Polyorach S. Utilization of Yeast Waste Fermented Citric Waste as a Protein Source to Replace Soybean Meal and Various Roughage to Concentrate Ratios on In Vitro Rumen Fermentation, Gas Kinetic, and Feed Digestion. Fermentation. 2021; 7(3):120. https://doi.org/10.3390/fermentation7030120
Chicago/Turabian StyleSuriyapha, Chaichana, Anusorn Cherdthong, Chanon Suntara, and Sineenart Polyorach. 2021. "Utilization of Yeast Waste Fermented Citric Waste as a Protein Source to Replace Soybean Meal and Various Roughage to Concentrate Ratios on In Vitro Rumen Fermentation, Gas Kinetic, and Feed Digestion" Fermentation 7, no. 3: 120. https://doi.org/10.3390/fermentation7030120
APA StyleSuriyapha, C., Cherdthong, A., Suntara, C., & Polyorach, S. (2021). Utilization of Yeast Waste Fermented Citric Waste as a Protein Source to Replace Soybean Meal and Various Roughage to Concentrate Ratios on In Vitro Rumen Fermentation, Gas Kinetic, and Feed Digestion. Fermentation, 7(3), 120. https://doi.org/10.3390/fermentation7030120