Use of Lachancea thermotolerans for Biological vs. Chemical Acidification at Pilot-Scale in White Wines from Warm Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Used
2.2. Fermentation Trials
2.3. Oenological Parameters of Wines
2.4. Analysis of Fermentative Volatile Compounds Using Gas Chromatography-Mass Spectrometry (GC-MS)
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results
3.1. Oenological and Fermentation Parameters
3.2. Flavonoid Compounds and Colour
3.3. Fermentative Volatiles
3.4. Sensory Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jolly, N.P.; Varela, C.; Pretorius, I.S. Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 2014, 14, 215–237. Available online: https://academic.oup.com/femsyr/article-lookup/doi/10.1111/1567-1364.12111 (accessed on 8 August 2021). [CrossRef] [Green Version]
- Varela, C. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl. Microbiol. Biotechnol. 2016, 100, 9861–9874. [Google Scholar] [CrossRef]
- Berbegal, C.; Fragasso, M.; Russo, P.; Bimbo, F.; Grieco, F.; Spano, G.; Capozzi, V. Climate Changes and Food Quality: The Potential of Microbial Activities as Mitigating Strategies in the Wine Sector. Fermentation 2019, 5, 85. Available online: https://www.mdpi.com/2311-5637/5/4/85 (accessed on 6 August 2021). [CrossRef] [Green Version]
- Tristezza, M.; Tufariello, M.; Capozzi, V.; Spano, G.; Mita, G.; Grieco, F. The Oenological Potential of Hanseniaspora uvarum in Simultaneous and Sequential Co-fermentation with Saccharomyces cerevisiae for Industrial Wine Production. Front. Microbiol. 2016, 7, 1–14. Available online: http://journal.frontiersin.org/Article/10.3389/fmicb.2016.00670/abstract (accessed on 6 August 2021). [CrossRef] [Green Version]
- Medina, K.; Boido, E.; Fariña, L.; Gioia, O.; Gomez, M.E.; Barquet, M.; Gaggero, C.; Dellacassa, E.; Carrau, F. Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Food Chem. 2013, 141, 2513–2521. [Google Scholar] [CrossRef]
- Del Fresno, J.M.; Escott, C.; Loira, I.; Carrau, F.; Cuerda, R.; Schneider, R.; Bañuelos, M.A.; González, C.; Suárez-Lepe, J.A.; Morata, A. The Impact of Hanseniaspora vineae Fermentation and Ageing on Lees on the Terpenic Aromatic Profile of White Wines of the Albillo Variety. Int. J. Mol. Sci. 2021, 22, 2195. Available online: https://www.mdpi.com/1422-0067/22/4/2195 (accessed on 6 August 2021). [CrossRef]
- Morata, A.; Loira, I.; Escott, C.; del Fresno, J.M.; Bañuelos, M.A.; Suárez-Lepe, J.A. Applications of Metschnikowia pulcherrima in Wine Biotechnology. Fermentation 2019, 5, 63. Available online: https://www.mdpi.com/2311-5637/5/3/63 (accessed on 6 August 2021). [CrossRef] [Green Version]
- González-Royo, E.; Pascual, O.; Kontoudakis, N.; Esteruelas, M.; Esteve-Zarzoso, B.; Mas, A.; Canals, J.M.; Zamora, F. Oenological consequences of sequential inoculation with non-Saccharomyces yeasts (Torulaspora delbrueckii or Metschnikowia pulcherrima) and Saccharomyces cerevisiae in base wine for sparkling wine production. Eur. Food Res. Technol. 2015, 240, 999–1012. Available online: http://link.springer.com/10.1007/s00217-014-2404-8 (accessed on 6 August 2021). [CrossRef]
- Medina-Trujillo, L.; González-Royo, E.; Sieczkowski, N.; Heras, J.; Fort, F.; Canals, J.M.; Zamora, F. Effect of sequential inoculation (Torulaspora delbrueckii/Saccharomyces cerevisiae) in the first fermentation on the foam properties of sparkling wine (Cava). BIO Web Conf. 2016, 7, 02024. Available online: http://www.bio-conferences.org/10.1051/bioconf/20160702024 (accessed on 7 August 2021). [CrossRef] [Green Version]
- Toh, D.W.K.; Chua, J.Y.; Lu, Y.; Liu, S.Q. Evaluation of the potential of commercial non-Saccharomyces yeast strains of Torulaspora delbrueckii and Lachancea thermotolerans in beer fermentation. Int. J. Food Sci. Technol. 2020, 55, 2049–2059. Available online: https://onlinelibrary.wiley.com/doi/10.1111/ijfs.14399 (accessed on 6 August 2021). [CrossRef]
- Vaquero, C.; Loira, I.; Bañuelos, M.A.; Heras, J.M.; Cuerda, R.; Morata, A. Industrial Performance of Several Lachancea thermotolerans Strains for pH Control in White Wines from Warm Areas. Microorganisms 2020, 8, 830. Available online: https://www.mdpi.com/2076-2607/8/6/830 (accessed on 3 June 2020). [CrossRef] [PubMed]
- Morata, A.; Bañuelos, M.A.; Vaquero, C.; Loira, I.; Cuerda, R.; Palomero, F.; González, C.; Suárez-Lepe, J.A.; Wang, J.; Han, S.; et al. Lachancea thermotolerans as a tool to improve pH in red wines from warm regions. Eur. Food Res. Technol. 2019, 245, 885–894. Available online: http://link.springer.com/10.1007/s00217-019-03229-9 (accessed on 7 August 2021). [CrossRef]
- Morata, A.; Benito, S.; Loira, I.; Palomero, F.; González, M.C. Formation of pyranoanthocyanins by Schizosaccharomyces pombe during the fermentation of red must. Int. J. Food Microbiol. 2012, 159, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Loira, I.; Morata, A.; Palomero, F.; González, C.; Suárez-Lepe, J. Schizosaccharomyces pombe: A Promising Biotechnology for Modulating Wine Composition. Fermentation 2018, 4, 70. Available online: https://www.mdpi.com/2311-5637/4/3/70 (accessed on 7 August 2021). [CrossRef] [Green Version]
- García, M.; Esteve-Zarzoso, B.; Cabellos, J.; Arroyo, T. Advances in the study of Candida stellata. Fermentation 2018, 4, 74. Available online: https://www.mdpi.com/2311-5637/4/3/74 (accessed on 7 August 2021). [CrossRef] [Green Version]
- Callejo, M.J.; García Navas, J.J.; Alba, R.; Escott, C.; Loira, I.; González, M.C.; Morata, A. Wort fermentation and beer conditioning with selected non-Saccharomyces yeasts in craft beers. Eur. Food Res. Technol. 2019, 245, 1229–1238. [Google Scholar] [CrossRef]
- Callejo, M.J.; Tesfaye, W.; González, M.C.; Morata, A. Craft Beers: Current Situation and Future Trends. In New Advances on Fermentation Processes; IntechOpen: London, UK, 2019; p. 147. Available online: https://www.intechopen.com/books/new-advances-on-fermentation-processes/craft-beers-current-situation-and-future-trends (accessed on 7 August 2021).
- Morata, A.; Escott, C.; Bañuelos, M.A.; Loira, I.; Del Fresno, J.M.; González, C.; Suárez-Lepe, J.A. Contribution of non-Saccharomyces yeasts to wine freshness. A review. Biomolecules 2019, 10, 34. Available online: https://www.mdpi.com/2218-273X/10/1/34 (accessed on 7 August 2021). [CrossRef] [Green Version]
- Hranilovic, A.; Bely, M.; Masneuf-Pomarede, I.; Jiranek, V.; Albertin, W. The evolution of Lachancea thermotolerans is driven by geographical determination, anthropisation and flux between different ecosystems. PLoS ONE 2017, 12, 9. Available online: https://dx.plos.org/10.1371/journal.pone.0184652 (accessed on 7 August 2021). [CrossRef] [Green Version]
- Hranilovic, A.; Albertin, W.; Capone, D.L.; Gallo, A.; Grbin, P.R.; Danner, L.; Bastian, S.E.P.; Masneuf-Pomarede, I.; Coulon, J.; Bely, M.; et al. Impact of Lachancea thermotolerans on chemical composition and sensory profiles of Merlot wines. Food Chem. 2021, 349, 129015. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0308814621000169 (accessed on 8 March 2021). [CrossRef]
- Frost, S.C.; Harbertson, J.F.; Heymann, H. A full factorial study on the effect of tannins, acidity, and ethanol on the temporal perception of taste and mouthfeel in red wine. Food Qual. Prefer. 2017, 62, 1–7. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0950329317301209 (accessed on 7 August 2021). [CrossRef]
- Ponce, F.; Mirabal-Gallardo, Y.; Versari, A.; Laurie, V. The use of cation exchange resins in wines: Effects on pH, tartrate stability, and metal content. Cienc. e Investig. Agrar. 2018, 45, 82–92. Available online: https://rcia.uc.cl/index.php/rcia/article/view/1911 (accessed on 7 August 2021). [CrossRef]
- Gobbi, M.; Comitini, F.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I.; Ciani, M. Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: A strategy to enhance acidity and improve the overall quality of wine. Food Microbiol. 2013, 33, 271–281. [Google Scholar] [CrossRef]
- Kemsawasd, V.; Branco, P.; Almeida, M.G.; Caldeira, J.; Albergaria, H.; Arneborg, N. Cell-to-cell contact and antimicrobial peptides play a combined role in the death of Lachanchea thermotolerans during mixed-culture alcoholic fermentation with Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2015, 362, fnv103. Available online: https://academic.oup.com/femsle/article-lookup/doi/10.1093/femsle/fnv103 (accessed on 9 August 2021). [CrossRef]
- Banilas, G.; Sgouros, G.; Nisiotou, A. Development of microsatellite markers for Lachancea thermotolerans typing and population structure of wine-associated isolates. Microbiol. Res. 2016, 193, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Comitini, F.; Gobbi, M.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I.; Ciani, M. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol. 2011, 28, 873–882. Available online: https://www.sciencedirect.com/science/article/pii/S0740002010002996?via%3Dihub (accessed on 27 December 2019). [CrossRef] [PubMed]
- Gatto, V.; Binati, R.L.; Lemos Junior, W.J.F.; Basile, A.; Treu, L.; de Almeida, O.G.G.; Innocente, G.; Campanaro, S.; Torriani, S. New insights into the variability of lactic acid production in Lachancea thermotolerans at the phenotypic and genomic level. Microbiol. Res. 2020, 238, 126525. [Google Scholar] [CrossRef] [PubMed]
- Ciani, M.; Morales, P.; Comitini, F.; Tronchoni, J.; Canonico, L.; Curiel, J.A.; Oro, L.; Rodrigues, A.J.; Gonzalez, R. Non-conventional Yeast Species for Lowering Ethanol Content of Wines. Front. Microbiol. 2016, 7, 1–13. Available online: http://journal.frontiersin.org/Article/10.3389/fmicb.2016.00642/abstract (accessed on 9 August 2021). [CrossRef] [Green Version]
- Ristic, R.; Hranilovic, A.; Li, S.; Longo, R.; Pham, D.-T.; Qesja, B.; Schelezki, O.J.; Jiranek, V. Alcohol: Integrated strategies to moderate the alcohol content of wines. Wine Vitic. J. 2016, 31, 33–38. Available online: https://search.informit.org/doi/10.3316/informit.511380340406896 (accessed on 9 August 2021).
- Kapsopoulou, K.; Kapaklis, A.; Spyropoulos, H. Growth and Fermentation Characteristics of a Strain of the Wine Yeast Kluyveromyces thermotolerans Isolated in Greece. World J. Microbiol. Biotechnol. 2005, 21, 1599–1602. Available online: http://link.springer.com/10.1007/s11274-005-8220-3 (accessed on 9 August 2021). [CrossRef]
- Vilela, A. Lachancea thermotolerans, the Non-Saccharomyces Yeast that Reduces the Volatile Acidity of Wines. Fermentation 2018, 4, 56. Available online: https://www.mdpi.com/2311-5637/4/3/56 (accessed on 9 August 2021). [CrossRef] [Green Version]
- Sgouros, G.; Mallouchos, A.; Filippousi, M.; Banilas, G.; Nisiotou, A. Molecular Characterization and Enological Potential of A High Lactic Acid-Producing Lachancea thermotolerans Vineyard Strain. Foods 2020, 9, 595. Available online: https://www.mdpi.com/2304-8158/9/5/595 (accessed on 9 August 2021). [CrossRef]
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorius, I.S. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. Available online: https://onlinelibrary.wiley.com/doi/10.1111/j.1755-0238.2005.tb00285.x (accessed on 9 August 2021). [CrossRef]
- Shekhawat, K.; Porter, T.J.; Bauer, F.F.; Setati, M.E. Employing oxygen pulses to modulate Lachancea thermotolerans–Saccharomyces cerevisiae Chardonnay fermentations. Ann. Microbiol. 2018, 68, 93–102. Available online: http://link.springer.com/10.1007/s13213-017-1319-6 (accessed on 9 August 2021). [CrossRef]
- Morata, A.; Loira, I.; Tesfaye, W.; Bañuelos, M.; González, C.; Suárez Lepe, J. Lachancea thermotolerans Applications in Wine Technology. Fermentation 2018, 4, 53. Available online: https://www.mdpi.com/2311-5637/4/3/53 (accessed on 9 August 2021). [CrossRef] [Green Version]
- Morata, A.; Loira, I.; Del Fresno, J.M.; Escott, C.; Bañuelos, M.A.; Tesfaye, W.; González, C.; Palomero, F.; Suárez-Lepe, J.A. Strategies to Improve the Freshness in Wines from Warm Areas [Internet]; Intech: London, UK, 2019; 204p, Available online: https://www.intechopen.com/books/advances-in-grape-and-wine-biotechnology/strategies-to-improve-the-freshness-in-wines-from-warm-areas (accessed on 9 August 2021).
- OIV. Compendium of International Methods of Wine and Must Analysis [Internet], 2021st ed.; Office International de la Vigne et du Vin: Paris, France, 2021; 860p, Available online: https://www.oiv.int/en/technical-standards-and-documents/methods-of-analysis/compendium-of-international-methods-of-analysis-of-wines-and-musts-2-vol (accessed on 9 August 2021).
- Ayala, F.; Echávarri, J.F.; Negueruela, A.I. A New Simplified Method for Measuring the Color of Wines. I. Red and Rosé Wines. Am. J. Enol. Vitic. 1997, 48, 357–363. Available online: http://www.ajevonline.org/content/48/3/357.abstract (accessed on 9 August 2021).
- Ibarz, M.J.; Ferreira, V.; Hernández-Orte, P.; Loscos, N.; Cacho, J. Optimization and evaluation of a procedure for the gas chromatographic–mass spectrometric analysis of the aromas generated by fast acid hydrolysis of flavor precursors extracted from grapes. J. Chromatogr. A 2006, 1116, 217–229. Available online: https://pubmed.ncbi.nlm.nih.gov/16581079/ (accessed on 23 July 2021). [CrossRef]
- Arcari, S.G.; Caliari, V.; Sganzerla, M.; Godoy, H.T. Volatile composition of Merlot red wine and its contribution to the aroma: Optimization and validation of analytical method. Talanta 2017, 174, 752–766. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0039914017307075 (accessed on 21 July 2021). [CrossRef] [PubMed]
- González Álvarez, M.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Relationships between Godello white wine sensory properties and its aromatic fingerprinting obtained by GC–MS. Food Chem. 2011, 129, 890–898. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0308814611007291 (accessed on 9 August 2021). [CrossRef]
- Peinado, R.A.; Moreno, J.; Medina, M.; Mauricio, J.C. Changes in volatile compounds and aromatic series in sherry wine with high gluconic acid levels subjected to aging by submerged flor yeast cultures. Biotechnol. Lett. 2004, 26, 757–762. Available online: http://link.springer.com/10.1023/B:BILE.0000024102.58987.de (accessed on 9 August 2021). [CrossRef]
- Celik, Z.D.; Cabaroglu, T.; Krieger-Weber, S. Impact of malolactic fermentation on the volatile composition of Turkish Kalecik karası red wines. J. Inst. Brew. 2019, 125, 92–99. Available online: https://onlinelibrary.wiley.com/doi/10.1002/jib.540 (accessed on 9 August 2021). [CrossRef]
- Perestrelo, R.; Silva, C.; Câmara, J.S. Madeira Wine Volatile Profile. A Platform to Establish Madeira Wine Aroma Descriptors. Molecules 2019, 24, 3028. Available online: https://www.mdpi.com/1420-3049/24/17/3028 (accessed on 9 August 2021). [CrossRef] [Green Version]
- Benucci, I.; Luziatelli, F.; Cerreti, M.; Liburdi, K.; Nardi, T.; Vagnoli, P.; Ruzzi, M.; Esti, M. Pre-fermentative cold maceration in the presence of non-Saccharomyces strains: Effect on fermentation behaviour and volatile composition of a red wine. Aust. J. Grape Wine Res. 2018, 24, 267–274. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/ajgw.12326 (accessed on 25 August 2021). [CrossRef]
- Saberi, S.; Cliff, M.A.; van Vuuren, H.J.J. Impact of mixed S. cerevisiae strains on the production of volatiles and estimated sensory profiles of Chardonnay wines. Food Res. Int. 2012, 48, 725–735. [Google Scholar] [CrossRef]
- Bartowsky, E.J.; Henschke, P.A. The ‘buttery’ attribute of wine—Diacetyl—Desirability, spoilage and beyond. Int. J. Food Microbiol. 2004, 96, 235–252. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0168160504002867 (accessed on 9 August 2021). [CrossRef] [PubMed]
- Qian, X.; Lan, Y.; Han, S.; Liang, N.; Zhu, B.; Shi, Y.; Duan, C. Comprehensive investigation of lactones and furanones in icewines and dry wines using gas chromatography-triple quadrupole mass spectrometry. Food Res. Int. 2020, 137, 109650. [Google Scholar] [CrossRef] [PubMed]
- Culleré, L.; López, R.; Ferreira, V. The Instrumental Analysis of Aroma-Active Compounds for Explaining the Flavor of Red Wines. In Red Wine Technology; Elsevier: London, UK, 2019; pp. 283–307. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780128143995000207 (accessed on 10 August 2021).
- Comuzzo, P.; Battistutta, F. Acidification and pH Control in Red Wines. In Red Wine Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 17–34. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780128143995000025 (accessed on 28 June 2021).
- Bosso, A.; Guaita, M.; Panero, L.; Bonello, F.; Vallini, V. Use of a solution of organic acids, a byproduct of the Rectified Concentrated Must production process, for the acidification of wines. BIO Web Conf. 2019, 15, 02021. Available online: https://www.bio-conferences.org/articles/bioconf/full_html/2019/04/bioconf-oiv2019_02021/bioconf-oiv2019_02021.html (accessed on 21 July 2021). [CrossRef]
- Malacarne, M.; Bergamo, L.; Bertoldi, D.; Nicolini, G.; Larcher, R. Use of Fourier transform infrared spectroscopy to create models forecasting the tartaric stability of wines. Talanta 2013, 117, 505–510. [Google Scholar] [CrossRef]
- Bosso, A.; Salmaso, D.; De Faveri, E.; Guaita, M.; Franceschi, D. The use of carboxymethylcellulose for the tartaric stabilization of white wines, in comparison with other oenological additives. Vitis 2010, 49, 95–99. [Google Scholar]
- Lasanta, C.; Gómez, J. Tartrate stabilization of wines. Trends Food Sci. Technol. 2012, 28, 52–59. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0924224412001215 (accessed on 25 August 2021). [CrossRef]
- Gadkari, P.V.; Balaraman, M. Catechins: Sources, extraction and encapsulation: A review. Food Bioprod. Process. 2015, 93, 122–138. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0960308513001296 (accessed on 25 August 2021). [CrossRef]
- Razmkhab, S.; Lopez-Toledano, A.; Ortega, J.M.; Mayen, M.; Merida, J.; Medina, M. Adsorption of Phenolic Compounds and Browning Products in White Wines by Yeasts and Their Cell Walls. J. Agric. Food Chem. 2002, 50, 7432–7437. Available online: https://pubs.acs.org/doi/10.1021/jf025733c (accessed on 10 August 2021). [CrossRef]
- Carvalho, M.J.; Pereira, V.; Pereira, A.C.; Pinto, J.L.; Marques, J.C. Evaluation of Wine Colour Under Accelerated and Oak-Cask Ageing Using CIELab and Chemometric Approaches. Food Bioprocess Technol. 2015, 8, 2309–2318. Available online: http://link.springer.com/10.1007/s11947-015-1585-x (accessed on 10 August 2021). [CrossRef]
- Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 1927, 73, 627–650. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0021925818842776 (accessed on 10 August 2021). [CrossRef]
- Somers, T.C.; Ziemelis, G. Gross interference by sulphur dioxide in standard determinations of wine phenolics. J. Sci. Food Agric. 1980, 31, 600–610. Available online: https://onlinelibrary.wiley.com/doi/10.1002/jsfa.2740310613 (accessed on 10 August 2021). [CrossRef]
- Harborne, J.B. Phenolic Compounds. In Phytochemical Methods [Internet]; Springer: Dordrecht, The Netherlands, 1973; Volume 2, pp. 33–88. Available online: http://link.springer.com/10.1007/978-94-009-5921-7_2 (accessed on 10 August 2021).
- Petitgonnet, C.; Klein, G.L.; Roullier-Gall, C.; Schmitt-Kopplin, P.; Quintanilla-Casas, B.; Vichi, S.; Julien-David, D.; Alexandre, H. Influence of cell-cell contact between L. thermotolerans and S. cerevisiae on yeast interactions and the exo-metabolome. Food Microbiol. 2019, 83, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Rapp, A.; Versini, G. Influence of nitrogen compounds in grapes on aroma compounds of wines. In Developments in Food Science; Elsevier: Amsterdam, The Netherlands, 1995; Volume 37, pp. 1659–1694. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0167450106802578 (accessed on 6 August 2021).
- Vaquero, C.; Loira, I.; Heras, J.M.; Carrau, F.; González, C.; Morata, A. Biocompatibility in Ternary Fermentations With Lachancea thermotolerans, Other Non-Saccharomyces and Saccharomyces cerevisiae to Control pH and Improve the Sensory Profile of Wines From Warm Areas. Front. Microbiol. 2021, 12, 656262. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2021.656262/full (accessed on 29 April 2021). [CrossRef] [PubMed]
- Martineau, B.; Acree, T.E.; Henick-Kling, T. Effect of wine type on the detection threshold for diacetyl. Food Res. Int. 1995, 28, 139–143. Available online: https://linkinghub.elsevier.com/retrieve/pii/096399699590797E (accessed on 6 August 2021). [CrossRef]
- Robles, A.; Fabjanowicz, M.; Chmiel, T.; Płotka-Wasylka, J. Determination and identification of organic acids in wine samples. Problems and challenges. TrAC Trends Anal. Chem. 2019, 120, 115630. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0165993619303498 (accessed on 21 July 2021). [CrossRef]
- Rocha, S.M.; Rodrigues, F.; Coutinho, P.; Delgadillo, I.; Coimbra, M.A. Volatile composition of Baga red wine. Anal. Chim. Acta 2004, 513, 257–262. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0003267003013400 (accessed on 21 July 2021). [CrossRef]
- Rauhut, D.; Kiene, F. Aromatic Compounds in Red Varieties. In Red Wine Technology; Elsevier Inc.: London, UK, 2019; pp. 273–282. [Google Scholar]
- Whitener, M.E.B.; Stanstrup, J.; Carlin, S.; Divol, B.; Du Toit, M.; Vrhovsek, U. Effect of non-Saccharomyces yeasts on the volatile chemical profile of Shiraz wine. Aust. J. Grape Wine Res. 2017, 23, 179–192. Available online: https://onlinelibrary.wiley.com/doi/10.1111/ajgw.12269 (accessed on 6 August 2021). [CrossRef]
- Cerdán, T.G.; Goñi, D.T.; Azpilicueta, C.A. Accumulation of volatile compounds during ageing of two red wines with different composition. J. Food Eng. 2004, 65, 349–356. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0260877404000408 (accessed on 6 August 2021). [CrossRef]
- Fang, Y.; Qian, M.C. Development of C6 and other volatile compounds in pinot noir grapes determined by stir bar sorptive extraction-GC-MS. ACS Symp. Ser. 2012, 1104, 81–99. Available online: https://pubs.acs.org/doi/abs/10.1021/bk-2012-1104.ch006 (accessed on 31 August 2021).
- Hewson, L.; Hollowood, T.; Chandra, S.; Hort, J. Taste–aroma interactions in a citrus flavoured model beverage system: Similarities and differences between acid and sugar type. Food Qual. Prefer. 2008, 19, 323–334. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0950329307001577 (accessed on 21 July 2021). [CrossRef]
Laktia→QA23 | L31→QA23 | QA23 | |
---|---|---|---|
Ethanol (% v/v) | 12.29 ± 0.08 a | 12.75 ± 0.07 b | 12.81 ± 0.12 b |
Total acidity (g/L) | 4.31 ± 0.51 a | 4.18 ± 0.17 a | 3.95 ± 0.10 a |
pH | 3.74 ± 0.07 a | 3.81 ± 0.03 b | 3.72 ± 0.01 a |
Total SO2 (mg/L) | 89 ± 10 a | 110 ± 35 a | 100 ± 20 a |
Free SO2 (mg/L) | 10 ± 4 a | 21 ± 13 a | 20 ± 9 a |
Glucose/Fructose (g/L) | 1.65 ± 1.39 a | 0.87 ± 0.74 a | 0.31 ± 0.04 a |
Acetic acid (g/L) | 0.18 ± 0.03 a | 0.17 ± 0.00 a | 0.25 ± 0.00 b |
Malic acid (g/L) | 1.51 ± 0.11 a | 1.56 ± 0.04 a | 1.62 ± 0.02 a |
Lactic acid (g/L) | 1.02 ± 0.22 b | 0.90 ± 0.11 b | 0.07 ± 0.10 a |
Citric acid (g/L) | 0.07 ± 0.00 a | 0.06 ± 0.00 a | 0.06 ± 0.00 a |
Succinic acid (g/L) | 0.81 ± 0.02 b | 0.73 ± 0.0 a | 0.82 ± 0.01 b |
Tartaric acid (g/L) | 1.10 ± 0.00 a | 1.14 ± 0.07 a | 1.15 ± 0.04 a |
Propane-1,2,3-triol (g/L) | 6.81 ± 0.11 c | 5.69 ± 0.23 a | 6.11 ± 0.00 b |
Laktia→QA23 | L31→QA23 | QA23 | |
---|---|---|---|
Catechins (mg/L) | 49.65 ± 5.44 a | 55.35 ± 0.49 b | 54.40 ± 0.14 b |
Folin–Ciocalteu method (mg GAE/L) | 6.08 ± 0.35 a | 6.62 ± 0.25 b | 6.71 ± 0.05 b |
L* | 99.229 ± 0.092 a | 99.578 ± 0.196 b | 99.512 ± 0.169 b |
a* | −1.251 ± 0.037 a | −1.262 ± 0.064 a | −1.166 ± 0.025 b |
b* | 6.854 ± 0.832 a | 6.639 ± 0.380 a | 6.233 ± 0.271 a |
Absorbance 420 nm | 0.091 ± 0.010 a | 0.085 ± 0.005 a | 0.080 ± 0.004 a |
Threshold Odour | QA23 | Laktia→QA23 | L31→QA23 | |
---|---|---|---|---|
ESTERS | ||||
Ethyl acetate (mg/L) | 7.5–12 [40] | 64.62 ± 1.71 a | 66.96 ± 13.95 a | 57.21 ± 2.59 a |
Isoamyl acetate (mg/L) | 0.03 [41] | 2.26 ± 0.16 c | 0.98 ± 0.21 a↓ | 1.57 ± 0.03 b↓ |
Hexyl acetate (µg/L) | 1500 [41] | 171.60 ± 42.07 b | 8.20 ± 4.72 a↓ | 14.98 ± 9.37 a↓ |
Ethyl lactate (mg/L) | 150 [42] | 1.79 ± 0.16 a | 11.76 ± 8.85 b↑ | 7.94 ± 3.96 ab↑ |
Ethyl butyrate (µg/L) | 20 [41] | 133.50 ± 44.55 a | 93.25 ± 53.39 a | 77.00 ± 53.74 a |
Ethyl hexanoate (mg/L) | 0.005–0.014 [41,43] | 1.31 ± 0.02 c | 0.60 ± 0.06 a↓ | 0.92 ± 0.11 b↓ |
Ethyl octanoate (mg/L) | 0.6 [41] | 1.31 ± 0.04 c | 0.57 ± 0.08 a↓ | 1.06 ± 0.07 b↓ |
Ethyl decanoate (µg/L) | 200 [43] | 265.12 ± 28.74 c | 157.06 ± 0.03 a↓ | 214.98 ± 2.51 b↓ |
Diethyl succinate (µg/L) | 200–500 [43,44] | 229.32 ± 11.32 b | 191.82 ± 1.83 a↓ | 256.78 ± 33.48 b↓ |
Isoamyl lactate (µg/L) | 200 [45] | 74.38 ± 7.79 c | 44.45 ± 0.92 a↓ | 60.84 ± 0.58 b↓ |
ALCOHOLS | ||||
Isoamyl alcohols (mg/L) | 30–60 [42,43] | 217.10 ± 8.71 a | 252.83 ± 38.29 a | 226.47 ± 2.08 a |
Methanol (mg/L) | - | 28.03 ± 0.66 b | 28.54 ± 1.45 b | 26.42 ± 0.09 a |
1-propanol (mg/L) | 90–300 [41,42] | 38.16 ± 2.62 c | 27.27 ± 1.45 b↓ | 14.49 ± 0.22 a↓ |
1-butanol (µg/L) | 150 [42] | 166.00 ± 50.91 a | 174.50 ± 61.52 a | 178.00 ± 9.90 a |
Isobutanol (mg/L) | 40 [46] | 13.22 ± 0.39 a | 40.50 ± 1.29 c↑ | 25.54 ± 4.01 b↑ |
1-hexanol (mg/L) | 8 [41] | 1.73 ± 0.03 a | 2.13 ± 0.05 c↑ | 1.98 ± 0.00 b↑ |
trans-3-hexenol (µg/L) | 400–1000 [41,44] | 319.19 ± 5.73 b | 289.91 ± 13.99 a↓ | 310.16 ± 20.46 ab↓ |
3-ethoxy-1-propanol (µg/L) | 100 [42] | 441.45 ± 11.71 c | 307.12 ± 39.26 b↓ | 140.54 ± 37.47 a↓ |
3-Ethyl-thio-propanol (µg/L) | - | 4.44 ± 0.06 a | 10.96 ± 2.82 b↑ | 14.67 ± 1.67 c↑ |
Benzyl alcohol (µg/L) | 200 [40] | 43.29 ± 1.44 a | 43.19 ± 3.37 a | 47.24 ± 1.95 a |
2-phenylethanol (mg/L) | 14 [40] | 34.56 ± 2.18 a | 32.91 ± 0.10 a | 32.71 ± 2.63 a |
CARBONYLIC COMPOUNDS | ||||
Acetaldehyde (mg/L) | 110 [42] | 28.58 ± 1.57 a | 48.99 ± 8.49 c↑ | 38.12 ± 2.53 b↑ |
3-OH-2-butanone (acetoin) (mg/L) | 150 [42] | 25.00 ± 12.73 a | 47.25 ± 2.47 a | 76.00 ± 25.46 b↑ |
2,3-butanedione (diacetyl) (µg/L) | 200–2800 [47] | 168.50 ± 38.89 a | 177.75 ± 25.81 a | 154.00 ± 2.83 a |
ORGANIC ACIDS | ||||
Butyric acid (mg/L) | 0.17 [41] | 1.66 ± 0.14 c | 1.14 ± 0.03 a↓ | 1.47 ± 0.07 b↓ |
Isobutyric acid (µg/L) | 2300 [43] | 492.54 ± 2.42 a | 927.65 ± 131.24 c↑ | 699.46 ± 8.81 b↑ |
Isovaleric acid (mg/L) | 0.03 [41] | 1.74 ± 0.13 b | 1.34 ± 0.02 a ↓ | 1.29 ± 0.01 a↓ |
Hexanoic acid (mg/L) | 0.42 [41] | 7.63 ± 0.35 c | 3.50 ± 0.64 a↓ | 5.70 ± 0.25 b↓ |
Octanoic acid (mg/L) | 0.5 [43] | 15.35 ± 0.00 c | 8.40 ± 1.67 a↓ | 13.03 ± 0.76 b↓ |
Decanoic acid (mg/L) | 1 [43] | 4.26 ± 0.11 c | 2.77 ± 0.21 a↓ | 3.67 ± 0.05 b↓ |
NORISOPRENOIDS | ||||
β-damascenone (µg/L) | 0.05 [40] | 1.22 ± 0.15 a | 1.99 ± 0.79 a | 1.50 ± 0.36 a |
3-oxo-α-ionol (µg/L) | - | 17.05 ± 1.84 a | 16.53 ± 2.10 a | 19.63 ± 1.88 a |
TERPENES | ||||
Linalool (µg/L) | 25 [40] | 2.66 ± 0.67 a | 3.31 ± 0.28 a | 3.97 ± 2.28 a |
Citronellol (µg/L) | 100 [41] | 3.05 ± 0.23 a | 3.39 ± 0.26 a | 2.65 ± 0.89 a |
Geraniol (µg/L) | 20–30 [40,41] | 2.99 ± 0.38 a | 4.47 ± 0.88 b↑ | 4.98 ± 1.51 b↑ |
LACTONES | ||||
γ-butyrolactone (µg/L) | 35,000 [44] | 91.41 ± 6.85 a | 225.65 ± 18.27 c↑ | 175.00 ± 6.39 b↑ |
γ-octalactone (µg/L) | 400 [44] | 38.30 ± 1.67 a | 34.99 ± 0.28 a | 43.00 ± 8.41 a |
γ-nonalactone (µg/L) | 30 [40] | 4.50 ± 0.46 a | 3,93 ± 1.16 a | 4,22 ± 0.33 a |
γ-decalactone (µg/L) | 88 [44] | 7.41 ± 0.60 a | 11.08 ± 0.76 b↑ | 16.48 ± 2.41 c↑ |
FURANIC COMPOUNDS | ||||
Furaneol (µg/L) | 5 [48] | 8.61 ± 1.36 a | 21.45 ± 3.28 b↑ | 22.34 ± 4.58 b↑ |
Ethyl 2-furoate (µg/L) | 16,000 [44] | 0.94 ± 0.06 b | 0.73 ± 0.05 a↓ | 0.60 ± 0.20 a↓ |
Hydroxymethylfurfural (µg/L) | 10,000 [44] | 124.30 ± 37.08 a | 322.86 ± 11.70 b↑ | 271.86 ± 57.42 b↑ |
VOLATILE PHENOLS | ||||
Phenol (µg/L) | - | 1.44 ± 0.29 a | 1.60 ± 0.34 a | 1.53 ± 0.38 a |
4-vinylphenol (µg/L) | 35 [49] | 96.55 ± 6.85 a | 126.74 ± 24.53 b↑ | 131.60 ± 8.13 b↑ |
4-ethyl-guaiacol (µg/L) | 33 [49] | 0.10 ± 0.02 b | 0.06 ± 0.03 a↓ | 0.07 ± 0.00 a↓ |
4-vinylguaiacol (µg/L) | 40 [49] | 140.70 ± 10.88 a | 171.47 ± 36.08 ab↑ | 184.61 ± 4.21 b↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaquero, C.; Izquierdo-Cañas, P.M.; Mena-Morales, A.; Marchante-Cuevas, L.; Heras, J.M.; Morata, A. Use of Lachancea thermotolerans for Biological vs. Chemical Acidification at Pilot-Scale in White Wines from Warm Areas. Fermentation 2021, 7, 193. https://doi.org/10.3390/fermentation7030193
Vaquero C, Izquierdo-Cañas PM, Mena-Morales A, Marchante-Cuevas L, Heras JM, Morata A. Use of Lachancea thermotolerans for Biological vs. Chemical Acidification at Pilot-Scale in White Wines from Warm Areas. Fermentation. 2021; 7(3):193. https://doi.org/10.3390/fermentation7030193
Chicago/Turabian StyleVaquero, Cristian, Pedro Miguel Izquierdo-Cañas, Adela Mena-Morales, L. Marchante-Cuevas, José María Heras, and Antonio Morata. 2021. "Use of Lachancea thermotolerans for Biological vs. Chemical Acidification at Pilot-Scale in White Wines from Warm Areas" Fermentation 7, no. 3: 193. https://doi.org/10.3390/fermentation7030193
APA StyleVaquero, C., Izquierdo-Cañas, P. M., Mena-Morales, A., Marchante-Cuevas, L., Heras, J. M., & Morata, A. (2021). Use of Lachancea thermotolerans for Biological vs. Chemical Acidification at Pilot-Scale in White Wines from Warm Areas. Fermentation, 7(3), 193. https://doi.org/10.3390/fermentation7030193