Granulated Cane Sugar as a Partial Replacement for Steam-Flaked Corn in Diets for Feedlot Cattle: Ruminal Fermentation and Microbial Protein Synthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, and Dietary Treatments
2.2. Sampling
2.3. Samples Analyses
2.4. Calculations
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muriel, J.O.D.; Jean-Louis, K.K.; Rebecca, R.A.; Ysidor, K.N. Physico-chemical characterization of granulated sugar from coconut (Cocos nucifera L.) inflorescence sap cultivars and sugar cane in Côte d’Ivoire. Curr. J. Appl. Sci. Technol. 2019, 37, 1–13. [Google Scholar] [CrossRef]
- Oba, M. Review: Effects of feeding sugars on productivity of lactating dairy cows. Can. J. Anim. Sci. 2011, 91, 37–46. [Google Scholar] [CrossRef]
- Dulloo, A.G.; Eisa, O.A.; Miller, D.S.; Yudkin, J.A. Comparative study of the effects of white sugar, unrefined sugar and starch on the efficiency of food utilization and thermogenesis. Am. J. Clin. Nutr. 1985, 42, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Minuti, A.; Bani, P. In Vitro Rumen fermentation characteristics of some naturally occurring and synthetic sugars. Ital. J. Anim. Sci. 2013, 12, e57. [Google Scholar] [CrossRef]
- Hall, M.B.; Weimer, P.J. Sucrose concentration alters fermentation kinetics, products, and carbon fates during in vitro fermentation with mixed ruminal microbes. J. Anim. Sci. 2007, 85, 1467–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.Q.; Wang, Y.P.; Wei, R.Y.; Chen, B.; Zhao, X. Effects of replacing starch with three sugars in a concentrate and forage diet on in vitro rumen fermentation, fatty acid composition and related bacteria. Anim. Prod. Sci. 2020, 60, 1173–1182. [Google Scholar] [CrossRef]
- Sannes, R.A.; Messman, M.A.; Vagnoni, D.B. Form of rumen-degradable carbohydrate and nitrogen on microbial protein synthesis and protein efficiency of dairy cows. J. Dairy Sci. 2002, 85, 900–908. [Google Scholar] [CrossRef]
- Broderick, G.A.; Luchini, N.D.; Reynal, S.M.; Varga, G.A.; Ishler, V.A. Effect on production of replacing dietary starch with sucrose in lactating dairy cows. J. Dairy Sci. 2008, 91, 4801–4810. [Google Scholar] [CrossRef]
- Firkins, J.L.; Yu, Z.; Morrison, M. Ruminal nitrogen metabolism: Perspectives for integration of microbiology and nutrition for dairy. J. Dairy Sci. 2007, 90, E1–E16. [Google Scholar] [CrossRef]
- Huhtanen, P. The effects of intraruminal infusions of sucrose and xylose on nitrogen and fibre digestion in the rumen and intestines of cattle receiving diets of grass silage and barley. J. Agric. Sci. 1987, 59, 405–424. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, S.S.; Kim, K.J. Effect of intraruminal sucrose infusion on volatile fatty acid production and microbial protein synthesis in sheep. Asian-Aust. J. Anim. Sci. 2005, 18, 350–353. [Google Scholar] [CrossRef]
- Arrizon, A.; Carrasco, R.; Salinas-Chavira, J.; Montano, M.; Torrentera, N.; Zinn, R.A. Feeding value of dried shredded sugar beets as a partial replacement for steam-flaked corn in finishing diets for feedlot cattle. J. Anim. Sci. 2010, 90, 1892–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keim, J.P.; Mora, J.; Ojeda, S.; Saldías, B.; Bedenk, U. The replacement of ground corn with sugar beet in the diet of pasture-fed lactating dairy cows and its effect on productive performance and rumen metabolism. Animals 2020, 12, 1927. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, J.T.; Galyean, M.L. Nutritional recommendations of feedlot consulting nutritionists: The 2007 Texas Tech University survey. J. Anim. Sci. 2007, 85, 2772–2781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plascencia, A.; Bermúdez, R.M.; Cervantes, M.; Corona, L.; Dávila-Ramos, H.; López-Soto, M.A.; May, D.; Torrentera, N.G.; Zinn, R.A. Influence of processing method on comparative digestion of white corn versus conventional steam-flaked yellow dent corn in finishing diets for feedlot cattle. J. Anim. Sci. 2011, 89, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Zinn, R.A.; Plascencia, A. Interaction of whole cottonseed and supplemental fat on digestive function in cattle. J. Anim. Sci. 1993, 71, 11–17. [Google Scholar] [CrossRef]
- National Academy of Sciences Engineering Medicine. Nutrient Requirement of Beef Cattle, 8th ed.; National Academy Science of Sciences Engineering Medicine (NASEM): Washington, DC, USA, 2016. [Google Scholar]
- Bergen, W.G.; Purser, D.B.; Cline, J.H. Effect of ration on the nutritive quality of rumen microbial protein. J. Anim. Sci. 1968, 27, 1497–1501. [Google Scholar] [CrossRef]
- Zinn, R.A.; Owens, F.N. A rapid procedure for purine measurement and it use for estimating net ruminal protein synthesis. Can. J. Anim. Sci. 1986, 66, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Analytical Chemists. Official Method of Analysis, 18th ed.; Association of Official Analytical Chemists (AOAC): Washington, DC, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Hill, F.N.; Anderson, D.L. Comparison of metabolizable energy and productive determinations with growing chicks. J. Nutr. 1958, 64, 587–603. [Google Scholar] [CrossRef]
- Zinn, R.A. Influence of steaming time on site digestion of flaked corn in steers. J. Anim. Sci. 1990, 68, 776–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinn, R.A. Comparative feeding value of supplemental fat in finishing diets for feedlot steers supplemented with and without monensin. J. Anim. Sci. 1988, 66, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Wolin, M.J. A theoretical rumen fermentation balance. J. Dairy Sci. 1990, 43, 1452–1459. [Google Scholar] [CrossRef]
- Chamberlain, D.G.; Robertson, S.; Choung, J.-J. Sugars versus starch as supplements to grass silage: Effects on ruminal fermentation and the supply of microbial protein to the small intestine, estimated from the urinary excretion of purine derivatives, in sheep. Sci. Food Agric. 1993, 63, 189–194. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A Net carbohydrate and protein system for evaluating cattle diets: II. carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [Green Version]
- Khalili, H.; Huhtanen, P. Sucrose supplements in cattle given grass silage-based diet. 1. Digestion of organic matter and nitrogen. Anim. Feed Sci. Technol. 1991, 33, 247–261. [Google Scholar] [CrossRef]
- Huhtanen, P.; Khalili, H. Sucrose supplements in cattle given grass silage-based diet. 3. Rumen pool size and digestion kinetics. Anim. Feed Sci. Technol. 1991, 33, 275–287. [Google Scholar] [CrossRef]
- Pfau, F.; Hünerberg, M.; Südekum, K.-H.; Breves, G.; Clauss, M.; Hummel, J. Effects of dilution rate on fermentation characteristics of feeds with different carbohydrate composition incubated in the rumen simulation technique (RUSITEC). Front. Anim. Sci. 2021, 2, 715142. [Google Scholar] [CrossRef]
- Goetsch, A.L.; Owens, F.N. Effects of calcium source and level on site of digestion and calcium levels in the digestive tract of cattle fed high-concentrate diets. J. Anim. Sci. 1985, 61, 995–1003. [Google Scholar] [CrossRef] [Green Version]
- Huntington, G.B. Starch utilization by ruminants: From basics to the bunk. J. Anim. Sci. 1997, 75, 852–867. [Google Scholar] [CrossRef]
- Zhang, L.; Chung, J.; Jiang, Q.; Sun, R.; Zhang, J.; Zhong, Y.; Ren, N. Characteristics of rumen microorganisms involved in anaerobic degradation of cellulose at various pH values. RSC Adv. 2017, 7, 40303. [Google Scholar] [CrossRef] [Green Version]
- Piwonka, E.J.; Firkins, J.L. Effect of glucose on fiber digestion and particle-associated carboxymethyl cellulase activity in vitro. J. Dairy Sci. 1993, 76, 129–139. [Google Scholar] [CrossRef]
- Piwonka, E.J.; Firkins, J.L. Effect of glucose fermentation on fiber digestion by ruminal microorganisms in vitro. J. Dairy Sci. 1996, 79, 2196–2206. [Google Scholar] [CrossRef]
- Khalili, H.; Huhtanen, P. Sucrose supplements in cattle given grass silage-based diet. 2. Digestion of cell wall carbohydrates. Feed Sci. Technol. 1991, 33, 263–273. [Google Scholar] [CrossRef]
- Archimède, H.; Aumont, G.; Saminadin, G.; Deprès, E. Effects of urea and saccharose on intake and digestion of a Digitaria decumbens hay by black belly sheep. Anim. Sci. 1999, 69, 403–410. [Google Scholar] [CrossRef]
- Penner, G.B.; Guan, L.L.; Oba, M. Effect of feeding Fermenten on ruminal fermentation in lactating Holstein cows fed two dietary sugar concentrations. J. Dairy Sci. 2009, 92, 1725–1733. [Google Scholar] [CrossRef] [Green Version]
- Heldt, J.S.; Cochran, R.C.; Stokka, G.L.; Farmer, C.G.; Mathis, C.P.; Titgemeyer, E.C.; Nagaraja, T.G. Effects of different supplemental sugars and starch fed in combination with degradable intake protein on low-quality forage use by beef steers. J. Anim. Sci. 1999, 77, 2793–2802. [Google Scholar] [CrossRef]
- Vallimont, J.E.; Bargo, F.; Cassidy, T.W.; Luchini, N.D.; Broderick, G.A.; Varga, G.A. Effects of replacing dietary starch with sucrose on ruminal fermentation and nitrogen metabolism in continuous culture. J. Dairy Sci. 2004, 87, 4221–4229. [Google Scholar] [CrossRef] [Green Version]
- Campos, F.P.; Nussio, L.G.; Sarmento, P.; Daniel, J.L.P.; Lima, C.G. Effects of addition of different sources and doses of sugars on in vitro digestibilities of dry matter, fibre and cell wall monosaccharides of corn silage in ruminants. Animal 2020, 14, 1667–1675. [Google Scholar] [CrossRef]
- Mariz, L.D.S.; Amaral, P.M.; Valadares Filho, S.C.; Santos, S.A.; Detmann, E.; Marcondes, M.I.; Pereira, J.M.V.; Silva Júnior, J.M.; Prados, L.F.; Faciola, A.P. Dietary protein reduction on microbial protein, amino acid digestibility, and body retention in beef cattle: 2. Amino acid intestinal absorption and their efficiency for whole-body deposition. J. Anim. Sci. 2018, 96, 670–683. [Google Scholar] [CrossRef]
- Huhtanen, P.; Ahvenjärvi, S.; Broderick, G.A.; Reynal, S.M.; Shingfield, K.J. Quantifying ruminal digestion of organic matter and neutral detergent fiber using the omasal sampling technique in cattle—A meta-analysis. J. Dairy Sci. 2010, 93, 3203–3215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitt, R.E.; Van Kessel, J.S.; Fox, D.G.; Pell, A.N.; Barry, M.C.; Van Soest, P.J. Prediction of ruminal volatile fatty acids and pH within the net carbohydrate and protein system. J. Anim. Sci. 1996, 74, 226–244. [Google Scholar] [CrossRef] [PubMed]
Granulated Cane Sugar Level (%) | ||||
---|---|---|---|---|
Item | 0 | 13.3 | 26.6 | 39.9 |
Ingredient composition (% DM basis) | ||||
Steam-Flaked corn | 59.68 | 46.38 | 33.08 | 19.78 |
Granulated cane sugar | 0.00 | 13.30 | 26.60 | 39.90 |
Distillers grains plus solubles | 17.58 | 17.58 | 17.58 | 17.58 |
Yellow grease | 3.60 | 3.60 | 3.60 | 3.60 |
Cane molasses | 5.78 | 5.78 | 5.78 | 5.78 |
Sudangrass hay | 3.60 | 3.60 | 3.60 | 3.60 |
Alfalfa hay | 7.20 | 7.20 | 7.20 | 7.20 |
Urea | 0.72 | 0.72 | 0.72 | 0.72 |
Trace mineralized salt 1 | 0.33 | 0.33 | 0.33 | 0.33 |
Limestone | 1.02 | 1.02 | 1.02 | 1.02 |
Magnesium oxide | 0.14 | 0.14 | 0.14 | 0.14 |
Chromic oxide | 0.35 | 0.35 | 0.35 | 0.35 |
Nutrient composition (DM basis) 2 | ||||
Net energy (Mcal/kg) | ||||
Maintenance | 2.26 | 2.27 | 2.27 | 2.28 |
Gain | 1.58 | 1.58 | 1.58 | 1.58 |
Crude protein (%) | 14.93 | 13.67 | 12.40 | 11.13 |
Ether extract (%) | 8.22 | 7.65 | 7.08 | 6.50 |
Neutral detergent fiber (%) | 18.86 | 17.66 | 16.46 | 15.26 |
Calcium (%) | 0.64 | 0.64 | 0.63 | 0.63 |
Phosphorous (%) | 0.37 | 0.32 | 0.28 | 0.24 |
Potassium (%) | 0.89 | 0.84 | 0.80 | 0.75 |
Magnesium (%) | 0.28 | 0.26 | 0.25 | 0.24 |
Granulated Cane Sugar Level (% DM Diet) | p-Value | ||||||
---|---|---|---|---|---|---|---|
Item | 0 | 13.3 | 26.6 | 39.9 | SEM | Linear | Quadratic |
Intake (g/d) | |||||||
Dry matter | 4975 | 4975 | 4975 | 4975 | 7.28 | 0.24 | 0.78 |
Organic matter | 4705 | 4705 | 4714 | 4718 | 6.97 | 0.18 | 0.78 |
Neutral detergent fiber | 738 | 689 | 645 | 593 | 2.40 | <0.01 | 0.92 |
Starch | 2369 | 1858 | 1354 | 840 | 11.08 | <0.01 | 0.91 |
Nitrogen | 111 | 103 | 95 | 86 | 0.05 | <0.01 | 0.34 |
Flow to duodenum (g/d) | |||||||
Organic matter | 2665 | 2744 | 2680 | 2713 | 98.6 | 0.87 | 0.84 |
Neutral detergent fiber | 473 | 553 | 645 | 594 | 68.1 | 0.12 | 0.31 |
Starch | 536 | 459 | 500 | 465 | 57.1 | 0.53 | 0.75 |
Nitrogen | 127 | 133 | 120 | 120 | 4.45 | 0.10 | 0.55 |
NH3-N | 4.04 | 3.71 | 2.96 | 2.58 | 0.57 | <0.01 | 0.94 |
Non-ammonia-N | 124 | 129 | 116 | 117 | 4.02 | 0.13 | 0.57 |
Microbial N | 74.6 | 90.8 | 80.2 | 75.5 | 4.04 | 0.55 | 0.02 |
Feed-N | 48.9 | 38.6 | 36.9 | 41.7 | 5.86 | 0.36 | 0.23 |
Ruminal digestion (% of intake) | |||||||
Organic matter | 59.24 | 60.96 | 60.07 | 58.52 | 2.66 | 0.81 | 0.58 |
Neutral detergent fiber | 36.51 | 18.95 | 1.24 | 1.18 | 10.32 | 0.02 | 0.40 |
Starch | 77.37 | 75.31 | 62.72 | 44.28 | 5.82 | <0.01 | 0.24 |
Feed-N | 56.01 | 62.59 | 61.20 | 51.59 | 5.84 | 0.55 | 0.20 |
MN efficiency 1 | 27.26 | 31.43 | 28.88 | 27.57 | 1.06 | 0.72 | 0.04 |
N efficiency 2 | 1.11 | 1.26 | 1.22 | 1.36 | 0.049 | 0.03 | 0.93 |
Postruminal digestion (% entering the duodenum) | |||||||
Organic matter | 59.94 | 60.64 | 60.13 | 61.20 | 2.48 | 0.79 | 0.85 |
Neutral detergent fiber | 10.69 | 10.24 | 13.43 | 23.05 | 1.95 | 0.47 | 0.70 |
Starch | 91.16 | 92.35 | 92.19 | 92.71 | 1.87 | 0.62 | 0.87 |
Nitrogen | 72.74 | 73.30 | 69.14 | 69.45 | 0.83 | 0.02 | 0.89 |
Fecal excretion (g/d) | |||||||
Dry matter | 1166 | 1190 | 1162 | 1161 | 50.43 | 0.86 | 0.83 |
Organic matter | 1054 | 1082 | 1061 | 1050 | 49.07 | 0.89 | 0.73 |
Neutral detergent fiber | 368 | 431 | 443 | 454 | 38.87 | 0.18 | 0.55 |
Starch | 47.65 | 33.57 | 39.92 | 31.39 | 9.88 | 0.39 | 0.80 |
Nitrogen | 34.60 | 35.53 | 36.18 | 36.32 | 1.28 | 0.36 | 0.78 |
Total tract digestion (% of intake) | |||||||
Dry matter | 76.59 | 76.09 | 76.64 | 76.63 | 1.03 | 0.89 | 0.84 |
Organic matter | 77.59 | 77.04 | 77.50 | 77.75 | 1.06 | 0.86 | 0.74 |
Neutral detergent fiber | 49.44 | 37.04 | 30.01 | 23.09 | 5.39 | 0.02 | 0.65 |
Starch | 97.98 | 98.19 | 96.93 | 96.23 | 0.59 | 0.06 | 0.50 |
Nitrogen | 68.92 | 65.40 | 61.74 | 57.80 | 1.45 | <0.01 | 0.90 |
Granulated Cane Sugar Level (% DM Diet) | p-Value | ||||||
---|---|---|---|---|---|---|---|
Item | 0 | 13.3 | 26.6 | 39.9 | SEM | Linear | Quadratic |
Ruminal pH 1 | 5.89 | 6.10 | 5.55 | 5.20 | 0.14 | <0.01 | 0.09 |
Total VFA, moles | 70.18 | 60.92 | 68.28 | 67.90 | 5.67 | 0.98 | 0.46 |
Ruminal VFA (mol/100 mol) | |||||||
Acetate | 51.81 | 51.98 | 49.02 | 48.85 | 0.88 | 0.03 | 0.85 |
Propionate | 35.25 | 33.87 | 35.91 | 36.46 | 1.80 | 0.51 | 0.61 |
Butyrate | 8.67 | 8.76 | 9.37 | 8.91 | 0.59 | 0.65 | 0.69 |
Isobutyrate | 0.66 | 0.64 | 0.42 | 0.95 | 0.03 | 0.66 | 0.42 |
Isovalerate | 1.17 | 1.02 | 0.58 | 0.97 | 0.003 | 0.46 | 0.40 |
Valerate | 2.42 | 3.72 | 4.72 | 3.84 | 0.005 | 0.08 | 0.10 |
Acetate:propionate ratio | 1.47 | 1.53 | 1.36 | 1.33 | 0.11 | 0.33 | 0.74 |
Methane production 2 | 0.410 | 0.423 | 0.389 | 0.384 | 0.020 | 0.26 | 0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plascencia, A.; Barreras, A.; Valdés-García, Y.S.; Zinn, R.A. Granulated Cane Sugar as a Partial Replacement for Steam-Flaked Corn in Diets for Feedlot Cattle: Ruminal Fermentation and Microbial Protein Synthesis. Fermentation 2022, 8, 555. https://doi.org/10.3390/fermentation8100555
Plascencia A, Barreras A, Valdés-García YS, Zinn RA. Granulated Cane Sugar as a Partial Replacement for Steam-Flaked Corn in Diets for Feedlot Cattle: Ruminal Fermentation and Microbial Protein Synthesis. Fermentation. 2022; 8(10):555. https://doi.org/10.3390/fermentation8100555
Chicago/Turabian StylePlascencia, Alejandro, Alberto Barreras, Yissel S. Valdés-García, and Richard A. Zinn. 2022. "Granulated Cane Sugar as a Partial Replacement for Steam-Flaked Corn in Diets for Feedlot Cattle: Ruminal Fermentation and Microbial Protein Synthesis" Fermentation 8, no. 10: 555. https://doi.org/10.3390/fermentation8100555
APA StylePlascencia, A., Barreras, A., Valdés-García, Y. S., & Zinn, R. A. (2022). Granulated Cane Sugar as a Partial Replacement for Steam-Flaked Corn in Diets for Feedlot Cattle: Ruminal Fermentation and Microbial Protein Synthesis. Fermentation, 8(10), 555. https://doi.org/10.3390/fermentation8100555