Micro-Aerobic Pre-Treatment vs. Thermal Pre-Treatment of Waste Activated Sludge for Its Subsequent Anaerobic Digestion in Semi-Continuous Digesters: A Comparative Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Micro-Aerobic Pre-Treatment
2.2. Experimental Set-Up, Substrate, and Inoculum
2.3. Analytical Methods and Statistical Analysis
2.4. Energy Demand Analysis
3. Results and Discussion
3.1. Micro-Aerobic Pre-Treatment of Waste Activated Sludge
3.2. Anaerobic Digestion of Pre-Treated Sludge
3.3. Energy Requirements Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carrere, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenes, J.P.; Steyer, J.P.; Ferrer, I. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard. Mater. 2010, 183, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Ji, M.; Wang, F.; Li, R.Y.; Zhang, K.Q.; Yin, X.B.; Li, Q. Damage of EPS and cell structures and improvement of high-solid anaerobic digestion of sewage sludge by combined (Ca(OH)(2) + multiple-transducer ultrasonic) pretreatment. Rsc Adv. 2017, 7, 22706–22714. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, A.; Hendriks, A.; van Lier, J.B.; de Kreuk, M. Pre-treatments to enhance the biodegradability of waste activated sludge: Elucidating the rate limiting step. Biotechnol. Adv. 2018, 36, 1434–1469. [Google Scholar] [CrossRef] [Green Version]
- Perez-Elvira, S.I.; Sapkaite, I.; Fdz-Polanco, F. Evaluation of thermal steam-explosion key operation factors to optimize biogas production from biological sludge. Water Sci. Technol. 2015, 72, 937–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapkaite, I.; Barrado, E.; Fdz-Polanco, F.; Perez-Elvira, S.I. Optimization of a thermal hydrolysis process for sludge pre-treatment. J. Environ. Manag. 2017, 192, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Donoso-Bravo, A.; Olivares, D.; Lesty, Y.; Bossche, H.V. Exploitation of the ADM1 in a XXI century wastewater resource recovery facility (WRRF): The case of codigestion and thermal hydrolysis. Water Res. 2020, 175, 115654. [Google Scholar] [CrossRef]
- Barber, W.P.F. Thermal hydrolysis for sewage treatment: A critical review. Water Res. 2016, 104, 53–71. [Google Scholar] [CrossRef]
- Zhang, D.; Feng, Y.M.; Huang, H.B.; Khunjar, W.; Wang, Z.W. Recalcitrant dissolved organic nitrogen formation in thermal hydrolysis pretreatment of municipal sludge. Environ. Int. 2020, 138, 105629. [Google Scholar] [CrossRef]
- Arimi, M.M.; Zhang, Y.J.; Gotz, G.; Geissen, S.U. Treatment of melanoidin wastewater by anaerobic digestion and coagulation. Environ. Technol. 2015, 36, 2410–2418. [Google Scholar] [CrossRef]
- Lu, D.; Sun, F.Q.; Zhou, Y. Insights into anaerobic transformation of key dissolved organic matters produced by thermal hydrolysis sludge pretreatment. Bioresour. Technol. 2018, 266, 60–67. [Google Scholar] [CrossRef]
- Cui, R.R.; Gong, H.; Xu, Y.; Xu, E.H.; Yang, D.H.; Gu, G.W.; Dai, X.H. One-stage partial nitritation-anammox treatment of reject water from high-solid-sludge anaerobic digestion with thermal hydrolysis pretreatment: Inhibition and system recovery. J. Environ. Chem. Eng. 2022, 10, 107958. [Google Scholar] [CrossRef]
- Dwyer, J.; Starrenbury, D.; Tait, S.; Barr, K.; Batstone, D.J.; Lant, P. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability. Water Res. 2008, 42, 4699–4709. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.W.; Xu, H.; Lu, D.; Zhou, Y. Effects of sludge thermal hydrolysis pretreatment on anaerobic digestion and downstream processes: Mechanism, challenges and solutions. Bioresour. Technol. 2022, 344, 126248. [Google Scholar] [CrossRef] [PubMed]
- Uthirakrishnan, U.; Sharmila, V.G.; Merrylin, J.; Kumar, S.A.A.; Dharmadhas, J.S.; Varjani, S.; Banu, J.R. Current advances and future outlook on pretreatment techniques to enhance biosolids disintegration and anaerobic digestion: A critical review. Chemosphere 2022, 288, 1323553. [Google Scholar] [CrossRef]
- Tamilarasan, K.; Arulazhagan, P.; Rani, R.U.; Kaliappan, S.; Banu, J.R. Synergistic impact of sonic-tenside on biomass disintegration potential: Acidogenic and methane potential studies, kinetics and cost analytics. Bioresour. Technol. 2018, 253, 256–261. [Google Scholar] [CrossRef]
- Montalvo, S.; Ojeda, F.; Huilinir, C.; Guerrero, L.; Borja, R.; Castillo, A. Performance evaluation of micro-aerobic hydrolysis of mixed sludge: Optimum aeration and effect on its biochemical methane potential. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2016, 51, 1269–1277. [Google Scholar] [CrossRef] [Green Version]
- Rashvanlou, R.B.; Rezaee, A.; Farzadkia, M.; Gholami, M.; Kermani, M. Effect of micro-aerobic process on improvement of anaerobic digestion sewage sludge treatment: Flow cytometry and ATP assessment. Rsc Adv. 2020, 10, 35718–35728. [Google Scholar] [CrossRef]
- Xu, S.Y.; Selvam, A.; Wong, J.W.C. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste. Waste Manag. 2014, 34, 363–369. [Google Scholar] [CrossRef]
- Ruan, D.N.; Zhou, Z.; Pang, H.J.; Yao, J.; Chen, G.; Qiu, Z. Enhancing methane production of anaerobic sludge digestion by microaeration: Enzyme activity stimulation, semi-continuous reactor validation and microbial community analysis. Bioresour. Technol. 2019, 289, 121643. [Google Scholar] [CrossRef] [PubMed]
- Cano, R.; Perez-Elvira, S.I.; Fdz-Polanco, F. Energy feasibility study of sludge pretreatments: A review. Appl. Energy 2015, 149, 176–185. [Google Scholar] [CrossRef]
- Mainardis, M.; Buttazzoni, M.; Gievers, F.; Vance, C.; Magnolo, F.; Murphy, F.; Goi, D. Life cycle assessment of sewage sludge pretreatment for biogas production: From laboratory tests to full-scale applicability. J. Clean. Prod. 2021, 322, 129056. [Google Scholar] [CrossRef]
- Kalaiselvan, N.; Glivin, G.; Bakthavatsalam, A.K.; Mariappan, V.; Premalatha, M.; Raveendran, P.S.; Jayaraj, S.; Sekhar, S.J. A waste to energy technology for Enrichment of biomethane generation: A review on operating parameters, types of biodigesters, solar assisted heating systems, socio economic benefits and challenges. Chemosphere 2022, 293, 133486. [Google Scholar] [CrossRef]
- Nguyen, D.; Khanal, S.K. A little breath of fresh air into an anaerobic system: How microaeration facilitates anaerobic digestion process. Biotechnol. Adv. 2018, 36, 1971–1983. [Google Scholar] [CrossRef]
- Koch, K. Calculating the degree of degradation of the volatile solids in continuously operated bioreactors. Biomass Bioenergy 2015, 74, 79–83. [Google Scholar] [CrossRef]
- Association, A.P.H.; Association, A.W.W.; Federation, W.E. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Water Works Association: Denver, CO, USA, 2017. [Google Scholar]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Y.Q.; Zheng, L.K.; Wang, Z.W.; Dai, X.H. Perspective on enhancing the anaerobic digestion of waste activated sludge. J. Hazard. Mater. 2020, 389, 121847. [Google Scholar] [CrossRef]
- Montalvo, S.; Vielma, S.; Borja, R.; Huilinir, C.; Guerrero, L. Increase in biogas production in anaerobic sludge digestion by combining aerobic hydrolysis and addition of metallic wastes. Renew. Energy 2018, 123, 541–548. [Google Scholar] [CrossRef]
- Yellezuome, D.; Zhu, X.P.; Wang, Z.Z.; Liu, R.H. Mitigation of ammonia inhibition in anaerobic digestion of nitrogen-rich substrates for biogas production by ammonia stripping: A review. Renew. Sustain. Energy Rev. 2022, 157, 112043. [Google Scholar] [CrossRef]
- Higgins, M.J.; Beightol, S.; Mandahar, U.; Suzuki, R.; Xiao, S.; Lu, H.W.; Le, T.; Mah, J.; Pathak, B.; DeClippeleir, H.; et al. Pretreatment of a primary and secondary sludge blend at different thermal hydrolysis temperatures: Impacts on anaerobic digestion, dewatering and filtrate characteristics. Water Res. 2017, 122, 557–569. [Google Scholar] [CrossRef]
- Perez-Elvira, S.I.; Sapkaite, I.; Fdz-Polanco, F. Separate Digestion of Liquid and Solid Fractions of Thermally Pretreated Secondary Sludge Assessment and Global Evaluation. Braz. J. Chem. Eng. 2016, 33, 699–704. [Google Scholar] [CrossRef]
- Montalvo, S.; Huilinir, C.; Ojeda, F.; Castillo, A.; Lillo, L.; Guerrero, L. Microaerobic pretreatment of sewage sludge: Effect of air flow rate, pretreatment time and temperature on the aerobic process and methane generation. Int. Biodeterior. Biodegrad. 2016, 110, 1–7. [Google Scholar] [CrossRef]
- Bougrier, C.; Delgenes, J.P.; Carrere, H. Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge. Biochem. Eng. J. 2007, 34, 20–27. [Google Scholar] [CrossRef]
- Ortega-Martinez, E.; Chamy, R.; Jeison, D. Thermal pre-treatment: Getting some insights on the formation of recalcitrant compounds and their effects on anaerobic digestion. J. Environ. Manag. 2021, 282, 111940. [Google Scholar] [CrossRef]
- Bougrier, C.; Delgenès, J.P.; Carrère, H. Combination of Thermal Treatments and Anaerobic Digestion to Reduce Sewage Sludge Quantity and Improve Biogas Yield. Process Saf. Environ. Prot. 2006, 84, 280–284. [Google Scholar] [CrossRef]
- Zhou, Z.; Ming, Q.; An, Y.; Ruan, D.N.; Chen, G.; Wei, H.J.; Wang, M.Y.; Wu, Z.C. Performance and microbial community analysis of anaerobic sludge digestion enhanced by in-situ microaeration. J. Water Process Eng. 2021, 42, 102171. [Google Scholar] [CrossRef]
- Ortega-Martinez, E.; Sapkaite, I.; Fdz-Polanco, F.; Donoso-Bravo, A. From pre-treatment toward inter-treatment. Getting some clues from sewage sludge biomethanation. Bioresour. Technol. 2016, 212, 227–235. [Google Scholar] [CrossRef]
- Oosterhuis, M.; Ringoot, D.; Hendriks, A.; Roeleveld, P. Thermal hydrolysis of waste activated sludge at Hengelo Wastewater Treatment Plant, The Netherlands. Water Sci. Technol. 2014, 70, 1–7. [Google Scholar] [CrossRef]
- Song, C.; Li, W.W.; Cai, F.F.; Liu, G.Q.; Chen, C. Anaerobic and Microaerobic Pretreatment for Improving Methane Production From Paper Waste in Anaerobic Digestion. Front. Microbiol. 2021, 12, 688290. [Google Scholar] [CrossRef]
- Garcia-Cascallana, J.; Barrios, X.G.; Martinez, E.J. Thermal Hydrolysis of Sewage Sludge: A Case Study of a WWTP in Burgos, Spain. Appl. Sci. 2021, 11, 964. [Google Scholar] [CrossRef]
- Muller, J.A.; Winter, A.; Strunkmann, G. Investigation and assessment of sludge pre-treatment processes. Water Sci. Technol. 2004, 49, 97–104. [Google Scholar] [CrossRef]
- Perez-Elvira, S.I.; Fdz-Polanco, F. Continuous thermal hydrolysis and anaerobic digestion of sludge. Energy integration study. Water Sci. Technol. 2012, 65, 1839–1846. [Google Scholar] [CrossRef]
TS g L−1 | TSS g L−1 | VSS g L−1 | sCOD gO2 L−1 | Soluble Proteins mg L−1 | ||
---|---|---|---|---|---|---|
R1 | Inoculum (LA1) | 28.3 | 25.4 | 17.5 | 3.0 | - |
LM1 (40%WAS, 60% Primary sludge) | 42.6 | 38.2 | 30.2 | 11.7 | 48.8 | |
R2 | Inoculum (LA2) | 33.7 | 29.7 | 20.1 | 8.1 | - |
LM2 (40% Thermally pre-treated WAS, 60% Primary sludge) | 49.7 | 43.8 | 33.3 | 28.5 | 342.5 | |
R3 | Inoculum (LA1) | 28.3 | 25.4 | 17.5 | 3.0 | - |
LM3 (40% Micro-aerobically pre-treated WAS, 60% Primary sludge) | 38.2 | 36.4 | 29.0 | 22.5 | 403.6 |
Parameters | Waste Activated Sludge | Micro-Aerobically Pre-Treated Waste Activated Sludge | Increase or Decrease (%) |
---|---|---|---|
TS g L−1 | 40.52 | 35.67 | −11.97 |
VS g L−1 | 34.57 | 29.48 | −14.74 |
VSS g L−1 | 33.01 | 28.32 | −14.21 |
Ashes g L−1 | 5.95 | 6.19 | +4.12 |
tCOD gO2 L−1 | 113.07 | 105.49 | −6.71 |
sCOD gO2 L−1 | 21.35 | 29.64 | +38.80 |
Soluble proteins mg L−1 | 343.23 | 451.70 | +31.60 |
TAN g L−1 | 1.34 | 1.73 | +29.38 |
sCOD Obtained at the Outlet (g L−1) | |||
---|---|---|---|
HRT 20 Days | HRT 15 Days | HRT 10 Days | |
R1 | 7.99 ± 0.36 | 8.19 ± 0.45 | 9.41 ± 0.57 |
R2 | 11.72 ± 0.70 | 12.28 ± 0.39 | 18.18 ± 0.41 |
R3 | 6.2 ± 0.62 | 7.87 ± 0.54 | 13.17 ± 0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo, A.; Ortega-Martínez, E.; Pagés-Díaz, J.; Montalvo, S.; Huiliñir, C. Micro-Aerobic Pre-Treatment vs. Thermal Pre-Treatment of Waste Activated Sludge for Its Subsequent Anaerobic Digestion in Semi-Continuous Digesters: A Comparative Study. Fermentation 2022, 8, 565. https://doi.org/10.3390/fermentation8100565
Castillo A, Ortega-Martínez E, Pagés-Díaz J, Montalvo S, Huiliñir C. Micro-Aerobic Pre-Treatment vs. Thermal Pre-Treatment of Waste Activated Sludge for Its Subsequent Anaerobic Digestion in Semi-Continuous Digesters: A Comparative Study. Fermentation. 2022; 8(10):565. https://doi.org/10.3390/fermentation8100565
Chicago/Turabian StyleCastillo, Alejandra, Eduardo Ortega-Martínez, Jhosané Pagés-Díaz, Silvio Montalvo, and Cesar Huiliñir. 2022. "Micro-Aerobic Pre-Treatment vs. Thermal Pre-Treatment of Waste Activated Sludge for Its Subsequent Anaerobic Digestion in Semi-Continuous Digesters: A Comparative Study" Fermentation 8, no. 10: 565. https://doi.org/10.3390/fermentation8100565
APA StyleCastillo, A., Ortega-Martínez, E., Pagés-Díaz, J., Montalvo, S., & Huiliñir, C. (2022). Micro-Aerobic Pre-Treatment vs. Thermal Pre-Treatment of Waste Activated Sludge for Its Subsequent Anaerobic Digestion in Semi-Continuous Digesters: A Comparative Study. Fermentation, 8(10), 565. https://doi.org/10.3390/fermentation8100565