Characterization and Viability Prediction of Commercial Probiotic Supplements under Temperature and Concentration Conditioning Factors by NIR Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Microbiological Analysis
2.2.1. Preparation of Active Bacterial Culture
2.2.2. Enumeration of Bacteria
2.3. Near-Infrared Spectroscopic Analysis
2.4. Data Analysis
3. Results and Discussion
3.1. Results of the Microbiological Analysis
3.2. Near-Infrared Spectroscopy Results
3.2.1. NIR Spectra of Samples According to the Temperature Level
3.2.2. Discrimination of Probiotic Samples at Room Temperature
3.2.3. Discrimination of Probiotic Samples According to the Concentration Level
3.2.4. Discrimination of the Probiotic Samples According to the Temperature Level
3.2.5. PLSR for the Prediction of the Viability of Probiotics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO/WHO. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food; WHO: Toronto, ON, Canada, 2002. [Google Scholar]
- Parker, E.A.; Roy, T.; Christopher, A.; Wieland, S. Probiotics and Gastrointestinal Conditions: An Overview of Evidence from the Cochrane Collaboration. Nutrition 2018, 45, 125–134. [Google Scholar] [CrossRef] [PubMed]
- De Vos, W.M.; De Vos, E.A.J. Role of the Intestinal Microbiome in Health and Disease: From Correlation to Causation. Nutr. Rev. 2012, 70, S45–S56. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, E.F.; Cotter, P.D.; Stanton, C.; Ross, R.P.; Hill, C. Production of Bioactive Substances by Intestinal Bacteria as a Basis for Explaining Probiotic Mechanisms: Bacteriocins and Conjugated Linoleic Acid. Int. J. Food Microbiol. 2012, 152, 189–205. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Shah, C.; Mokashe, N.; Chavan, R.; Yadav, H.; Prajapati, J. Probiotics as Potential Antioxidants: A Systematic Review. J. Agric. Food Chem 2015, 63, 3615–3626. [Google Scholar] [CrossRef]
- Wescombe, P.A.; Heng, N.C.K.; Burton, J.P.; Chilcott, C.N.; Tagg, J.R. Streptococcal Bacteriocins and the Case for Streptococcus Salivarius as Model Oral Probiotics. Future Microbiol. 2009, 4, 819–835. [Google Scholar] [CrossRef] [Green Version]
- Vanderhoof, J.A. Probiotics and Intestinal Inflammatory Disorders in Infants and ChildrenNo Title. J. Pediatr. Gastroenterol. Nutr. 2000, 30, S34–S38. [Google Scholar] [CrossRef]
- Menezes, A.; Lacerda, C.; Ribeiro, D.; Freitas, R. Combination of Probiotic Yeast and Lactic Acid Bacteria as Starter Culture to Produce Maize-Based Beverages. Food Res. Int. 2018, 111, 187–197. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A Taxonomic Note on the Genus Lactobacillus: Description of 23 Novel Genera, Emended Description of the Genus Lactobacillus Beijerinck 1901, and Union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Cissé, H.; Kagambèga, B.; Sawadogo, A.; Tankoano, A.; Sangaré, G.; Traoré, Y.; Irène, I.; Ouoba, L.; Savadogo, A. Molecular Characterization of Bacillus, Lactic Acid Bacteria and Yeast as Potential Probiotic Isolated from Fermented Food. Sci. African 2019, 6, 1–13. [Google Scholar] [CrossRef]
- Juliana, A.; Colasacco, C.; Emmanouil, E.; Kohlhepp, S.; Harriott, O. Strain-Level Diversity of Commercial Probiotic Isolates of Bacillus, Lactobacillus, and Saccharomyces Species Illustrated by Molecular Identification and Phenotypic Profiling. PLoS ONE 2019, 14, 1–19. [Google Scholar] [CrossRef]
- Fenster, K.; Freeburg, B.; Hollard, C.; Wong, C.; Laursen, R.R.; Ouwehand, A.C. The Production and Delivery of Probiotics: A Review of a Practical Approach. Microorganisms 2019, 7, 83. [Google Scholar] [CrossRef] [Green Version]
- Nagashima, A.I.; Pansiera, P.E.; Baracat, M.M.; Gómez, J. Development of Effervescent Products, in Powder and Tablet Form, Supplemented with Probiotics Lactobacillus Acidophilus and Saccharomyces Boulardii. Food Sci. Technol. 2013, 33, 605–611. [Google Scholar] [CrossRef] [Green Version]
- Kesavelu, D.; Anusha, R.; Iddya, K.; Indrani, K. Composition and Laboratory Correlation of Commercial Probiotics in India. Cureus 2020, 12, e11334. [Google Scholar] [CrossRef] [PubMed]
- Astashkina, A.P.; Khudyakova, L.I.; Kolbysheva, Y.V. Microbiological Quality Control of Probiotic Products. Procedia Chem. 2014, 10, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.; Shukla, P. An Overview of Advanced Technologies for Selection of Probiotics and Their Expediency: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3233–3242. [Google Scholar] [CrossRef]
- Angelakis, E.; Million, M.; Henry, M.; Raoult, D. Rapid and Accurate Bacterial Identification in Probiotics and Yoghurts by MALDI-TOF Mass Spectrometry. J. Food Sci. 2011, 76, 568–572. [Google Scholar] [CrossRef]
- Horká, M.; Karásek, P.; Šalplachta, J.; Růžička, F.; Vykydalová, M.; Kubesová, A.; Dráb, V.; Roth, M.; Šlais, K. Capillary Isoelectric Focusing of Probiotic Bacteria from Cow’s Milk in Tapered Fused Silica Capillary with off-Line Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Identification. Anal. Chim. Acta 2013, 788, 193–199. [Google Scholar] [CrossRef]
- Zielińska, D.; Oldak, A.; Rzepkowska, A.; Zieliński, K. Enumeration and Identification of Probiotic Bacteria in Food Matrices. Adv. Biotechnol. Food Ind. 2018, 14, 167–196. [Google Scholar] [CrossRef]
- Maiti, K.S.; Apolonski, A. Monitoring the Reaction of the Body State to Antibiotic Treatment against Helicobacter Pylori via Infrared Spectroscopy: A Case Study. Molecules 2021, 26, 3474. [Google Scholar] [CrossRef]
- Corcoran, B.M.; Stanton, C.; Fitzgerald, G.; Ross, R.P. Life Under Stress: The Probiotic Stress Response and How It May Be Manipulated. Curr. Pharm. Des. 2008, 14, 1382–1399. [Google Scholar] [CrossRef]
- Suokko, A.; Savijoki, K.; Malinen, E.; Palva, A.; Varmanen, P. Characterization of a Mobile ClpL Gene from Lactobacillus Rhamnosus. Appl. Environ. Microbiol. 2005, 71, 2061–2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desmond, C.; Fitzgerald, G.F.; Stanton, C.; Ross, R.P. Improved Stress Tolerance of GroESL-Overproducing Lactococcus Lactis and Probiotic Lactobacillus Paracasei NFBC 338. Appl. Environ. Microbiol. 2004, 70, 5929–5936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bove, P.; Russo, P.; Capozzi, V.; Gallone, A.; Spano, G.; Fiocco, D. Lactobacillus Plantarum Passage through an Oro-Gastro-Intestinal Tract Simulator: Carrier Matrix Effect and Transcriptional Analysis of Genes Associated to Stress and Probiosis. Microbiol. Res. 2013, 168, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Fu, N.; Ndiaye, H.; Woo, M.W.; Jeantet, R.; Chen, X.D. Thermotolerance, Survival, and Stability of Lactic Acid Bacteria After Spray Drying as Affected by the Increase of Growth Temperature. Food Bioprocess Technol. 2021, 14, 120–132. [Google Scholar] [CrossRef]
- Pupa, P.; Apiwatsiri, P.; Sirichokchatchawan, W.; Pirarat, N. The Efficacy of Three Double - Microencapsulation Methods for Preservation of Probiotic Bacteria. Nature 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Liu, X.; Champagne, C.P.; Lee, B.H.; Boye, J.I.; Casgrain, M. Thermostability of Probiotics and Their Alpha-Galactosidases and the Potential for Bean Products. Biotechnol. Res. Int. 2014, 2014, 21. [Google Scholar] [CrossRef]
- Fiorentini, Â.M.; Ballus, C.A.; De Oliveira, M.L.; Cunha, M.F.; Klajn, V.M. The Influence of Different Combinations of Probiotic Bacteria and Fermentation Temperatures on the Microbiological and Physicochemical Characteristics of Fermented Lactic Beverages Containing Soybean Hydrosoluble Extract during Refrigerated Storage. Ciência e Tecnol. Aliment. 2011, 31, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Luangthongkam, P.; Blinco, J.; Dart, P.; Callaghan, M.; Speight, R. Food and Bioproducts Processing Comparison of Spray-Drying and Freeze-Drying for Inoculum Production of the Probiotic Bacillus Amyloliquefaciens Strain H57. Food Bioprod. Process. 2021, 130, 121–131. [Google Scholar] [CrossRef]
- Slavchev, A.; Kovacs, Z.; Koshiba, H.; Nagai, A.; Bázár, G.; Krastanov, A.; Kubota, Y.; Tsenkova, R. Monitoring of Water Spectral Pattern Reveals Differences in Probiotics Growth When Used for Rapid Bacteria Selection. PLoS ONE 2015, 10, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Slavchev, A.; Kovacs, Z.; Koshiba, H.; Bazar, G.; Pollner, B.; Krastanov, A.; Tsenkova, R. Monitoring of Water Spectral Patterns of Lactobacilli Development as a Tool for Rapid Selection of Probiotic Candidates. J. Near Infrared Spectrosc. 2017, 25, 423–431. [Google Scholar] [CrossRef]
- Muncan, J.; Tei, K.; Tsenkova, R. Real-Time Monitoring of Yogurt Fermentation Process by Aquaphotomics near-Infrared Spectroscopy. Sensors 2021, 21, 177. [Google Scholar] [CrossRef]
- Kotrri, G.; Fusch, G.; Kwan, C.; Choi, D.; Choi, A.; Al Kafi, N.; Rochow, N.; Fusch, C. Validation of Correction Algorithms for Near-IR Analysis of Human Milk in an Independent Sample Set—Effect of Pasteurization. Nutrients 2016, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Esquerre, C.; Downey, G.; Henihan, L.; O’Callaghan, D.; O’Donnell, C. Assessment of Infant Formula Quality and Composition Using Vis-NIR, MIR and Raman Process Analytical Technologies. Talanta 2018, 183, 320–328. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Chen, Y.; Zhang, Y.; Shi, T.; Wang, J. The Influence of Spectral Pretreatment on the Selection of Representative Calibration Samples for Soil Organic Matter Estimation Using Vis-NIR Reflectance Spectroscopy. Remote Sens. 2019, 11, 450. [Google Scholar] [CrossRef] [Green Version]
- Rinnan, A.; Berg, F.; Engelsen, S.B. Review of the Most Common Pre-Processing Techniques for near-Infrared Spectra. Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Copenhagen, Denmark, 2020. [Google Scholar]
- Prasad, J.; Mcjarrow, P.; Gopal, P. Heat and Osmotic Stress Responses of Probiotic Lactobacillus Rhamnosus HN001 ( DR20 ) in Relation to Viability after Drying. Appl. Environ. Microbiol. 2003, 69, 917–925. [Google Scholar] [CrossRef] [Green Version]
- Franz, C.M.A.P.; Von Holy, A. Thermotolerance of Meat Spoilage Lactic Acid Bacteria and Their Inactivation in Vacuum-Packaged Vienna Sausages. Int. J. Food Microbiol. 1996, 1605, 59–73. [Google Scholar] [CrossRef]
- Teoh, P.L.; Mirhosseini, S.H.; Mustafa, S.; Yazid, M.; Manap, A. Tolerance of Free and Encapsulated Probiotics towards Heat Treatment and High Sodium Concentration Tolerance of Free and Encapsulated Probiotics towards Heat Treatment and High Sodium Concentration. J. Food Agric. Environ. 2011, 9, 69–73. [Google Scholar] [CrossRef]
- Tsenkova, R.; Muncan, J.; Pollner, B.; Kovacs, Z. Essentials of Aquaphotomics and Its Chemometrics Approaches. Front. Chem. 2018, 6, 1–25. [Google Scholar] [CrossRef]
- Ozaki, Y.; Genkawa, T.; Futami, Y. Near-infrared spectroscopy. In Encyclopedia of Spectroscopy and Spectrometry; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; pp. 40–49. ISBN 9780128032244. [Google Scholar]
- Siesler, H.W.; Ozaki, Y.; Kawata, S.; Heise, H.M. Near-Infrared Spectroscopy: Principles, Instruments, Applications; WILEY-VCH Verlag GmbH: Weinheim, Germany, 2002; ISBN 3527301496. [Google Scholar]
- Muncan, J.; Tsenkova, R. Aquaphotomics—From Innovative Knowledge to Integrative Platform in Science and Technology. Molecules 2019, 24, 2742. [Google Scholar] [CrossRef] [Green Version]
- Workman, J.J. The Handbook of Organic Compounds, Three-Volume Set, 1st ed.; Academic Press Inc: San Diego, CA, USA, 2000; ISBN 9780127635606. [Google Scholar]
- Izutsu, K.; Fujimaki, Y.; Kuwabara, A.; Hiyama, Y.; Yomota, C.; Aoyagi, N. Near-Infrared Analysis of Protein Secondary Structure in Aqueous Solutions and Freeze-Dried Solids. J. Pharma. Sc. 2006, 95, 781–789. [Google Scholar] [CrossRef]
- Maeda, H.; Ozaki, Y. Near Infrared Spectroscopy and Chemometrics Studies of Temperature- Dependent Spectral Variations of Water: Relationship between Spectral Changes and Hydrogen Bonds. J. Near Infrared Spectrosc. 1995, 3, 191–201. [Google Scholar] [CrossRef]
- Wei, D.; Salahub, D.R. Hydrated Proton Clusters: Ab Initio Molecular Dynamics Simulation and Simulated Annealing. J. Chem. Phys. 1997, 106, 6086–6094. [Google Scholar] [CrossRef]
- Mizuse, K.; Fujii, A. Tuning of the Internal Energy and Isomer Distribution in Small Protonated Water Clusters H+(H2O)4−8: An Application of the Inert Gas Messenger Technique. J. Phys. Chem. A 2012, 116, 4868–4877. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Tran, C.D. Investigation of Solid-Phase Peptide Synthesis by the Near-Infrared Multispectral Imaging Technique: A Detection Method for Combinatorial Chemistry. Anal. Chem. 1999, 71, 2255–2261. [Google Scholar] [CrossRef] [PubMed]
T3 (90 °C) | Probiotic N | Probiotic A | Probiotic P | ||||||
---|---|---|---|---|---|---|---|---|---|
Average Recognition (100%) | Average Recognition (100%) | Average Recognition (100%) | |||||||
% | C1 | C2 | C3 | C1 | C2 | C3 | C1 | C2 | C3 |
C1 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 |
C2 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 |
C3 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 |
Average Prediction (93.52%) | Average Prediction (95.06%) | Average Prediction (90.12%) | |||||||
% | C1 | C2 | C3 | C1 | C2 | C3 | C1 | C2 | C3 |
C1 | 91.67 | 11.11 | 0 | 96.30 | 7.41 | 0 | 100 | 11.11 | 11.11 |
C2 | 8.33 | 88.89 | 0 | 3.70 | 88.89 | 0 | 0 | 81.48 | 0 |
C3 | 0 | 0 | 100 | 0 | 3.70 | 100 | 0 | 7.41 | 88.89 |
T1 (25 °C) | Probiotic N | Probiotic A | Probiotic P | ||||||
Average Recognition (100%) | Average Recognition (95.68%) | Average Recognition (94.45%) | |||||||
% | C1 | C2 | C3 | C1 | C2 | C3 | C1 | C2 | C3 |
C1 | 100 | 0 | 0 | 100 | 5.56 | 0 | 96.30 | 3.70 | 0 |
C2 | 0 | 100 | 0 | 0 | 88.89 | 1.85 | 3.70 | 92.59 | 5.56 |
C3 | 0 | 0 | 100 | 0 | 5.56 | 98.15 | 0 | 3.70 | 94.44 |
Average Prediction (93.83%) | Average Prediction (60.65%) | Average Prediction (60.50%) | |||||||
% | C1 | C2 | C3 | C1 | C2 | C3 | C1 | C2 | C3 |
C1 | 88.89 | 7.41 | 0 | 70.83 | 37.04 | 0 | 62.96 | 14.81 | 22.22 |
C2 | 11.11 | 92.59 | 0 | 16.67 | 29.63 | 18.52 | 11.11 | 51.85 | 11.11 |
C3 | 0 | 0 | 100 | 12.50 | 33.33 | 81.48 | 25.93 | 33.33 | 66.67 |
Probiotic N | Probiotic A | Probiotic P | |||||||
---|---|---|---|---|---|---|---|---|---|
Average Recognition (100%) | Average Recognition (100%) | Average Recognition (100%) | |||||||
% | T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 |
T1 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 |
T2 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 |
T3 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 |
Average Prediction (94.60%) | Average Prediction (100%) | Average Prediction (92.59%) | |||||||
% | T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 |
T1 | 96.30 | 12.50 | 0 | 100 | 0 | 0 | 77.78 | 0 | 0 |
T2 | 0 | 87.50 | 0 | 0 | 100 | 0 | 22.22 | 100 | 0 |
T3 | 3.70 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguinaga Bósquez, J.P.; Oǧuz, E.; Cebeci, A.; Majadi, M.; Kiskó, G.; Gillay, Z.; Kovacs, Z. Characterization and Viability Prediction of Commercial Probiotic Supplements under Temperature and Concentration Conditioning Factors by NIR Spectroscopy. Fermentation 2022, 8, 66. https://doi.org/10.3390/fermentation8020066
Aguinaga Bósquez JP, Oǧuz E, Cebeci A, Majadi M, Kiskó G, Gillay Z, Kovacs Z. Characterization and Viability Prediction of Commercial Probiotic Supplements under Temperature and Concentration Conditioning Factors by NIR Spectroscopy. Fermentation. 2022; 8(2):66. https://doi.org/10.3390/fermentation8020066
Chicago/Turabian StyleAguinaga Bósquez, Juan Pablo, Esma Oǧuz, Aybike Cebeci, Mariem Majadi, Gabriella Kiskó, Zoltan Gillay, and Zoltan Kovacs. 2022. "Characterization and Viability Prediction of Commercial Probiotic Supplements under Temperature and Concentration Conditioning Factors by NIR Spectroscopy" Fermentation 8, no. 2: 66. https://doi.org/10.3390/fermentation8020066
APA StyleAguinaga Bósquez, J. P., Oǧuz, E., Cebeci, A., Majadi, M., Kiskó, G., Gillay, Z., & Kovacs, Z. (2022). Characterization and Viability Prediction of Commercial Probiotic Supplements under Temperature and Concentration Conditioning Factors by NIR Spectroscopy. Fermentation, 8(2), 66. https://doi.org/10.3390/fermentation8020066