Effect of Ammoniated and/or Basidiomycete White-Rot Fungi Treatment on Rice Straw Proximate Composition, Cell Wall Component, and In Vitro Rumen Fermentation Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basidiomycete White-Rot Fungi
2.2. Grain Spawn Preparation
2.3. Rice Straw Collection and Preparation
2.4. Solid-State Fermentation
2.5. Experimental Design
2.6. Proximate and Cell Wall Composition Analysis
2.7. In Vitro Fermentation
2.8. In Vitro Gas, Volatile Fatty Acids, and Dry Matter Digestibility
2.9. Statistical Analysis
3. Results
3.1. Subjective Observations
3.2. Proximate Composition
3.3. Cell Wall Content
3.4. In Vitro Fermentation Characteristics
3.5. In Vitro Gas Volume
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karimi, K.; Emtiazi, G.; Taherzadeh, M. Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microb. Technol. 2006, 40, 138–144. [Google Scholar] [CrossRef]
- Quayle, W.C. Alternative Management of Rice Straw. 2016. Available online: http://www.agrifutures.com.au/related-projects/alternative-management-of-rice-straw/ (accessed on 2 March 2020).
- Van Soest, P. Rice straw, the role of silica and treatments to improve quality. Anim. Feed Sci. Technol. 2006, 130, 137–171. [Google Scholar] [CrossRef]
- Subepang, S.; Suzuki, T.; Phonbumrung, T.; Sommart, K. Enteric methane emissions, energy partitioning, and energetic efficiency of zebu beef cattle fed total mixed ration silage. Asian-Australas. J. Anim. Sci. 2019, 32, 548. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Lu, C.; Ciais, P.; Michalak, A.M.; Canadell, J.G.; Saikawa, E.; Huntzinger, D.N.; Gurney, K.R.; Sitch, S.; Zhang, B. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 2016, 531, 225–228. [Google Scholar] [CrossRef] [Green Version]
- Sarnklong, C.; Cone, J.; Pellikaan, W.; Hendriks, W. Utilization of rice straw and different treatments to improve its feed value for ruminants. Asian-Australas. J. Anim. Sci. 2010, 23, 680–692. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, X.; Khan, M.Z.; Xiao, J.; Liu, S.; Wang, J.; He, Z.; Li, C.; Cao, Z. The Impact of Ammoniation Treatment on the Chemical Composition and In Vitro Digestibility of Rice Straw in Chinese Holsteins. Animals 2020, 10, 1854. [Google Scholar] [CrossRef]
- Yamashita, D.; Kimura, S.; Wada, M.; Samejima, M.; Takabe, K. Effect of ammonia treatment on white birch wood. Holzforschung 2018, 72, 31–36. [Google Scholar] [CrossRef]
- Brodeur, G.; Yau, E.; Badal, K.; Collier, J.; Ramachandran, K.; Ramakrishnan, S. Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Res. 2011, 2011, 787532. [Google Scholar] [CrossRef]
- Liu, J.; Liu, B.; Zhan, L.; Wang, P.; Ju, M.; Wu, W. Solid-state fermentation of ammoniated corn straw to animal feed by Pleurotus ostreatus Pl-5. BioResources 2017, 12, 1723–1736. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; Ji, D.; Dong, W.; Yuan, L.; Zhang, F.; Li, Y.; Zang, L. The Synergistic Action of Electro-Fenton and White-Rot Fungi in the Degradation of Lignin. Front. Bioeng. Biotechnol. 2020, 8, 99. [Google Scholar] [CrossRef]
- Nayan, N.; Sonnenberg, A.; Hendriks, W.; Cone, J. Screening of white-rot fungi for bioprocessing of wheat straw into ruminant feed. J. Appl. Microbiol. 2018, 125, 468–479. [Google Scholar] [CrossRef] [Green Version]
- Yoav, S.; Salame, T.M.; Feldman, D.; Levinson, D.; Ioelovich, M.; Morag, E.; Yarden, O.; Bayer, E.A.; Hadar, Y. Effects of cre1 modification in the white-rot fungus Pleurotus ostreatus PC9: Altering substrate preference during biological pretreatment. Biotechnol. Biofuels 2018, 11, 212. [Google Scholar] [CrossRef]
- Khonkhaeng, B.; Cherdthong, A. Pleurotus Ostreatus and Volvariella Volvacea Can Enhance the Quality of Purple Field Corn stover and Modulate Ruminal Fermentation and Feed Utilization in Tropical Beef cattle. Animals 2019, 9, 1084. [Google Scholar] [CrossRef] [Green Version]
- Khonkhaeng, B.; Cherdthong, A. Improving Nutritive Value of Purple Field Corn Residue and Rice Straw by Culturing with White-Rot Fungi. J. Fungi 2020, 6, 69. [Google Scholar] [CrossRef]
- Buthane, T.F.; Motsei, L.E.; Mnisi, C.M.; Ravhuhali, K.E. Effect of anhydrous ammonia gas treatment of low-quality cereal straws on chemical composition and in vitro ruminal fermentation. Range Manag. Agrofor. 2021, 42, 150–156. [Google Scholar]
- Muthia, D.; Laconi, E.; Ridla, M.; Jayanegara, A.; Ridwan, R.; Fidriyanto, R.; Abdelbagi, M.; Ramdani, H. Effect of combining autoclave and ammoniation on nutritional value and in vitro digestibility of rice straw. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Makassar, Indonesia, 3–4 November 2020; p. 012052. [Google Scholar]
- Oei, P. Mushroom Cultivation with Special Emphasis on Appropriate Techniques for Developing Countries; Tool Publications: Leiden, The Netherlands, 1996; pp. 3–5. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Van Soest, P.; Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Menke, K.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Filho, M.A.M.; Alves, A.A.; Vale, G.E.S.d.; Moreira, A.L.; Rogério, M.C.P. Nutritional value of hay from maize-crop stubble ammoniated with urea. Rev. Cienc. Agron. 2013, 44, 893–901. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.A.; Sadq, S.M.; Hassan, K.M. Evaluation of Fungal or Chemical Treatments for Barley Straw in Ruminants Feeding 1-Chemical composition, in vitro, in vivo digestibility and voluntary intake. JJAS 2012, 8, 232–241. [Google Scholar]
- Fazaeli, H. Nutritive value index of treated wheat straw with Pleurotus fungi. Biotechnol. Anim. Husb. 2007, 23, 169–180. [Google Scholar] [CrossRef]
- Isroi, I.; Millati, R.; Niklasson, C.; Cayanto, C.; Taherzadeh, M.J.; Lundquist, K. Biological treatment of Lignocelluloses with white-rot fungi and its applications. BioResources 2011, 6, 5224–5259. [Google Scholar] [CrossRef]
- Kutlu, H.R.; Görgülü, M.; Baykal, L.; Özcan, N.; Büyükalaca, S. Effects of Pleurotus florida inoculation or urea treatment on feeding value of wheat straw. Turk. J. Vet. Anim. Sci. 2000, 24, 169–176. [Google Scholar]
- Dean, D.; Adesogan, A.; Krueger, N.; Littell, R. Effects of treatment with ammonia or fibrolytic enzymes on chemical composition and ruminal degradability of hays produced from tropical grasses. Anim. Feed Sci. Technol. 2008, 145, 68–83. [Google Scholar] [CrossRef]
- Belewu, M.; Belewu, K. Cultivation of mushroom (Volvariella volvacea) on banana leaves. Afr. J. Biotechnol. 2005, 4, 1401–1403. [Google Scholar] [CrossRef]
- Akinfemi, A.; Ogunwole, O. Chemical composition and in vitro digestibility of rice straw treated with Pleurotus ostreatus, Pleurotus pulmonarius and Pleurotus tuber-regium. Slovak J. Anim. Sci. 2012, 45, 14–20. [Google Scholar]
- Akinfemi, A. Bioconversion of peanut husk with white rot fungi: Pleurotus ostreatus and Pleurotus pulmonarius. Livest. Res. Rural. Dev. 2010, 22, 1–11. [Google Scholar]
- Siddhant, C.; Singh, S. Recycling of spent oyster mushroom substrate to recover additional value. KUSET 2009, 5, 66–71. [Google Scholar]
- Ragunathan, R.; Gurusamy, R.; Palaniswamy, M.; Swaminathan, K. Cultivation of Pleurotus spp. on various agro-residues. Food Chem. 1996, 55, 139–144. [Google Scholar] [CrossRef]
- Chang, S.T.; Miles, P.G. Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact, 2nd ed.; CRC press: Boca Raton, FL, USA, 2004; p. 480. [Google Scholar]
- Wan, C.; Li, Y. Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility. Enzyme Microb. Technol. 2010, 47, 31–36. [Google Scholar] [CrossRef]
- Rouzbehan, Y.; Fazaeli, H.; Kiani, A. The chemical composition and digestibility of wheat straw treated with urea and white rot fungi. Proc. Br. Soc. Anim. Sci. 2001, 2001, 123. [Google Scholar] [CrossRef]
- Chenost, M.; Kayouli, C. Roughage Utilization in Warm Climates; FAO: Rome, Italy, 1997. [Google Scholar]
- Velázquez-De Lucio, B.S.; Hernandez-Dominguez, E.M.; Tellez-Jurado, A.; Ayala-Martinez, M.; Soto-Simental, S.; Cervantes, J.Á. Protein fraction, mineral profile, and chemical compositions of various fiber-based substrates degraded by Pleurotus ostreatus. BioResources 2020, 15, 8849–8861. [Google Scholar] [CrossRef]
- Ruggeri, B.; Sassi, G. Experimental sensitivity analysis of a trickle bed bioreactor for lignin peroxidases production by P. chrysosporium. Process Biochem. 2003, 38, 1669–1676. [Google Scholar] [CrossRef]
- Suksombat, W. Comparison of Different Alkali Treatment of Bagasse and Rice Straw. Asian-Australas. J. Anim. Sci. 2004, 17, 1430–1433. [Google Scholar] [CrossRef]
- Yalchi, T. Effects of urea and aqueous ammonia treatment on the nutritive value of triticale straw. J. Food Agric. Environ. 2010, 8, 69–72. [Google Scholar]
- Akinfemi, A.; Adu, O.; Adebiyi, O. Use of white rot-fungi in upgrading maize straw and, the resulting impact on chemical composition and in vitro digestibility. Livest. Res. Rural. Dev. 2009, 21, 162. [Google Scholar]
- Tuyena, V.; Phuong, H.; Cone, J.; Baars, J.; Sonnenberg, A.; Hendriks, W. Effect of fungal treatments of fibrous agricultural by-products on chemical composition and in vitro rumen fermentation and methane production. Bioresour. Technol. 2013, 129, 256–263. [Google Scholar] [CrossRef]
- Beccaccioli, M.; Reverberi, M.; Scala, V. Fungal lipids: Biosynthesis and signalling during plant-pathogen interaction. Front. Biosci. 2019, 24, 172–185. [Google Scholar] [CrossRef]
- Gutiérrez, A.; Del Rio, J.C.; Martínez-Íñigo, M.J.; Martínez, M.J.; Martínez, Á.T. Production of new unsaturated lipids during wood decay by ligninolytic basidiomycetes. Appl. Environ. Microbiol. 2002, 68, 1344–1350. [Google Scholar] [CrossRef] [Green Version]
- Fagone, P.; Jackowski, S. Membrane phospholipid synthesis and endoplasmic reticulum function. J. Lipid Res. 2009, 50, S311–S316. [Google Scholar] [CrossRef] [Green Version]
- Sancholle, M.; Lösel, D. Lipids in fungal biotechnology. In The Mycota II Genetics and Biotechnology; Kück, U., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 339–367. [Google Scholar]
- Sipponen, M.H.; Österberg, M. Aqueous Ammonia pre-treatment of wheat straw: Process optimization and broad spectrum dye adsorption on nitrogen-containing lignin. Front. Chem. 2019, 7, 545. [Google Scholar] [CrossRef] [Green Version]
- Oji, U.; Etim, H.; Okoye, F. Effects of urea and aqueous ammonia treatment on the composition and nutritive value of maize residues. Small Rumin. Res. 2007, 69, 232–236. [Google Scholar] [CrossRef]
- Zhao, C.; Shao, Q.; Chundawat, S.P. Recent advances on ammonia-based pretreatments of lignocellulosic biomass. Bioresour. Technol. 2020, 298, 122446. [Google Scholar] [CrossRef]
- Yuan, H.; Li, R.; Zhang, Y.; Li, X.; Liu, C.; Meng, Y.; Lin, M.; Yang, Z. Anaerobic digestion of ammonia-pretreated corn stover. Biosyst. Eng. 2015, 129, 142–148. [Google Scholar] [CrossRef]
- Chundawat, S.P.; Donohoe, B.S.; da Costa Sousa, L.; Elder, T.; Agarwal, U.P.; Lu, F.; Ralph, J.; Himmel, M.E.; Balan, V.; Dale, B.E. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ. Sci. 2011, 4, 973–984. [Google Scholar] [CrossRef]
- Kumar, R.; Mago, G.; Balan, V.; Wyman, C.E. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour. Technol. 2009, 100, 3948–3962. [Google Scholar] [CrossRef]
- Kim, T.H.; Kim, J.S.; Sunwoo, C.; Lee, Y. Pretreatment of corn stover by aqueous ammonia. Bioresour. Technol. 2003, 90, 39–47. [Google Scholar] [CrossRef]
- Gao, A.H.; Bule, M.V.; Laskar, D.D.; Chen, S. Structural and thermal characterization of wheat straw pretreated with aqueous ammonia soaking. J. Agric. Food Chem. 2012, 60, 8632–8639. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; El-Zawawy, W.K.; Abdel-Fattah, Y.R.; Soliman, N.A.; Agblevor, F.A. Comparison of alkaline pulping with steam explosion for glucose production from rice straw. Carbohydr. Polym. 2011, 83, 720–726. [Google Scholar] [CrossRef]
- Niu, D.; Zuo, S.; Jiang, D.; Tian, P.; Zheng, M.; Xu, C. Treatment using white rot fungi changed the chemical composition of wheat straw and enhanced digestion by rumen microbiota in vitro. Anim. Feed Sci. Technol. 2018, 237, 46–54. [Google Scholar] [CrossRef]
- Sharma, R.K.; Arora, D.S. Fungal degradation of lignocellulosic residues: An aspect of improved nutritive quality. Crit. Rev. Microbiol. 2015, 41, 52–60. [Google Scholar] [CrossRef]
- Zheng, M.; Zuo, S.; Niu, D.; Jiang, D.; Tao, Y.; Xu, C. Effect of Four Species of White Rot Fungi on the Chemical Composition and In Vitro Rumen Degradability of Naked Oat Straw. Waste Biomass Valorization 2021, 12, 435–443. [Google Scholar] [CrossRef]
- Taniguchi, M.; Suzuki, H.; Watanabe, D.; Sakai, K.; Hoshino, K.; Tanaka, T. Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J. Biosci. Bioeng. 2005, 100, 637–643. [Google Scholar] [CrossRef]
- Cui, T.; Yuan, B.; Guo, H.; Tian, H.; Wang, W.; Ma, Y.; Li, C.; Fei, Q. Enhanced lignin biodegradation by consortium of white rot fungi: Microbial synergistic effects and product mapping. Biotechnol. Biofuels 2021, 14, 162. [Google Scholar] [CrossRef]
- Okal, E.J.; Aslam, M.M.; Karanja, J.K.; Nyimbo, W. Mini review: Advances in understanding regulation of cellulase enzyme in white-rot basidiomycetes. Microb. Pathog. 2020, 147, 104410. [Google Scholar] [CrossRef]
- Sharma, R.K.; Arora, D.S. Production of lignocellulolytic enzymes and enhancement of in vitro digestibility during solid state fermentation of wheat straw by Phlebia floridensis. Bioresour. Technol. 2010, 101, 9248–9253. [Google Scholar] [CrossRef]
- Ding, C.; Wang, X.; Li, M. Evaluation of six white-rot fungal pretreatments on corn stover for the production of cellulolytic and ligninolytic enzymes, reducing sugars, and ethanol. Appl. Microbiol. Biotechnol. 2019, 103, 5641–5652. [Google Scholar] [CrossRef]
- Taylor, F.; Kim, T.H.; Abbas, C.A.; Hicks, K.B. Liquefaction, saccharification, and fermentation of ammoniated corn to ethanol. Biotechnol. Prog. 2008, 24, 1267–1271. [Google Scholar] [CrossRef]
- Vorlaphim, T.; Paengkoum, P.; Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Schonewille, J.T. Treatment of rice stubble with Pleurotus ostreatus and urea improves the growth performance in slow-growing goats. Animals 2021, 11, 1053. [Google Scholar] [CrossRef]
- Valente, T.N.P.; da Silva Lima, E.; dos Santos, W.B.R.; Cesario, A.S.; Tavares, C.J.; Italo, L.F.; de Freitas, M.A.M. Ruminal microorganism consideration and protein used in the metabolism of the ruminants: A review. Afr. J. Microbiol. Res. 2016, 10, 456–464. [Google Scholar] [CrossRef]
- Zoghlami, A.; Paës, G. Lignocellulosic biomass: Understanding recalcitrance and predicting hydrolysis. Front. Chem. 2019, 7, 874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakkila, P. Utilization of Residual Forest Biomass, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Itoh, H.; Terashima, Y.; Hayashizaki, A.J. Ammoniated rice straw and rice hulls and rumen microbial degradation investigated by scanning electron microscopy. Jpn. J. Zootech. Sci. 1981, 52, 671–679. [Google Scholar]
- Harbers, L.; Kreitner, G.; Davis Jr, G.; Rasmussen, M.; Corah, L. Ruminal digestion of ammonium hydroxide-treated wheat straw observed by scanning electron microscopy. J. Anim. Sci. 1982, 54, 1309–1319. [Google Scholar] [CrossRef]
- Goto, M.; Yokoe, Y.; Takabe, K.; Nisikawa, S.; Morita, O. Effects of gaseous ammonia on chemical and structural features of cell walls in spring barley straw. Anim. Feed Sci. Technol. 1993, 40, 207–221. [Google Scholar] [CrossRef]
- Isogai, A.; Usuda, M. X-ray-diffraction and solid-state C-13-NMR analyses of celluloses treated with ammonia. J. Japan Wood Soc. 1992, 38, 562–569. [Google Scholar]
- Wen, J.; Zhang, X.; Wang, M.; Wang, R.; Long, D.; Deng, J.; Tan, Z. Effects of pleurotus ostreatus treatment of wheat and rice straw on fiber composition and in vitro rumen fermentation characteristics. Chin. J. Anim. Nutr. 2019, 31, 892–899. [Google Scholar]
- Dashtban, M.; Schraft, H.; Syed, T.A.; Qin, W. Fungal biodegradation and enzymatic modification of lignin. Int. J. Biochem. Mol. 2010, 1, 36–50. [Google Scholar]
- Xiao, Q.; Ma, F.; Li, Y.; Yu, H.; Li, C.; Zhang, X. Differential proteomic profiles of Pleurotus ostreatus in response to lignocellulosic components provide insights into divergent adaptive mechanisms. Front. Microbiol. 2017, 8, 480. [Google Scholar] [CrossRef] [Green Version]
- Kubicek, C.P. Fungi and Lignocellulosic Biomass, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Tillman, A.; Hartadi, H.; Reksohadiprodjo, S.; Prawirokusumo, S.; Lebdosoekojo, S. Ilmu Makanan Ternak Dasar, 2nd ed.; Gadjah Mada University Press: Yogyakarta, Indonesia, 1998. [Google Scholar]
- Fariani, A.; Pratama, A.N.T.; Muslim, G. The multi-level ammoniation on the digestibility of palm press fiber. J. Adv. Vet. Anim. Res. 2021, 8, 230. [Google Scholar] [CrossRef]
- Tampoebolon, B.; Prasetiyono, B.; Mukodiningsih, S. The effect of fermentation with different times of corn husk which has obtained ammoniation treatment in the production of VFA-NH3 by in vitro digestibility. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Makassar, Indonesia, 6–7 November 2019; p. 012073. [Google Scholar]
- Jayanegara, A.; Krisnawan, N.; Widyawati, Y.; Sudarman, A. Ammoniation of rice straw and supplementation of Paraserianthes falcataria and Sapindus rarak on in vitro rumen fermentation and methane production. Bul. Peternak. 2017, 41, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Griffith, C.; Ribeiro, G., Jr.; Oba, M.; McAllister, T.; Beauchemin, K. Fermentation of ammonia fiber expansion treated and untreated barley straw in a rumen simulation technique using rumen inoculum from cattle with slow versus fast rate of fiber disappearance. Front. Microbiol. 2016, 7, 1839. [Google Scholar] [CrossRef]
- Zuo, S.; Niu, D.; Zheng, M.; Jiang, D.; Tian, P.; Li, R.; Xu, C. Effect of Irpex lacteus, Pleurotus ostreatus and Pleurotus cystidiosus pretreatment of corn stover on its improvement of the in vitro rumen fermentation. J. Sci. Food Agric. 2018, 98, 4287–4295. [Google Scholar] [CrossRef]
- Andries, J.; Buysse, F.; De Brabander, D.; Cottyn, B. Isoacids in ruminant nutrition: Their role in ruminal and intermediary metabolism and possible influences on performances—A review. Anim. Feed Sci. Technol. 1987, 18, 169–180. [Google Scholar] [CrossRef]
- Tedeschi, L.; Fox, D.; Russell, J. Accounting for the effects of a ruminal nitrogen deficiency within the structure of the Cornell Net Carbohydrate and Protein System. J. Anim. Sci. 2000, 78, 1648–1658. [Google Scholar] [CrossRef]
- Yang, C.-M. Response of forage fiber degradation by ruminal microorganisms to branched-chain volatile fatty acids, amino acids, and dipeptides. J. Dairy Sci. 2002, 85, 1183–1190. [Google Scholar] [CrossRef]
- Vastolo, A.; Calabrò, S.; Pacifico, S.; Koura, B.I.; Cutrignelli, M.I. Chemical and nutritional characteristics of Cannabis sativa L. co-products. J. Anim. Physiol. Anim. Nutr. 2021, 105, 1–9. [Google Scholar] [CrossRef]
- Khattab, H.; Gado, H.; Salem, A.; Camacho, L.; El-Sayed, M.; Kholif, A.; El-Shewy, A.; Kholif, A. Chemical composition and in vitro digestibility of Pleurotus ostreatus spent rice straw. Anim. Nutr. Feed Technol. 2013, 13, 507–516. [Google Scholar]
- Elghandour, M.M.; Chagoyán, J.C.V.; Salem, A.Z.; Kholif, A.E.; Castañeda, J.S.M.; Camacho, L.M.; Cerrillo-Soto, M.A. Effects of Saccharomyces cerevisiae at direct addition or pre-incubation on in vitro gas production kinetics and degradability of four fibrous feeds. Ital. J. Anim. Sci. 2014, 13, 3075. [Google Scholar] [CrossRef] [Green Version]
- Cone, J.W.; van Gelder, A.H. Influence of protein fermentation on gas production profiles. Anim. Feed Sci. Technol. 1999, 76, 251–264. [Google Scholar] [CrossRef]
- Eun, J.-S.; Beauchemin, K.; Hong, S.-H.; Bauer, M. Exogenous enzymes added to untreated or ammoniated rice straw: Effects on in vitro fermentation characteristics and degradability. Anim. Feed Sci. Technol. 2006, 131, 87–102. [Google Scholar] [CrossRef]
- Sufyan, A.; Ahmad, N.; Shahzad, F.; Embaby, M.G.; AbuGhazaleh, A.; Khan, N.A. Improving the nutritional value and digestibility of wheat straw, rice straw, and corn cob through solid state fermentation using different Pleurotus species. J. Sci. Food Agric. 2021, 102, 2445–2453. [Google Scholar] [CrossRef]
Parameter | UTRS | ARS | FTRS | AFTRS |
---|---|---|---|---|
DM | 90.59 ± 0.13 a | 86.81 ± 0.24 b | 85.23 ± 0.21 c | 80.56 ± 0.15 d |
OM | 77.48 ± 0.18 a | 74.65 ± 0.22 b | 70.02± 0.33 c | 61.34 ± 0.29 d |
Ash | 13.11 ± 0.14 c | 12.15 ± 0.27 d | 15.21 ± 0.12 b | 18.22 ± 0.32 a |
CP | 2.05 ± 0.32 d | 3.47 ± 0.18 c | 5.24 ± 0.29 b | 6.58 ± 0.19 a |
EE | 1.57 ± 0.01 c | 1.41 ± 0.03 d | 2.06 ± 0.01 b | 2.17 ± 0.01 a |
Parameter | UTRS | ARS | FTRS | AFTRS |
---|---|---|---|---|
NDF | 70.31 ± 0.23 a | 66.55 ± 0.22 b | 58.69 ± 0.05 c | 50.10 ± 0.28 d |
ADF | 46.21 ± 0.29 a | 44.20 ± 0.27 b | 41.36 ± 0.31 c | 36.04 ± 0.25 d |
ADL | 8.75 ± 0.30 a | 6.66 ± 0.28 b | 5.96 ± 0.21 c | 3.76 ± 0.09 d |
C | 37.96 ± 0.41 a | 36.79 ± 0.49 b | 35.40 ± 0.19 c | 32.27 ± 0.12 d |
H | 24.10 ± 0.35 a | 22.35 ± 0.29 b | 17.33 ± 0.27 c | 14.86 ± 0.41 d |
Parameter | UTRS | ARS | FTRS | AFTRS |
---|---|---|---|---|
pH | 6.54 ± 0.01 | 6.53 ± 0.01 | 6.52 ± 0.01 | 6.51 ± 0.01 |
IVDMD | 50.37 ± 0.28 d | 56.16 ± 0.24 c | 61.12 ± 0.26 b | 65.52 ± 0.25 a |
Total VFA (mM) | 47.93 ± 0.33 d | 67.71 ± 0.17 c | 75.36 ± 0.19 b | 76.56 ± 0.43 a |
Individual VFA (% Total VFA) | ||||
Acetic acid | 63.29 ± 0.43 a | 61.83 ± 0.18 b | 59.36 ± 0.16 c | 58.73 ± 0.23 d |
Propionic acid | 19.76 ± 0.28 d | 22.65 ± 0.06 c | 25.41 ± 0.22 b | 26.85 ± 0.25 a |
A/P | 3.21 ± 0.06 a | 2.73 ± 0.01 b | 2.35 ± 0.03 c | 2.16 ± 0.02 d |
Butyric acid | 15.56 ± 0.26 a | 13.11 ± 0.11 b | 11.26 ± 0.06 c | 10.29 ± 0.08 d |
Isobutyric acid | 0.74 ± 0.04 d | 0.97 ± 0.02 c | 1.14 ± 0.03 b | 1.29 ± 0.01 a |
Valeric acid | 0.32 ± 0.14 b | 0.75 ± 0.22 b | 1.02 ± 0.01 a | 1.15 ± 0.01 a |
Isovaleric acid | 0.33 ± 0.14 c | 0.69 ± 0.08 b | 1.53 ± 0.01 a | 1.69 ± 0.04 a |
Gas Volume (mL/g) | UTRS | ARS | FTRS | AFTRS |
---|---|---|---|---|
3 h | 5.34 ± 0.27 d | 8.22 ± 0.23 c | 10.48 ± 0.20 b | 15.23 ± 0.22 a |
6 h | 12.25 ± 0.25 d | 15.31 ± 0.23 c | 20.16 ± 0.26 b | 28.83 ± 0.37 a |
12 h | 20.23 ± 0.24 d | 25.18 ± 0.31 c | 30.42 ± 0.27 b | 39.77 ± 0.45 a |
24 h | 28.59 ± 0.28 d | 37.03 ± 0.25 c | 42.01 ± 0.31 b | 48.28 ± 0.27 a |
36 h | 37.16 ± 0.32 d | 43.14 ± 0.30 c | 48.00 ± 0.45 b | 55.96 ± 0.42 a |
48 h | 37.91 ± 0.46 d | 44.30 ± 0.25 c | 49.31 ± 0.33 b | 56.78 ± 0.30 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Datsomor, O.; Yan, Q.; Wang, K.; Mohamed, S.; Opoku-Mensah, L.; Zhao, G.; Miao, L. Effect of Ammoniated and/or Basidiomycete White-Rot Fungi Treatment on Rice Straw Proximate Composition, Cell Wall Component, and In Vitro Rumen Fermentation Characteristics. Fermentation 2022, 8, 228. https://doi.org/10.3390/fermentation8050228
Datsomor O, Yan Q, Wang K, Mohamed S, Opoku-Mensah L, Zhao G, Miao L. Effect of Ammoniated and/or Basidiomycete White-Rot Fungi Treatment on Rice Straw Proximate Composition, Cell Wall Component, and In Vitro Rumen Fermentation Characteristics. Fermentation. 2022; 8(5):228. https://doi.org/10.3390/fermentation8050228
Chicago/Turabian StyleDatsomor, Osmond, Qi Yan, Kuopeng Wang, Shakib Mohamed, Louis Opoku-Mensah, Guoqi Zhao, and Lin Miao. 2022. "Effect of Ammoniated and/or Basidiomycete White-Rot Fungi Treatment on Rice Straw Proximate Composition, Cell Wall Component, and In Vitro Rumen Fermentation Characteristics" Fermentation 8, no. 5: 228. https://doi.org/10.3390/fermentation8050228
APA StyleDatsomor, O., Yan, Q., Wang, K., Mohamed, S., Opoku-Mensah, L., Zhao, G., & Miao, L. (2022). Effect of Ammoniated and/or Basidiomycete White-Rot Fungi Treatment on Rice Straw Proximate Composition, Cell Wall Component, and In Vitro Rumen Fermentation Characteristics. Fermentation, 8(5), 228. https://doi.org/10.3390/fermentation8050228