Optimisation of PLS Calibrations for Filtered and Untreated Samples towards In-Line Monitoring of Phenolic Extraction during Red-Wine Fermentations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Small-Scale Vinifications and Sample Treatment
2.2. Spectral Data Acquisition
2.2.1. ATR-FT-MIR Spectroscopy
2.2.2. Transmission FT-NIR Spectroscopy
2.2.3. Diffuse-Reflectance FT-NIR Spectroscopy
2.3. Iland Analysis for Total Anthocyanin and Total Phenolic Content
2.4. Methylcellulose-Tannin-Precipitation Assay
2.5. Colour Density
2.6. SO2-Resistant Pigments
2.7. Development and Validation of PLS Calibrations
3. Results
3.1. Reference Data
3.2. ATR-FT-MIR Prediction Models
3.3. Transmission Fourier-Transform near-Infrared (T-FT-NIR) Prediction Models
3.4. Diffuse-Reflectance Fourier-Transform near-Infrared (DR-FT-NIR) Prediction Models
3.5. Instrument and Sample-Treatment Comparison
4. Discussion
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- McGovern, P.; Jalabadze, M.; Batiuk, S.; Callahan, M.P.; Smith, K.E.; Hall, G.R.; Kvavadze, E.; Maghradze, D.; Rusishvili, N.; Bouby, L.; et al. Early Neolithic Wine of Georgia in the South Caucasus. Proc. Natl. Acad. Sci. USA 2017, 114, E10309–E10318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cusmano, L.; Morrison, A.; Rabellotti, R. Catching up Trajectories in the Wine Sector: A Comparative Study of Chile, Italy, and South Africa. World Dev. 2010, 38, 1588–1602. [Google Scholar] [CrossRef] [Green Version]
- Lochner, E. The Evaluation of Fourier Transform Infrared Spectroscopy (FT-IR) for the Determination of Total Phenolics and Total Anthocyanins Concentrations of Grapes. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2006. [Google Scholar]
- Santos, I.; Bosman, G.; Aleixandre-Tudo, J.L.; du Toit, W. Direct Quantification of Red Wine Phenolics Using Fluorescence Spectroscopy with Chemometrics. Talanta 2022, 236, 122857. [Google Scholar] [CrossRef]
- Bureau, S.; Cozzolino, D.; Clark, C.J. Contributions of Fourier-Transform Mid Infrared (FT-MIR) Spectroscopy to the Study of Fruit and Vegetables: A Review. Postharvest Biol. Technol. 2019, 148, 1–14. [Google Scholar] [CrossRef]
- Cozzolino, D. The Role of Visible and Infrared Spectroscopy Combined with Chemometrics to Measure Phenolic Compounds in Grape and Wine Samples. Molecules 2015, 20, 726–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debebe, A.; Redi-Abshiro, M.; Chandravanshi, B.S. Non-Destructive Determination of Ethanol Levels in Fermented Alcoholic Beverages Using Fourier Transform Mid-Infrared Spectroscopy. Chem. Cent. J. 2017, 11, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gishen, M.; Dambergs, R.; Cozzolino, D. Grape and Wine Analysis—Enhancing the Power of Spectroscopy with Chemometrics. Aust. J. Grape Wine Res. 2008, 11, 296–305. [Google Scholar] [CrossRef]
- Lourenço, N.D.; Lopes, J.A.; Almeida, C.F.; Sarraguça, M.C.; Pinheiro, H.M. Bioreactor Monitoring with Spectroscopy and Chemometrics: A Review. Anal. Bioanal. Chem. 2012, 404, 1211–1237. [Google Scholar] [CrossRef]
- Oliveira-Folador, G.; Bicudo, M.d.O.; de Andrade, E.F.; Renard, C.M.G.C.; Bureau, S.; de Castilhos, F. Quality Traits Prediction of the Passion Fruit Pulp Using NIR and MIR Spectroscopy. Lwt 2018, 95, 172–178. [Google Scholar] [CrossRef]
- Cavaglia, J.; Schorn-García, D.; Giussani, B.; Ferré, J.; Busto, O.; Aceña, L.; Mestres, M.; Boqué, R. ATR-MIR Spectroscopy and Multivariate Analysis in Alcoholic Fermentation Monitoring and Lactic Acid Bacteria Spoilage Detection. Food Control 2020, 109, 106947. [Google Scholar] [CrossRef]
- Cozzolino, D.; Dambergs, R.G. Wine and Beer. In Infrared Spectroscopy for Food Quality Analysis and Control; Elsevier: Amsterdam, The Netherlands, 2009; pp. 127–168. ISBN 9780128118160. [Google Scholar]
- Setford, P.C.; Jeffery, D.W.; Grbin, P.R.; Muhlack, R.A. Factors Affecting Extraction and Evolution of Phenolic Compounds during Red Wine Maceration and the Role of Process Modelling. Trends Food Sci. Technol. 2017, 69, 106–117. [Google Scholar] [CrossRef]
- Aleixandre-Tudo, J.L.; Nieuwoudt, H.; Aleixandre, J.L.; du Toit, W. Chemometric Compositional Analysis of Phenolic Compounds in Fermenting Samples and Wines Using Different Infrared Spectroscopy Techniques. Talanta 2018, 176, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Aleixandre-Tudo, J.L.; Nieuwoudt, H.; Olivieri, A.; Aleixandre, J.L.; du Toit, W. Phenolic Profiling of Grapes, Fermenting Samples and Wines Using UV-Visible Spectroscopy with Chemometrics. Food Control 2018, 85, 11–22. [Google Scholar] [CrossRef]
- Patz, C.D.; Blieke, A.; Ristow, R.; Dietrich, H. Application of FT-MIR Spectrometry in Wine Analysis. Anal. Chim. Acta 2004, 513, 81–89. [Google Scholar] [CrossRef]
- Lambrecht, K.; Nieuwoudt, H.; Du Toit, W.; Aleixandre-Tudo, J.L. Moving towards In-Line Monitoring of Phenolic Extraction during Red Wine Fermentations Using Infra-Red Spectroscopy Technology. Influence of Sample Preparation and Instrumentation. J. Food Compost Anal. 2022, 110, 104542. [Google Scholar] [CrossRef]
- Iland, P. Techniques for Chemical Analyses and Quality Monitoring during Winemaking; Iland, P., Ed.; Patrick Iland Wine Promotions: Campbelltown, Australia, 2000; ISBN 064638435X. [Google Scholar]
- Bindon, K.A.; Kassara, S.; Cynkar, W.U.; Robinson, E.M.C.; Scrimgeour, N.; Smith, P.A. Comparison of Extraction Protocols to Determine Differences in Wine-Extractable Tannin and Anthocyanin in Vitis Vinifera L. Cv. Shiraz and Cabernet Sauvignon Grapes. J. Agric. Food Chem. 2014, 62, 4558–4570. [Google Scholar] [CrossRef]
- Mercurio, M.D.; Dambergs, R.G.; Herderich, M.J.; Smith, P.A. High Throughput Analysis of Red Wine and Grape Phenolics—Adaptation and Validation of Methyl Cellulose Precipitable Tannin Assay and Modified Somers Color Assay to a Rapid 96 Well Plate Format. J. Agric. Food Chem. 2007, 55, 4651–4657. [Google Scholar] [CrossRef]
- Li, S.Y.; Zhu, B.Q.; Li, L.J.; Duan, C.Q. Extensive and Objective Wine Color Classification with Chromatic Database and Mathematical Models. Int. J. Food Prop. 2017, 20, S2647–S2659. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.; Dardenne, P.; Flinn, P. Tutorial: Items to Be Included in a Report on a near Infrared Spectroscopy Project. J. Near Infrared Spectrosc. 2017, 25, 85–90. [Google Scholar] [CrossRef]
- Fragoso, S.; Aceña, L.; Guasch, J.; Mestres, M.; Busto, O. Quantification of Phenolic Compounds during Red Winemaking Using FT-MIR Spectroscopy and PLS-Regression. J. Agric. Food Chem. 2011, 59, 10795–10802. [Google Scholar] [CrossRef]
- Fragoso, S.; Aceña, L.; Guasch, J.; Busto, O.; Mestres, M. Application of FT-MIR Spectroscopy for Fast Control of Red Grape Phenolic Ripening. J. Agric. Food Chem. 2011, 59, 2175–2183. [Google Scholar] [CrossRef] [PubMed]
- Linnet, K. Evaluation of Regression Procedures for Methods Comparison Studies. Clin. Chem. 1993, 39, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.P. Quantifying Test-Retest Reliability Using the Intraclass Correlation Coefficient and the SEM. J. Strenghth Cond. Res. 2005, 19, 231–240. [Google Scholar] [CrossRef]
- Allegrini, F.; Olivieri, A.C. IUPAC-Consistent Approach to the Limit of Detection in Partial Least-Squares Calibration. Anal. Chem. 2014, 86, 7858–7866. [Google Scholar] [CrossRef]
- Aleixandre-Tudo, J.; Nieuwoudt, H.; Aleixandre, J.; Du Toit, W. Robust Ultraviolet-Visible (UV-Vis) Partial Least-Squares (PLS) Models for Tannin Quantification in Red Wine. J. Agric. Food Chem. 2015, 63, 1088–1098. [Google Scholar] [CrossRef]
- Larkin, P. General Outline and Strategies for IR and Raman Spectral Interpretation. Infrared Raman Spectrosc. 2011, 117, 133. [Google Scholar] [CrossRef]
- Ricci, A.; Parpinello, G.P.; Laghi, L.; Lambri, M.; Versari, A. Application of Infrared Spectroscopy to Grape and Wine Analysis. In Infrared Spectroscopy: Theory, Developments and Applications; Nova Science Publisher: Hauppauge, NY, USA, 2014; ISBN 9781629485232. [Google Scholar]
- Aleixandre-Tudo, J.; Nieuwoudt, H.; du Toit, W. Towards On-Line Monitoring of Phenolic Content in Red Wine Grapes: A Feasibility Study. Food Chem. 2019, 270, 322–331. [Google Scholar] [CrossRef]
- Santos, P.M.; Colnago, L.A. Comparison Among MIR, NIR, and LF-NMR Techniques for Quality Control of Jam Using Chemometrics. Food Anal. Methods 2018, 11, 2029–2034. [Google Scholar] [CrossRef]
- Basalekou, M.; Kallithraka, S.; Tarantilis, P.A.; Kotseridis, Y.; Pappas, C. Ellagitannins in Wines: Future Prospects in Methods of Analysis Using FT-IR Spectroscopy. Lwt 2019, 101, 48–53. [Google Scholar] [CrossRef]
- Cozzolino, D.; Kwiatkowski, M.J.; Parker, M.; Cynkar, W.U.; Dambergs, R.G.; Gishen, M.; Herderich, M.J. Prediction of Phenolic Compounds in Red Wine Fermentations by Visible and near Infrared Spectroscopy. Anal. Chim. Acta 2004, 513, 73–80. [Google Scholar] [CrossRef]
- Canal, C.; Ozen, B. Monitoring of Wine Process and Prediction of Its Parameters with Mid-Infrared Spectroscopy. J. Food Process Eng. 2017, 40, e12280. [Google Scholar] [CrossRef] [Green Version]
- Parpinello, G.P.; Ricci, A.; Arapitsas, P.; Curioni, A.; Moio, L.; Segade, S.R.; Ugliano, M.; Versari, A. Multivariate Characterisation of Italian Monovarietal Red Wines Using MIR Spectroscopy. Oeno One 2019, 53, 741–751. [Google Scholar] [CrossRef] [Green Version]
- Preys, S.; Roger, J.M.; Boulet, J.C. Robust Calibration Using Orthogonal Projection and Experimental Design. Application to the Correction of the Light Scattering Effect on Turbid NIR Spectra. Chemom. Intell. Lab. Syst. 2008, 91, 28–33. [Google Scholar] [CrossRef]
- Shrake, N.L.; Amirtharajah, R.; Brenneman, C.; Boulton, R.; Knoesen, A. In-Line Measurement of Color and Total Phenolics during Red Wine Fermentations Using a Light-Emitting Diode Sensor. Am. J. Enol. Vitic. 2014, 65, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Mirabella, F.M. Practical Spectroscopy Series; Internal Reflection Spectroscopy: Theory and Applications; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Hapke, B. Reflectance Methods and Applications. In Encyclopedia of Spectroscopy and Spectrometry; Academic Press: Cambridge, MA, USA, 2010; pp. 931–935. ISBN 9780128032244. [Google Scholar]
Variable | Minimum | Maximum | Mean | Standard Deviation | CV |
---|---|---|---|---|---|
Anthocyanin (mg/L) | 22.58 | 874.51 | 450.56 | 227.00 | 50.38 |
Colour Density (AU420+520+620) | 0.33 | 33.63 | 17.13 | 9.97 | 58.22 |
MCP Tannins (mg/L) | 507.10 | 1400.00 | 820.84 | 202.45 | 24.66 |
Polymeric Pigments (mg/L) | 1.36 | 166.75 | 63.87 | 46.71 | 73.14 |
Total Polyphenol Index (AU280) | 3.94 | 67.42 | 38.13 | 16.43 | 43.06 |
Component | Treatment | Rank | N | R2Cal | R2Val | RPDCal | RPDVal | RMSEC | RMSEP | SEM | Bias | SI | ICC | LOD | LOQ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anthocyanins (mg/L) | Filtered | 7 | 214 | 0.926 | 0.8877 | 3.77 | 2.97 | 60.85 | 77.24 | 54.431 | −9.82 | Ho Accepted | 0.94 | 7.22–15.13 | 21.65–45.39 |
Anthocyanins (mg/L) | Untreated | 8 | 209 | 0.836 | 0.853 | 2.47 | 2.61 | 90.11 | 85.72 | 60.858 | −3.73 | Ho Accepted | 0.924 | 5.06–13.98 | 15.17–41.93 |
Colour Density (AU420+520+620) | Filtered | 6 | 214 | 0.924 | 0.901 | 3.65 | 3.21 | 2.69 | 3.19 | 2.27 | 0.13 | Ho Accepted | 0.949 | 0.35–1.05 | 1.04–3.16 |
Colour Density (AU420+520+620) | Untreated | 4 | 209 | 0.914 | 0.889 | 3.43 | 3 | 2.87 | 3.33 | 2.369 | −0.03 | Ho Accepted | 0.944 | 0.26–0.40 | 0.77–1.19 |
Polymeric Pigments (mg/L) | Filtered | 8 | 214 | 0.894 | 0.882 | 3.09 | 2.92 | 15.37 | 15.53 | 11.019 | −0.83 | Ho Accepted | 0.938 | 0.74–2.37 | 2.21–7.12 |
Polymeric Pigments (mg/L) | Untreated | 7 | 209 | 0.906 | 0.874 | 3.06 | 2.82 | 14.53 | 15.92 | 11.288 | 1.18 | Ho Accepted | 0.934 | 0.74–2.80 | 2.23–8.41 |
Tannins (mg/L) | Filtered | 5 | 214 | 0.79 | 0.804 | 2.19 | 2.21 | 91.33 | 92.11 | 65.431 | −1.72 | Ho Rejected | 0.884 | 38.70–56.06 | 116.11–168.19 |
Tannins (mg/L) | Untreated | 3 | 209 | 0.768 | 0.816 | 2.08 | 2.33 | 95.89 | 85.23 | 60.459 | 5.17 | Ho Rejected | 0.895 | 38.09–45.73 | 117.27–137.20 |
TPI (AU280) | Filtered | 9 | 214 | 0.894 | 0.9 | 3.09 | 3.18 | 5.24 | 5.22 | 4.766 | 0.04 | Ho Accepted | 0.921 | 0.48–1.28 | 1.36–3.83 |
TPI (AU280) | Untreated | 8 | 209 | 0.924 | 0.922 | 3.67 | 3.58 | 4.47 | 4.53 | 3.141 | 0.26 | Ho Accepted | 0.963 | 0.96–1.32 | 2.06–3.95 |
Component | Treatment | Rank | N | R2Cal | R2Val | RPDCal | RPDVal | RMSEC | RMSEP | SEM | Bias | SI | ICC | LOD | LOQ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anthocyanins (mg/L) | Filtered | 4 | 236 | 0.709 | 0.729 | 1.85 | 1.89 | 121.03 | 128.86 | 89.16 | −30.32 | Ho Rejected | 0.839 | 89.54–92.01 | 268.62–276.03 |
Anthocyanins (mg/L) | Untreated | 4 | 208 | 0.576 | 0.652 | 1.54 | 1.62 | 145.4 | 143.25 | 97.87 | −39.33 | Ho Rejected | 0.759 | 62.26–68.53 | 186.77–205.60 |
Colour Density (AU420+520+620) | Filtered | 5 | 236 | 0.838 | 0.882 | 2.49 | 2.85 | 3.96 | 3.74 | 2.615 | −0.72 | Ho Rejected | 0.931 | 2.76–7.50 | 8.29–22.49 |
Colour Density (AU420+520+620) | Untreated | 5 | 208 | 0.835 | 0.822 | 2.48 | 2.38 | 3.97 | 4.26 | 3.03 | −0.15 | Ho Rejected | 0.903 | 8.35–8.65 | 25.05–25.94 |
Polymeric Pigments (mg/L) | Filtered | 3 | 236 | 0.8 | 0.827 | 2.24 | 2.4 | 21.29 | 18.63 | 13.19 | 1.98 | Ho Accepted | 0.908 | 3.04–3.28 | 9.12–9.84 |
Polymeric Pigments (mg/L) | Untreated | 4 | 208 | 0.813 | 0.811 | 2.32 | 2.26 | 20.523 | 19.83 | 13.98 | 2.51 | Ho Accepted | 0.9 | 7.02–7.46 | 21.06–22.39 |
Tannins (mg/L) | Filtered | 2 | 236 | 0.785 | 0.836 | 2.16 | 2.46 | 95.03 | 82.11 | 57.90 | 11.33 | Ho Rejected | 0.908 | 37.07–40.45 | 111.22–121.34 |
Tannins (mg/L) | Untreated | 7 | 208 | 0.815 | 0.748 | 2.33 | 1.99 | 87.12 | 100.37 | 70.73 | 12.89 | Ho Rejected | 0.855 | 54.19–78.21 | 162.57–234.62 |
TPI (AU280) | Filtered | 4 | 236 | 0.863 | 0.858 | 2.71 | 2.62 | 6.01 | 6.7 | 4.77 | −0.36 | Ho Accepted | 0.921 | 21.94–22.39 | 65.81–67.18 |
TPI (AU280) | Untreated | 3 | 208 | 0.71 | 0.757 | 1.86 | 2.11 | 8.58 | 8.47 | 6.01 | −0.48 | Ho Rejected | 0.844 | 27.74–31.46 | 83.21–94.38 |
Component | Sample Treatment | Rank | N | R2Cal | R2Val | RPDCal | RPDVal | RMSEC | RMSEP | SEM | Bias | SI | ICC | LOD | LOQ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anthocyanins (mg/L) | Filtered | 9 | 212 | 0.89 | 0.901 | 3.03 | 3.11 | 74.19 | 73.77 | 52.419 | −0.34 | Ho Accepted | 0.95 | 5.01–18.25 | 15.03–54.74 |
Anthocyanins (mg/L) | Untreated | 8 | 213 | 0.849 | 0.883 | 2.58 | 2.9 | 86.06 | 78.56 | 55.233 | −0.22 | Ho Rejected | 0.937 | 5.05–11.23 | 15.16–33.68 |
Colour Density (AU420+520+620) | Filtered | 7 | 212 | 0.901 | 0.889 | 3.18 | 3.01 | 3.07 | 3.39 | 2.406 | 0.19 | Ho Accepted | 0.942 | 0.83–1.16 | 2.50–3.48 |
Colour Density (AU420+520+620) | Untreated | 7 | 213 | 0.864 | 0.887 | 2.72 | 3 | 3.59 | 3.4 | 2.419 | 0.17 | Ho Accepted | 0.942 | 0.26–0.58 | 0.79–1.74 |
Polymeric Pigments (mg/L) | Filtered | 7 | 212 | 0.887 | 0.868 | 2.99 | 2.74 | 15.84 | 16.71 | 11.802 | −1.84 | Ho Accepted | 0.931 | 0.75–3.61 | 2.24–10.83 |
Polymeric Pigments (mg/L) | Untreated | 3 | 213 | 0.962 | 0.957 | 5.1 | 4.78 | 9.24 | 9.64 | 6.811 | 2 | Ho Rejected | 0.977 | 0.75–1.56 | 2.24–4.67 |
Tannins (mg/L) | Filtered | 6 | 212 | 0.791 | 0.81 | 2.19 | 2.29 | 91.34 | 90.32 | 63.889 | 1.08 | Ho Rejected | 0.892 | 38.88–57.02 | 116.64–171.05 |
Tannins (mg/L) | Untreated | 6 | 213 | 0.763 | 0.823 | 2.05 | 2.33 | 97.348 | 89.69 | 63.73 | −1.26 | Ho Rejected | 0.889 | 38.82–51.53 | 116.45–154.60 |
TPI (AU280) | Filtered | 8 | 212 | 0.879 | 0.91 | 2.88 | 3.33 | 5.64 | 5.04 | 3.567 | −0.5 | Ho Accepted | 0.954 | 0.49–1.51 | 1.38–4.53 |
TPI (AU280) | Untreated | 7 | 213 | 0.795 | 0.809 | 2.21 | 2.3 | 7.26 | 7.25 | 5.152 | 0.05 | Ho Rejected | 0.895 | 0.48–1.86 | 1.45–5.57 |
Treatment | Component | Comparison | SI | ICC | SEM |
---|---|---|---|---|---|
Filtered | Anthocyanins (mg/L) | ATR-FT-MIR/T-FT-NIR | Ho Accepted | 0.811 | 90.09 |
ATR-FT-MIR/DR-FT-NIR | Ho Accepted | 0.833 | 92.25 | ||
T-FT-NIR/DR-FT-NIR | Ho Accepted | 0.834 | 90.16 | ||
Colour Density (AU420+520+620) | ATR-FT-MIR/T-FT-NIR | Ho Rejected | 0.861 | 3.303 | |
ATR-FT-MIR/DR-FT-NIR | Ho Accepted | 0.935 | 2.468 | ||
T-FT-NIR/DR-FT-NIR | Ho Accepted | 0.897 | 3.003 | ||
Polymeric Pigments (mg/L) | ATR-FT-MIR/T-FT-NIR | Ho Rejected | 0.875 | 9.52 | |
ATR-FT-MIR/DR-FT-NIR | Ho Accepted | 0.938 | 10.819 | ||
T-FT-NIR/DR-FT-NIR | Ho Rejected | 0.851 | 10.249 | ||
Tannins (mg/L) | ATR-FT-MIR/T-FT-NIR | Ho Rejected | 0.737 | 66.333 | |
ATR-FT-MIR/DR-FT-NIR | Ho Accepted | 0.93 | 47.064 | ||
T-FT-NIR/DR-FT-NIR | Ho Rejected | 0.745 | 68.207 | ||
TPI (AU280) | ATR-FT-MIR/T-FT-NIR | Ho Accepted | 0.879 | 4.581 | |
ATR-FT-MIR/DR-FT-NIR | Ho Accepted | 0.958 | 3.303 | ||
T-FT-NIR/DR-FT-NIR | Ho Accepted | 0.869 | 4.796 | ||
Untreated | Anthocyanins (mg/L) | ATR-FT-MIR/T-FT-NIR | Ho Rejected | 0.821 | 81.508 |
ATR-FT-MIR/DR-FT-NIR | Ho Accepted | 0.887 | 72.118 | ||
T-FT-NIR/DR-FT-NIR | Ho Rejected | 0.767 | 92.018 | ||
Colour Density (AU420+520+620) | ATR-FT-MIR/T-FT-NIR | Ho Rejected | 0.939 | 2.36 | |
ATR-FT-MIR/DR-FT-NIR | Ho Accepted | 0.953 | 2.129 | ||
T-FT-NIR/DR-FT-NIR | Ho Accepted | 0.912 | 2.818 | ||
Polymeric Pigments (mg/L) | ATR-FT-MIR/T-FT-NIR | Ho Accepted | 0.929 | 11.462 | |
ATR-FT-MIR/DR-FT-NIR | Ho Accepted | 0.893 | 14.18 | ||
T-FT-NIR/DR-FT-NIR | Ho Accepted | 0.852 | 16.792 | ||
Tannins (mg/L) | ATR-FT-MIR/T-FT-NIR | Ho Accepted | 0.902 | 53.353 | |
ATR-FT-MIR/DR-FT-NIR | Ho Accepted | 0.916 | 49.972 | ||
T-FT-NIR/DR-FT-NIR | Ho Accepted | 0.875 | 60.205 | ||
TPI (AU280) | ATR-FT-MIR/T-FT-NIR | Ho Rejected | 0.88 | 5.059 | |
ATR-FT-MIR/DR-FT-NIR | Ho Accepted | 0.908 | 4.709 | ||
T-FT-NIR/DR-FT-NIR | Ho Rejected | 0.814 | 6.074 |
ATR-FT-MIR | ||||
Component | Comparison | SI | ICC | SEM |
Anthocyanins (mg/L) | Filtered/Untreated | Ho Accepted | 0.939 | 55.661 |
Colour Density (AU420+520+620) | Filtered/ Untreated | Ho Accepted | 0.984 | 1.225 |
Polymeric Pigments (mg/L) | Filtered/ Untreated | Ho Accepted | 0.979 | 5.873 |
Tannins (mg/L) | Filtered/ Untreated | Ho Accepted | 0.949 | 35.882 |
TPI (AU280) | Filtered/ Untreated | Ho Accepted | 0.978 | 2.35 |
T-FT-NIR | ||||
Component | Comparison | SI | ICC | SEM |
Anthocyanins (mg/L) | Filtered/Untreated | Ho Rejected | 0.929 | 59.321 |
Colour Density (AU420+520+620) | Filtered/ Untreated | Ho Accepted | 0.967 | 1.763 |
Polymeric Pigments (mg/L) | Filtered/ Untreated | Ho Accepted | 0.893 | 13.786 |
Tannins (mg/L) | Filtered/ Untreated | Ho Accepted | 0.929 | 46.16 |
TPI (AU280) | Filtered/ Untreated | Ho Rejected | 0.888 | 5.2 |
DR-FT-NIR | ||||
Component | Comparison | SI | ICC | SEM |
Anthocyanins (mg/L) | Filtered/Untreated | Ho Rejected | 0.82 | 86.131 |
Colour Density (AU420+520+620) | Filtered/ Untreated | Ho Accepted | 0.929 | 2.608 |
Polymeric Pigments (mg/L) | Filtered/ Untreated | Ho Rejected | 0.975 | 7.059 |
Tannins (mg/L) | Filtered/ Untreated | Ho Accepted | 0.91 | 55.64 |
TPI (AU280) | Filtered/ Untreated | Ho Rejected | 0.917 | 4.492 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lambrecht, K.; Nieuwoudt, H.; Du Toit, W.; Aleixandre-Tudo, J.L. Optimisation of PLS Calibrations for Filtered and Untreated Samples towards In-Line Monitoring of Phenolic Extraction during Red-Wine Fermentations. Fermentation 2022, 8, 231. https://doi.org/10.3390/fermentation8050231
Lambrecht K, Nieuwoudt H, Du Toit W, Aleixandre-Tudo JL. Optimisation of PLS Calibrations for Filtered and Untreated Samples towards In-Line Monitoring of Phenolic Extraction during Red-Wine Fermentations. Fermentation. 2022; 8(5):231. https://doi.org/10.3390/fermentation8050231
Chicago/Turabian StyleLambrecht, Kiera, Hélène Nieuwoudt, Wessel Du Toit, and José Luis Aleixandre-Tudo. 2022. "Optimisation of PLS Calibrations for Filtered and Untreated Samples towards In-Line Monitoring of Phenolic Extraction during Red-Wine Fermentations" Fermentation 8, no. 5: 231. https://doi.org/10.3390/fermentation8050231
APA StyleLambrecht, K., Nieuwoudt, H., Du Toit, W., & Aleixandre-Tudo, J. L. (2022). Optimisation of PLS Calibrations for Filtered and Untreated Samples towards In-Line Monitoring of Phenolic Extraction during Red-Wine Fermentations. Fermentation, 8(5), 231. https://doi.org/10.3390/fermentation8050231