Exploring Use of the Metschnikowia pulcherrima Clade to Improve Properties of Fruit Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Cultures
2.2. Assimilation Profiles
2.3. Enzymatic Profiles
2.4. Fermentation Media
2.5. Fermentation Trials
2.6. HPLC Analysis
2.7. GC-MS Analysis
2.8. Statistics
3. Results and Discussion
3.1. Assimilation Profiles
3.2. Enzymatic Profiles
3.3. HPLC Analysis
3.4. GC-MS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cendrowski, A.; Królak, M.; Kalisz, S. Polyphenols, L-ascorbic acid, and antioxidant activity in wines from rose fruits (Rosa rugosa). Molecules 2021, 26, 2561. [Google Scholar] [CrossRef] [PubMed]
- Kunicka-Styczynska, A.; Czyzowska, A.; Rajkowska, K.; Wilkowska, A.; Dziugan, P. The trends and prospects of winemaking in Poland. In Grape and Wine Biotechnology, 1st ed.; Morata, A., Loira, I., Eds.; InTech: Rijeka, Croatia, 2016. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Cai, G.; Lu, J.; Plaza, E.G. The production and application of enzymes related to the quality of fruit wine. Crit. Rev. Food Sci. Nutr. 2020, 61, 1605–1615. [Google Scholar] [CrossRef] [PubMed]
- Comitini, F.; Agarbati, A.; Canonico, L.; Ciani, M. Yeast Interactions and Molecular Mechanisms in Wine Fermentation: A Comprehensive Review. Int. J. Mol. Sci. 2021, 22, 7754. [Google Scholar] [CrossRef] [PubMed]
- Satora, P.; Semik-Szczurak, D.; Tarko, T.; Bułdys, A. Influence of selected Saccharomyces and Schizosaccharomyces strains and their mixed cultures on chemical composition of apple wines. J. Food Sci. 2018, 83, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Varela, C. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl. Microbiol. Biotechnol. 2016, 100, 9861–9874. [Google Scholar] [CrossRef]
- Varela, C.; Borneman, A.R. Yeasts found in vineyards and wineries. Yeast 2016, 34, 111–128. [Google Scholar] [CrossRef]
- Sidari, R.; Ženišová, K.; Tobolková, B.; Belajová, E.; Cabicarová, T.; Bučková, M.; Puškárová, A.; Planý, M.; Kuchta, T.; Pangallo, D. Wine yeasts selection: Laboratory characterization and protocol review. Microorganisms 2021, 9, 2223. [Google Scholar] [CrossRef]
- Barbosa, C.; Ramalhosa, E.; Vasconcelos, I.; Reis, M.; Mendes-Ferreira, A. Machine learning techniques disclose the combined effect of fermentation conditions on yeast mixed-culture dynamics and wine quality. Microorganisms 2022, 10, 107. [Google Scholar] [CrossRef]
- Morrissey, W.; Davenport, B.; Querol, A.; Dobson, A. The role of indigenous yeasts in traditional Irish cider fermentations. J. Appl. Microbiol. 2004, 97, 647–655. [Google Scholar] [CrossRef]
- Vicente, J.; Ruiz, J.; Belda, I.; Benito-Vázquez, I.; Marquina, D.; Calderón, F.; Santos, A.; Benito, S. The genus Metschnikowia in enology. Microorganisms 2020, 8, 1038. [Google Scholar] [CrossRef]
- Sipiczki, M. Wine yeasts 1.0. Microorganisms 2021, 10, 26. [Google Scholar] [CrossRef] [PubMed]
- Sipiczki, M. Metschnikowia pulcherrima and related pulcherrimin-producing yeasts: Fuzzy species boundaries and complex antimicrobial antagonism. Microorganisms 2020, 8, 1029. [Google Scholar] [CrossRef] [PubMed]
- Sipiczki, M. Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion. Appl. Environ. Microbiol. 2006, 72, 6716–6724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlikowska, E.; James, S.A.; Breierova, E.; Antolak, H.; Kregiel, D. Biocontrol capability of local Metschnikowia sp. isolates. Antonie van Leeuwenhoek 2019, 112, 1425–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kregiel, D.; Nowacka, M.; Rygala, A.; Vadkertiová, R. Biological Activity of Pulcherrimin from the Meschnikowia pulcherrima Clade. Molecules 2022, 27, 1855. [Google Scholar] [CrossRef] [PubMed]
- Mencher, A.; Morales, P.; Curiel, J.A.; Gonzalez, R.; Tronchoni, J. Metschnikowia pulcherrima represses aerobic respiration in Saccharomyces cerevisiae suggesting a direct response to co-cultivation. Food Microbiol. 2020, 94, 103670. [Google Scholar] [CrossRef]
- Kregiel, D.; James, S.A.; Rygala, A.; Berlowska, J.; Antolak, H.; Pawlikowska, E. Consortia formed by yeasts and acetic acid bacteria Asaia spp. in soft drinks. Antonie Van Leeuwenhoek 2017, 111, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Drewicz, E.; Kregiel, D.; Oberman, H. Wzrost i aktywność fermentacyjna drożdży Saccharomyces cerevisiae w obecności toksyny killerowej (in Polish). Biotechnologia 1999, 45, 25–37. [Google Scholar]
- Dygas, D.; Nowak, S.; Olszewska, J.; Szymańska, M.; Mroczyńska-Florczak, M.; Berłowska, J.; Dziugan, P.; Kręgiel, D. Ability of yeast metabolic activity to reduce sugars and stabilize betalains in red beet juice. Fermentation 2021, 7, 105. [Google Scholar] [CrossRef]
- Dziekonska-Kubczak, U.; Berlowska, J.; Dziugan, P.; Patelski, P.; Pielech-Przybylska, K.; Balcerek, M. Nitric acid pretreatment of Jerusalem artichoke stalks for enzymatic saccharification and bioethanol production. Energies 2018, 11, 2153. [Google Scholar] [CrossRef] [Green Version]
- Hubaux, A.; Vos, G. Decision and detection limits for calibration curves. Anal. Chem. 1970, 42, 849–855. [Google Scholar] [CrossRef]
- Australian Food Composition Database. Available online: https://www.foodstandards.gov.au (accessed on 21 April 2022).
- Lee, S.-B.; Park, H.-D. Isolation and Investigation of Potential Non-Saccharomyces Yeasts to Improve the Volatile Terpene Compounds in Korean Muscat Bailey A Wine. Microorganisms 2020, 8, 1552. [Google Scholar] [CrossRef]
- Escribano, R.; González-Arenzana, L.; Garijo, P.; Berlanas, C.; López-Alfaro, I.; López, R.; Gutiérrez, A.R.; Santamaría, P. Screening of enzymatic activities within different enological non-Saccharomyces yeasts. J. Food Sci. Technol. 2017, 54, 1555–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fia, G.; Giovani, G.; Rosi, I. Study of beta-glucosidase production by wine-related yeasts during alcoholic fermentation. A new rapid fluorimetric method to determine enzymatic activity. J. Appl. Microbiol. 2005, 99, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Maturano, Y.P.; Assaf, L.A.R.; Toro, M.E.; Nally, M.C.; Vallejo, M.; de Figueroa, L.I.C.; Combina, M.; Vazquez, F. Multi-enzyme production by pure and mixed cultures of Saccharomyces and non-Saccharomyces yeasts during wine fermentation. Int. J. Food Microbiol. 2012, 155, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Kregiel, D.; Berlowska, J.; Ambroziak, W. Growth and metabolic activity of conventional and non-conventional yeasts immobilized in foamed alginate. Enzym. Microb. Technol. 2013, 53, 229–234. [Google Scholar] [CrossRef]
- Patra, P.; Das, M.; Kundu, P.; Ghosh, A. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnol. Adv. 2021, 47, 107695. [Google Scholar] [CrossRef]
- Tufariello, M.; Fragasso, M.; Pico, J.; Panighel, A.; Castellarin, S.D.; Flamini, R.; Grieco, F. Influence of non-Saccharomyces on wine chemistry: A focus on aroma-related compounds. Molecules 2021, 26, 644. [Google Scholar] [CrossRef]
- Canonico, L.; Comitini, F.; Ciani, M. Metschnikowia pulcherrima selected strain for ethanol reduction in wine: Influence of cell immobilization and aeration condition. Foods 2019, 8, 378. [Google Scholar] [CrossRef] [Green Version]
- Hranilovic, A.; Gambetta, J.M.; Jeffery, D.W.; Grbin, P.R.; Jiranek, V. Lower-alcohol wines produced by Metschnikowia pulcherrima and Saccharomyces cerevisiae co-fermentations: The effect of sequential inoculation timing. Int. J. Food Microbiol. 2020, 329, 108651. [Google Scholar] [CrossRef]
- Shehadeh, A.; Kechagia, D.; Evangelou, A.; Tataridis, P.; Shehadeh, F. Effect of ethanol, glycerol, glucose and tartaric acid on the viscosity of model aqueous solutions and wine samples. Food Chem. 2019, 300, 125191. [Google Scholar] [CrossRef] [PubMed]
- Seguinot, P.; Ortiz-Julien, A.; Camarasa, C. Impact of nutrient availability on the fermentation and production of aroma compounds under sequential inoculation with M. pulcherrima and S. cerevisiae. Front. Microbiol. 2020, 11, 305. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, M.; Ren, T.; Wang, J.; Niu, C.; Zheng, F.; Li, Q. Effect of Saccharomyces cerevisiae and non-Saccharomyces strains on alcoholic fermentation behavior and aroma profile of yellow-fleshed peach wine. LWT 2021, 155, 112993. [Google Scholar] [CrossRef]
- Maturano, Y.P.; Assof, M.; Fabani, M.P.; Nally, M.C.; Jofré, V.; Assaf, L.A.R.; Toro, M.E.; De Figueroa, L.I.C.; Vazquez, F. Enzymatic activities produced by mixed Saccharomyces and non-Saccharomyces cultures: Relationship with wine volatile composition. Antonie van Leeuwenhoek 2015, 108, 1239–1256. [Google Scholar] [CrossRef] [PubMed]
- Padilla, B.; Gil, J.V.; Manzanares, P. Challenges of the non-conventional yeast Wickerhamomyces anomalus in winemaking. Fermentation 2018, 4, 68. [Google Scholar] [CrossRef] [Green Version]
- Martin, V.; Valera, M.J.; Medina, K.; Boido, E.; Carrau, F. Oenological impact of the Hanseniaspora/Kloeckera yeast genus on wines—A review. Fermentation 2018, 4, 76. [Google Scholar] [CrossRef] [Green Version]
- Šehović, D.; Petravić-Tominac, V.; Marić, V. On higher alcohols in wine. Period. Biol. 2007, 109, 205–217. [Google Scholar]
- Dimitrov, D.R.; Iliev, A.M. Influence on different vine rootstocks on the volatile composition of red wines from Kaylashki Rubin grapevine variety. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2021, 22, 201–212. [Google Scholar]
- Antoce, A.O.; Cojocaru, G.A. Effects of blending and co-inoculation on the aromatic profile of wines. Rev. Chim. 2015, 66, 1567–1571. [Google Scholar]
- De-La-Fuente-Blanco, A.; Saenz-Navajas, M.-P.; Ferreira, V. On the effects of higher alcohols on red wine aroma. Food Chem. 2016, 210, 107–114. [Google Scholar] [CrossRef]
- Cioch-Skoneczny, M.; Satora, P.; Skoneczny, S.; Skotniczny, M. Biodiversity of yeasts isolated during spontaneous fermentation of cool climate grape musts. Arch. Microbiol. 2020, 203, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Teng, C.; Xu, D.; Fu, Z.; Minhazul, K.A.H.M.; Wu, Q.; Liu, P.; Yang, R.; Li, X. Enhanced production of ethyl acetate using co-culture of Wickerhamomyces anomalus and Saccharomyces cerevisiae. J. Biosci. Bioeng. 2019, 128, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Balmaseda, A.; Bordons, A.; Reguant, C.; Bautista-Gallego, J. Non-Saccharomyces in wine: Effect upon Oenococcus oeni and malolactic fermentation. Front. Microbiol. 2018, 9, 534. [Google Scholar] [CrossRef] [PubMed]
- Zilelidou, E.; Nisiotou, A. Understanding wine through yeast interactions. Microorganisms 2021, 9, 1620. [Google Scholar] [CrossRef] [PubMed]
- Balmaseda, A.; Rozès, N.; Leal, M.Á.; Bordons, A.; Reguant, C. Impact of changes in wine composition produced by non-Saccharomyces on malolactic fermentation. Int. J. Food Microbiol. 2020, 337, 108954. [Google Scholar] [CrossRef]
- Di Gianvito, P.; Englezos, V.; Rantsiou, K.; Cocolin, L. Bioprotection strategies in winemaking. Int. J. Food Microbiol. 2022, 364, 109532. [Google Scholar] [CrossRef]
- Denev, P.; Číž, M.; Kratchanova, M.; Blazheva, D. Black chokeberry (Aronia melanocarpa) polyphenols reveal different antioxidant, antimicrobial and neutrophil-modulating activities. Food Chem. 2019, 284, 108–117. [Google Scholar] [CrossRef]
- Cakar, U.; Grozdanic, N.; Petrovic, A.; Pejin, B.; Nastasijevic, B.; Markovic, B.; Dordevic, B. Fruit Wines Inhibitory Activity against α-Glucosidase. Curr. Pharm. Biotechnol. 2018, 18, 1264–1272. [Google Scholar] [CrossRef]
- Soares, F.; Anzanello, M.J.; Fogliatto, F.S.; Marcelo, M.C.; Ferrão, M.F.; Manfroi, V.; Pozebon, D. Element selection and concentration analysis for classifying South America wine samples according to the country of origin. Comput. Electron. Agric. 2018, 150, 33–40. [Google Scholar] [CrossRef]
- Wang, N.; Chen, S.; Zhou, Z. Characterization of volatile organic compounds as potential aging markers in Chinese rice wine using multivariable statistics. J. Sci. Food Agric. 2019, 99, 6444–6454. [Google Scholar] [CrossRef]
- Cassino, C.; Tsolakis, C.; Bonello, F.; Gianotti, V.; Osella, D. Wine evolution during bottle aging, studied by 1H NMR spectroscopy and multivariate statistical analysis. Food Res. Int. 2018, 116, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Mascellani, A.; Hoca, G.; Babisz, M.; Krska, P.; Kloucek, P.; Havlik, J. 1H NMR chemometric models for classification of Czech wine type and variety. Food Chem. 2020, 339, 127852. [Google Scholar] [CrossRef] [PubMed]
Strain | Origin | GenBank Accession Number | References |
---|---|---|---|
Saccharomyces cerevisiae Tokay (winery strain) LOCK0203 | LOCK * | - | [15] |
Metschnikowia pulcherrima NCYC747 | NCYC ** | - | [15] |
Metschnikowia sinensis LOCK1143 | Strawberry fruits | MK612102 | [15] |
Dekkera bruxellensis NCYC D5300 | Fruit-flavored mineral water | LT908481 | [18] |
Wickerhamomyces anomalus NCYC D5299 | Fruit-flavored mineral water | LT908480 | [18] |
Must | Glucose [g/L] | Fructose [g/L] | Arabinose [g/L] | Glycerol [g/L] | Ethanol [g/L] | Extract [°Bx] | pH |
---|---|---|---|---|---|---|---|
Apple | 168.40 ± 9.45 | 111.56 ± 7.23 | <LOD * | <LOD | <LOD | 26.82 ± 1.21 | 3.70 ± 0.15 |
Apple/chokeberry | 174.28 ± 11.34 | 100.68 ± 8.34 | 7.72 ± 0.34 | 0.12 ± 0.03 | <LOD | 27.22 ± 3.20 | 3.13 ± 0.05 |
Yeast Strain | Glucose | Fructose | Sucrose | Arabinose | Cellobiose |
---|---|---|---|---|---|
S. cerevisiae | + * | + | + | − | − |
M. pulcherrima | + | + | + | − | + |
M. sinensis | + | + | + | + | + |
D. bruxellensis | + | + | + | − | + |
W. anomalus | + | + | + | − | + |
Enzymes | Yeast Strains | |||||
---|---|---|---|---|---|---|
Classes | Name | S. c. * | M. p. | M. s. | D. b. | W. a. |
Proteases | Leucine arylamidase | 5 | 4 | 5 | 3 | 4 |
Valine arylamidase | 4 | 3 | 4 | 2 | 4 | |
Cystine arylamidase | 4 | 1 | 3 | 1 | 3 | |
Esterases | Esterase C4 | 4 | 3 | 4 | 2 | 3 |
Esterase C8 | 4 | 3 | 4 | 1 | 3 | |
Phosphatases | Alkaline phosphatase | 4 | 1 | 1 | 3 | 0 |
Acid phosphatase | 5 | 2 | 4 | 3 | 3 | |
Naphtol-AS-BI-phosphohydrolase | 4 | 4 | 4 | 4 | 1 | |
Glycoside hydrolases | α-Glucosidase | 3 | 5 | 4 | 4 | 4 |
β-Glucosidase | 0 | 3 | 3 | 4 | 4 |
Wine | Strain(s) | Compound [g/L] | |||||
---|---|---|---|---|---|---|---|
Glucose | Fructose | Glycerol | Acetic Acid | Methanol | Ethanol | ||
Apple | S. cerevisiae | 44.77 b ± 1.22 | 31.39 b ± 0.92 | 4.70 ab ± 0.22 | 0.29 ab ± 0.02 | 1.39 a ± 0.43 | 92.53 a ± 3.21 |
M. pulcherrima | 109.88 a ± 3.34 | 69.33 ab ± 3.22 | 0.23 b ± 0.12 | 0.03 c ± 0.01 | <LOD * | 22.84 ab ± 1.01 | |
M. sinensis | 114.36 a ± 4.21 | 77.10 ab ± 4.02 | 1.39 ab ± 0.20 | 0.31 ab ± 0.02 | <LOD | 12.21 b ± 1.13 | |
D. bruxellensis | 106.89 a ± 3.17 | 70.29 ab ± 3.89 | 1.29 ab ± 0.19 | 0.39 ab ± 0.02 | 0.49 a ± 0.11 | 29.88 ab ± 1.03 | |
W. anomalus | 65.63 ab ± 1.82 | 123.37 a ± 1.22 | 1.62 ab ± 0.12 | 0.46 a ± 0.04 | <LOD | 18.75 ab ± 1.21 | |
S. cerevisiae + M. pulcherrima | 58.15 ab ± 1.46 | 35.37 ab ± 2.11 | 4.79 ab ± 0.92 | 0.22 b ± 0.09 | 1.45 a ± 0.81 | 82.41 ab ± 2.41 | |
S. cerevisiae + M. sinensis | 53.47 ab ± 2.02 | 33.17 b ± 0.92 | 4.14 ab ± 0.85 | 0.26 ab ± 0.06 | <LOD | 84.16 ab ± 1.01 | |
S. cerevisiae + D. bruxellensis + W. anomalus | 64.65 ab ± 1.22 | 39.68 ab ± 2.22 | 5.16 ab ± 0.78 | 0.33 ab ± 0.09 | <LOD | 79.32 ab ± 1.34 | |
S. cerevisiae + D. bruxellensis + W. anomalus+ M. pulcherrima | 62.30 ab ± 3.20 | 37.10 ab ± 3.01 | 5.13 ab ± 0.91 | 0.31 ab ± 0.08 | <LOD | 79.76 ab ± 1.19 | |
S. cerevisiae + D. bruxellensis + W. anomalus+ M. sinensis | 60.10 ab ± 4.36 | 39.75 ab ± 2.23 | 5.33 a ± 0.61 | 0.37 ab ± 0.11 | <LOD | 81.77 ab ± 2.18 | |
Apple/Chokeberry | S. cerevisiae | 62.0 b ± 2.31 | 42.47 ab ± 1.05 | 5.08 a ± 0.41 | 0.23 ab ± 0.08 | 0.47 ab ± 0.11 | 77.91 a ± 4.26 |
M. pulcherrima | 108.4 ab ± 3.67 | 73.90 ab ± 3.27 | 1.67 ab ± 0.30 | 0.31 ab ± 0.09 | 0.09 b ± 0.01 | 13.32 ab ± 1.01 | |
M. sinensis | 156.60 a ± 5.32 | 73.56 ab ± 3.33 | 1.29 ab ± 0.21 | 0.30 ab ± 0.09 | 0.20 ab ± 0.11 | 11.49 b ± 0.99 | |
D. bruxellensis | 85.92 ab ± 2.39 | 67.46 ab ± 2.89 | 1.18 b ± 0.11 | 0.31 ab ± 0.01 | 0.45 ab ± 0.10 | 25.55 ab ± 1.32 | |
W. anomalus | 89.74 ab ± 3.01 | 79.40 a ± 3.33 | 1.26 ab ± 0.36 | 0.40 ab ± 0.07 | 0.10 b ± 0.01 | 16.29 ab ± 1.33 | |
S. cerevisiae + M. pulcherrima | 75.29 ab ± 1.79 | 42.84 ab ± 2.31 | 4.57 ab ± 0.30 | 0.23 ab ± 0.01 | 0.43 ab ± 0.11 | 70.78 ab ± 4.31 | |
S. cerevisiae + M. sinensis | 73.38 ab ± 1.28 | 42.78 ab ± 1.91 | 3.85 ab ± 0.21 | 0.21 b ± 0.04 | 0.59 a ± 0.14 | 72.47 ab ± 3.26 | |
S. cerevisiae + D. bruxellensis + W. anomalus | 77.29 ab ± 1.31 | 44.22 ab ± 1.65 | 4.61 ab ± 0.57 | 0.37 ab ± 0.09 | 0.35 ab ± 0.09 | 70.69 ab ± 2.99 | |
S. cerevisiae + D. bruxellensis + W. anomalus + M.pulcherrima | 61.52 b ± 2.01 | 37.77 b ± 1.01 | 4.07 ab ± 0.91 | 0.47 a ± 0.09 | <LOD | 70.22 ab ± 2.34 | |
S. cerevisiae + D. bruxellensis + W. anomalus + M. sinensis | 76.54 ab ± 1.35 | 44.50 ab ± 1.30 | 4.77 ab ± 0.89 | 0.38 ab ± 0.06 | 0.35 ab ± 0.08 | 70.75 ab ± 2.11 |
Wine | Compound (IUPAC Name) [mg/L] | Strain(s) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S. c. * | M. p. | M. s. | D. b. | W. a. | S. c. + M. p. | S. c. + M. s. | S. c. + D. b. + W. a | S. c. + D. b. + W. a + M. p. | S. c. + D. b. + W. a + M. s. | |||
Apple | Esters | Ethyl formate | 0.149 ab ± 0.005 | 0.240 a ± 0.012 | 0.088 ab ± 0.000 | <LOD | 0.078 ab ± 0.012 | 0.159 ab ± 0.012 | 0.177 ab ± 0.014 | 0.061 b ± 0.011 | 0.127 ab ± 0.075 | 0.106 ab ± 0.025 |
Methyl acetate | 0.043 bc ± 0.003 | 0.063 abc ± 0.002 | 0.154 ab ± 0.015 | <LOD | 0.526 a ± 0.011 | 0.101 abc ± 0.075 | 0.070 abc ± 0.035 | 0.033 c ± 0.009 | 0.051 abc ± 0.003 | 0.071 abc ± 0.013 | ||
Ethyl acetate | 13.070 b ± 0.780 | 52.870 ab ± 1.022 | 42.634 ab ± 1.102 | 33.977 ab ± 0.675 | 88.941 a ± 2.011 | 24.447 ab ± 1.001 | 20.063 b ± 0.875 | 58.098 ab ± 1.003 | 56.295 ab ± 0.785 | 63.105 ab ± 3.105 | ||
Ethyl propanoate | 0.031 ab ± 0.005 | 0.066 a ± 0.011 | 0.047 ab ± 0.003 | 0.025 ab ± 0.002 | <LOD | 0.024 ab ± 0.000 | 0.036 ab ± 0.004 | 0.022 b ± 0.003 | 0.067 a ± 0.015 | 0.061 ab ± 0.005 | ||
Ethyl-2-methylpropanoate | 0.004 b ± 0.000 | <LOD | <LOD | 0.084 a ± 0.012 | <LOD | 0.003 b ± 0.000 | 0.007 b ± 0.000 | 0.021 ab ± 0.002 | 0.027 ab ± 0.004 | 0.066 a ± 0.003 | ||
2-Methylpropyl acetate | 0.007 ab ± 0.001 | <LOD | 0.005 b ± 0.000 | <LOD | <LOD | 0.007 ab ± 0.001 | 0.006 ab ± 0.000 | 0.012 ab ± 0.000 | 0.011 ab ± 0.002 | 0.015 a ± 0.004 | ||
Ethyl butanoate | 0.007 ab ± 0.000 | <LOD | 0.004 b ± 0.001 | 0.009 ab ± 0.000 | <LOD | 0.012 ab ± 0.004 | 0.005 b ± 0.000 | 0.014 ab ± 0.007 | 0.020 ab ± 0.002 | 0.034 a ± 0.004 | ||
3-Methylbutyl acetate | 0.046 ab ± 0.015 | <LOD | <LOD | 0.009 b ± 0.001 | <LOD | 0.124 a ± 0.075 | 0.087 ab ± 0.012 | 0.063 ab ± 0.011 | 0.064 ab ± 0.003 | 0.088 ab ± 0.012 | ||
Ethyl hexanoate | 0.005 b ± 0.000 | <LOD | <LOD | 0.019 ab ± 0.003 | <LOD | 0.008 ab ± 0.000 | 0.006 b ± 0.000 | 0.008 ab ± 0.002 | 0.016 ab ± 0.007 | 0.049 a ± 0.003 | ||
Ethyl octanoate | 0.005 b ± 0.000 | <LOD | <LOD | 0.011 ab ± 0.002 | <LOD | 0.006 ab ± 0.001 | 0.006 ab ± 0.000 | 0.006 ab ± 0.001 | 0.009 ab ± 0.002 | 0.062 ab ± 0.006 | ||
Ethyl decanoate | 0.004 ab ± 0.000 | <LOD | <LOD | <LOD | <LOD | 0.002 b ± 0.000 | 0.005 a ± 0.001 | <LOD | <LOD | 0.002 ab ± 0.000 | ||
Ethyl 2-methylbutanoate | <LOD | <LOD | <LOD | 0.014 ab ± 0.003 | <LOD | <LOD | <LOD | 0.005 b ± 0.000 | 0.006 ab ± 0.000 | 0.024 a ± 0.003 | ||
Ethyl-3-methylbutanoate | <LOD | <LOD | <LOD | 0.007 ± 0.000 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | ||
Alcohols | Propan-1-ol | 3.504 ab ± 0.125 | 1.434 b ± 0.115 | 0.913 b ± 0.056 | <LOD | 3.237 ab ± 0.012 | 3.696 ab ± 0.015 | 4.793 a ± 0.673 | 2.896 ab ± 0.912 | 2.996 ab ± 0.114 | 2.105 ab ± 0.095 | |
2-Methylpropan-1-ol | 50.675 ab ± 1.105 | 52.858 ab ± 0.895 | 52.845 ab ± 0.005 | 4.956 b ± 0.235 | 3.802 b ± 0.075 | 56.185 ab ± 1.002 | 66.382 a ± 2.000 | 54.067 ab ± 1.075 | 53.008 ab ± 1.346 | 52.991 ab ± 0.895 | ||
3-Methylbutan-1-ol | 133.063 ab ± 2.124 | 43.286 ab ± 1.001 | 29.285 ab ± 0.997 | 12.338 ab ± 0.095 | 10.092 b ± 0.789 | 159.451 a ± 0.005 | 137.647 ab ± 3.005 | 156.879 a ± 2.015 | 164.577 a ± 3.045 | 155.604 a ± 2.974 | ||
2-Methylbutan-1-ol | 26.576 ab ± 0.805 | 8.213 ab ± 0.125 | 5.735 ab ± 0.764 | 1.462 b ± 0.125 | 4.429 ab ± 0.712 | 32.967 a ± 2.195 | 32.691 a ± 1.025 | 28.534 ab ± 3.025 | 29.723 ab ± 0.985 | 28.045 ab ± 1.113 | ||
Aldehydes | Acetaldehyde | 44.902 a ± 0.998 | 46.327 a ± 1.005 | 18.949 b ± 0.789 | 18.241 b ± 0.915 | 25.207 ab ± 0.985 | 36.287 ab ± 1.112 | 46.129 a ± 2.012 | 20.913 ab ± 1.002 | 22.350 ab ± 0.965 | 23.341 ab ± 1.002 | |
Propanal | 0.027 b ± 0.005 | 0.060 ab ± 0.002 | 0.158 a ± 0.023 | 0.047 ab ± 0.015 | 0.067 ab ± 0.011 | 0.040 ab ± 0.006 | 0.041 ab ± 0.012 | 0.059 ab ± 0.006 | 0.048 ab ± 0.001 | 0.064 ab ± 0.004 | ||
Pentanal | 0.016 b ± 0.000 | <LOD | <LOD | <LOD | 0.021 ab ± 0.005 | 0.021 ab ± 0.002 | 0.024 a ± 0.005 | <LOD | 0.020 ab ± 0.002 | <LOD | ||
Others | 1,1-Diethoxyethane | 0.434 a ± 0.013 | 0.035 b ± 0.000 | <LOD | <LOD | <LOD | 0.255 ab ± 0.011 | 0.403 a ± 0.095 | 0.068 ab ± 0.012 | 0.060 ab ± 0.003 | 0.077 ab ± 0.004 | |
Butane-2,3-dione | <LOD | 0.701 ± 0.075 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | ||
3-Methylfuran | <LOD | <LOD | 1.658 ± 0.124 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | ||
Total (compounds number/amount) | 19/ 272.568 | 12/ 206.153 | 13/ 152.474 | 14/ 71.200 | 10/ 136.400 | 19/ 313.794 | 19/ 308.579 | 18/ 321.760 | 19/ 329.474 | 19/ 325.913 | ||
Apple/Chokeberry | Esters | Ethyl formate | 0.123 ab ± 0.040 | 0.095 b ± 0.011 | <LOD | <LOD | 2.322 a ± 0.056 | 0.208 ab ± 0.020 | <LOD | <LOD | <LOD | <LOD |
Methyl acetate | 0.039 b ± 0.011 | 0.082 b ± 0.008 | 0.717 ab ± 0.017 | 18.886 a ± 1.120 | <LOD | <LOD | 0.378 ab ± 0.018 | 0.214 ab ± 0.017 | 0.320 ab ± 0.026 | <LOD | ||
Ethyl acetate | 20.522 ab ± 0.896 | 15.396 b ± 0.876 | 39.391 ab ± 1.200 | <LOD | 85.961 a ± 2.235 | 17.622 ab ± 0.798 | 19.568 ab ± 0.865 | 52.022 ab ± 4.173 | 73.327 ab ± 5.881 | 53.092 ab ± 4.258 | ||
Ethyl propanoate | 0.038 ab ± 0.009 | <LOD | <LOD | 0.035 ab ± 0.003 | 0.010 b ± 0.000 | 0.028 ab ± 0.009 | 0.016 ab ± 0.007 | 0.011 b ± 0.001 | 0.061 a ± 0.005 | 0.014 ab ± 0.001 | ||
Ethyl-2-methylpropanoate | 0.009 b ± 0.003 | <LOD | <LOD | 0.134 ab ± 0.012 | <LOD | 0.004 b ± 0.001 | <LOD | 0.510 a ± 0.041 | 0.028 ab ± 0.02 | 0.457 a ± 0.037 | ||
2-Methylpropyl acetate | 0.006 ± 0.000 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | ||
Ethyl butanoate | 0.012 a ± 0.001 | 0.003 b ± 0.000 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | ||
2-Methylbutyl acetate | 0.012 a ± 0.004 | <LOD | <LOD | <LOD | <LOD | 0.020 a ± 0.003 | 0.013 a ± 0.001 | 0.020 a ± 0.007 | 0.019 a ± 0.003 | 0.018 a ± 0.004 | ||
3-Methylbutyl acetate | 0.133 a ± 0.010 | <LOD | <LOD | <LOD | <LOD | 0.127 a ± 0.012 | 0.136 a ± 0.023 | 0.068 a ± 0.011 | 0.083 a ± 0.012 | 0.064 a ± 0.009 | ||
Ethyl hexanoate | 0.016 ab ± 0.004 | <LOD | <LOD | 0.066 a ± 0.009 | <LOD | 0.016 ab ± 0.003 | 0.017 ab ± 0.009 | 0.019 ab ± 0.006 | 0.016 ab ± 0.005 | 0.012 b ± 0.003 | ||
Ethyl octanoate | 0.019 ab ± 0.009 | <LOD | <LOD | 0.032 a ± 0.011 | <LOD | 0.014 ab ± 0.002 | 0.025 ab ± 0.008 | 0.017 ab ± 0.003 | 0.024 ab ± 0.006 | 0.008 b ± 0.001 | ||
Ethyl decanoate | 0.014 a ± 0.001 | <LOD | <LOD | 0.001 b ± 0.000 | <LOD | 0.003 ab ± 0.000 | 0.007 ab ± 0.002 | <LOD | <LOD | <LOD | ||
Ethyl 2-methylbutanoate | <LOD | <LOD | <LOD | 0.060 a ± 0.009 | <LOD | <LOD | <LOD | 0.009 b ± 0.002 | 0.006 b ± 0.001 | 0.006 b ± 0.001 | ||
Ethyl-3-methylbutanoate | <LOD | <LOD | <LOD | 0.029 ± 0.008 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | ||
Alcohols | Propan-1-ol | 3.024 ab ± 0.076 | 0.763 b ± 0.089 | 2.470 ab ± 0.745 | 0.984 b ± 0.045 | 5.744 ab ± 0.843 | 5.056 ab ± 0.943 | 6.905 a ± 0.278 | 5.247 ab ± 0.313 | 4.869 ab ± 0.075 | 4.876 ab ± 0.098 | |
2-Methylpropan-1-ol | 56.285 a ± 1.016 | 28.389 ab ± 0.987 | 38.909 ab ± 1.013 | 2.864 b ± 0.079 | 2.414 b ± 0.092 | 49.527 a ± 1.750 | 58.786 a ± 1.987 | 46.301 a ± 0.982 | 47.129 a ± 1.005 | 49.880 a ± 1.003 | ||
3-Methylbutan-1-ol | 138.955 a ± 3.065 | 18.720 b ± 1.005 | 36.057 b ± 2.019 | 8.799 b ± 0.094 | 6.809 b ± 0.123 | 113.018 a ± 4.002 | 112.34 a ± 3.128 | 23.491 b ± 0.876 | 103.272 a ± 2.978 | 22.623 b ± 0.783 | ||
2-Methylbutan-1-ol | 22.699 a ± 0.987 | 2.309 b ± 0.090 | 4.693 b ± 0.167 | 1.362 b ± 0.078 | 2.344 b ± 0.090 | 22.278 a ± 1.011 | 22.178 a ± 0.904 | 31.600 a ± 1.007 | 17.432 a ± 0.798 | 29.617 a ± 0.912 | ||
Aldehydes | Acetaldehyde | 20.444 abc ± 1.001 | 14.840 bc ± 0.876 | 17.639 abc ± 1.011 | 11.501 c ± 1.009 | 19.943 abc ± 0.995 | 19.677 abc ± 0.762 | 28.374 a ± 1.017 | 19.304 abc ± 0.680 | 25.352 ab ± 0.987 | 22.842 abc ± 0.607 | |
Propanal | 0.051 ab ± 0.009 | 0.100 ab ± 0.012 | 0.093 ab ± 0.023 | 0.132 a ± 0.067 | 0.053 ab ± 0.009 | 0.048 ab ± 0.007 | <LOD | <LOD | <LOD | 0.033 b ± 0.011 | ||
Pentanal | 0.031 a ± 0.005 | <LOD | <LOD | <LOD | 0.013 ab ± 0.002 | 0.019 ab ± 0.001 | 0.021 ab ± 0.009 | 0.012 b ± 0.005 | 0.015 ab ± 0.004 | 0.011 b ± 0.001 | ||
Furan-2-carbaldehyde | 0.729 a ± 0.067 | 0.413 ab ± 0.067 | <LOD | 0.826 a ± 0.076 | <LOD | 0.399 b ± 0.012 | <LOD | 0.608 a ± 0.032 | 0.579 a ± 0.067 | 0.441 ab ± 0.089 | ||
Others | 1,1-Diethoxyethane | 0.113 a ± 0.034 | <LOD | <LOD | <LOD | <LOD | 0.078 ab ± 0.011 | 0.108 a ± 0.011 | 0.055 b ± 0.008 | 0.114 a ± 0.009 | 0.068 ab ± 0.012 | |
Butane-2,3-dione | 0.954 ab ± 0.067 | 1.768 a ± 0.109 | 0.619 b ± 0.076 | 0.358 c ± 0.046 | <LOD | 0.973 ab ± 0.078 | 1.276 a ± 0.101 | 0.646 b ± 0.076 | 0.610 b ± 0.045 | 0.593 bc ± 0.097 | ||
3-Methylfuran | <LOD | <LOD | <LOD | 4.500 ± 0.870 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | ||
Pentan-2-one | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 0.037 a ± 0.012 | <LOD | 0.016 b ± 0.006 | <LOD | ||
Total (compounds number/amount) | 22/ 264.228 | 12/ 82.878 | 9/ 140.587 | 17/ 50.570 | 10/ 125.614 | 19/ 229.122 | 17/ 250.202 | 18/ 180.170 | 19/ 273.300 | 18/ 184.673 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kręgiel, D.; Pawlikowska, E.; Antolak, H.; Dziekońska-Kubczak, U.; Pielech-Przybylska, K. Exploring Use of the Metschnikowia pulcherrima Clade to Improve Properties of Fruit Wines. Fermentation 2022, 8, 247. https://doi.org/10.3390/fermentation8060247
Kręgiel D, Pawlikowska E, Antolak H, Dziekońska-Kubczak U, Pielech-Przybylska K. Exploring Use of the Metschnikowia pulcherrima Clade to Improve Properties of Fruit Wines. Fermentation. 2022; 8(6):247. https://doi.org/10.3390/fermentation8060247
Chicago/Turabian StyleKręgiel, Dorota, Ewelina Pawlikowska, Hubert Antolak, Urszula Dziekońska-Kubczak, and Katarzyna Pielech-Przybylska. 2022. "Exploring Use of the Metschnikowia pulcherrima Clade to Improve Properties of Fruit Wines" Fermentation 8, no. 6: 247. https://doi.org/10.3390/fermentation8060247
APA StyleKręgiel, D., Pawlikowska, E., Antolak, H., Dziekońska-Kubczak, U., & Pielech-Przybylska, K. (2022). Exploring Use of the Metschnikowia pulcherrima Clade to Improve Properties of Fruit Wines. Fermentation, 8(6), 247. https://doi.org/10.3390/fermentation8060247