A Comparative Study on the Debittering of Kinnow (Citrus reticulate L.) Peels: Microbial, Chemical, and Ultrasound-Assisted Microbial Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Chemical Compounds
2.2. Preparation of Samples
2.3. Debittering of Kinnow Peels
2.3.1. Chemical Debittering of Kinnow Peels
2.3.2. Microbial Debittering of Kinnow Peels by Aspergillus Niger Koji
2.3.3. Ultrasound-Assisted Microbial Debittering of Kinnow Peels
Experimental Design for Ultrasound-Assisted Microbial Debittering
2.4. Chemical Analysis
2.4.1. Quantitative Investigation of Naringin by HPLC
2.4.2. Total Phenol Content (TPC)
2.4.3. Total Flavonoid Content (TFC)
2.4.4. Total Antioxidant Activity (TAA)
2.5. Optimization
2.6. Model Validation
3. Results and Discussion
3.1. Chemical Composition of Kinnow Mandarin Peels before Debittering Treatments
3.2. Debittering of Kinnow Peels
3.2.1. Debittering by Chemical Method
3.2.2. Debittering by Microbial Method (by Treatment with A. niger koji)
3.2.3. Debittering Performed by an Ultrasound-Assisted Microbial Debittering Process
Model Characteristics and Validation
3.3. Response Analysis
3.3.1. The Influence of Process Parameters on Naringin Content of Debittered Kinnow Peels
3.3.2. The Influence of Process Parameters on the Total Phenol Content (TPC) of Debittered Kinnow Peels
3.3.3. The Influence of Process Parameters on the Total Flavonoid Content (TFC) of Debittered Kinnow Peels
3.3.4. The Influence of Process Parameters on the Total Antioxidant Activity (TAA) of Debittered Kinnow Peels
3.4. Optimization and Validation of Process Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT Food and Agriculture Data. Available online: https://www.fao.org/faostat/en/#data/QC (accessed on 21 July 2022).
- Purewal, S.S.; Sandhu, K.S. Debittering of Citrus Juice by Different Processing Methods: A Novel Approach for Food Industry and Agro-Industrial Sector. Sci. Hortic. 2021, 276, 109750. [Google Scholar] [CrossRef]
- Suri, S.; Singh, A.; Nema, P.K. Current Applications of Citrus Fruit Processing Waste: A Scientific Outlook. Appl. Food Res. 2022, 2, 100050. [Google Scholar] [CrossRef]
- ICAR-NRCC. Indian Council of Agricultural Research-National Research Centre for Citrus, (ICAR-NRCC). Nagpur, I. 4. ICAR-NRCC. 2015. Available online: https://doi.org/2015/CCRINagpur(Vision2050).pdf (accessed on 11 August 2022).
- Panwar, D.; Saini, A.; Panesar, P.S.; Chopra, H.K. Unraveling the Scientific Perspectives of Citrus By-Products Utilization: Progress towards Circular Economy. Trends Food Sci. Technol. 2021, 111, 549–562. [Google Scholar] [CrossRef]
- Suri, S.; Singh, A.; Nema, P.K. Recent Advances in Valorization of Citrus Fruits Processing Waste: A Way Forward towards Environmental Sustainability. Food Sci. Biotechnol. 2021, 30, 1601–1626. [Google Scholar] [CrossRef]
- Singla, G.; Panesar, P.; Sangwan, R.; Krishania, M. Enzymatic Debittering of Citrus Reticulata (Kinnow) Pulp Residue and Its Utilization for the Preparation of Vermicelli. J. Food Process. Preserv. 2021, 45, e15135. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic Composition, Antioxidant Potential and Health Benefits of Citrus Peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef] [PubMed]
- Suri, S.; Singh, A.; Nema, P.K. Infrared Drying of Kinnow (Citrus Reticulata) Peel Waste: Kinetics and Quality Characterization. Biomass Convers. Biorefinery 2022, 1, 1–12. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, Y. Binary Adsorption Isotherm and Kinetics on Debittering Process of Ponkan (Citrus Reticulata Blanco) Juice with Macroporous Resins. LWT Food Sci. Technol. 2015, 63, 1245–1253. [Google Scholar] [CrossRef]
- Cavia-Saiz, M.; Muñiz, P.; Ortega, N.; Busto, M.D. Effect of Enzymatic Debittering on Antioxidant Capacity and Protective Role against Oxidative Stress of Grapefruit Juice in Comparison with Adsorption on Exchange Resin. Food Chem. 2011, 125, 158–163. [Google Scholar] [CrossRef]
- Bao, Y.; Yuan, F.; Zhao, X.; Liu, Q.; Gao, Y. Equilibrium and Kinetic Studies on the Adsorption Debittering Process of Ponkan (Citrus Reticulata Blanco) Juice Using Macroporous Resins. Food Bioprod. Process. 2015, 94, 199–207. [Google Scholar] [CrossRef]
- Li, L.J.; Wu, Z.Y.; Yu, Y.; Zhang, L.J.; Zhu, Y.B.; Ni, H.; Chen, F. Development and Characterization of an α-L-Rhamnosidase Mutant with Improved Thermostability and a Higher Efficiency for Debittering Orange Juice. Food Chem. 2018, 245, 1070–1078. [Google Scholar] [CrossRef]
- Gupta, A.K.; Koch, P.; Mishra, P. Optimization of Debittering and Deacidification Parameters for Pomelo Juice and Assessment of Juice Quality. J. Food Sci. Technol. 2020, 57, 4726–4732. [Google Scholar] [CrossRef]
- Naz, S.; Ahmad, N.; Akhtar, J.; Ahmad, N.M.; Ali, A.; Zia, M. Management of Citrus Waste by Switching in the Production of Nanocellulose. IET Nanobiotechnol. 2016, 10, 395–399. [Google Scholar] [CrossRef]
- Leichtweis, M.G.; Pereira, C.; Prieto, M.A.; Barreiro, M.F.; Baraldi, I.J.; Barros, L.; Ferreira, I.C.F.R. Ultrasound as a Rapid and Low-Cost Extraction Procedure to Obtain Anthocyanin-Based Colorants from Prunus spinosa L. Fruit Epicarp: Comparative Study with Conventional Heat-Based Extraction. Molecules 2019, 24, 573. [Google Scholar] [CrossRef]
- Dabbour, M.; He, R.; Mintah, B.; Tang, Y.; Ma, H. Ultrasound Assisted Enzymolysis of Sunflower Meal Protein: Kinetics and Thermodynamics Modeling. J. Food Process Eng. 2018, 41, e12865. [Google Scholar] [CrossRef]
- Wang, D.; Yan, L.; Ma, X.; Wang, W.; Zou, M.; Zhong, J.; Ding, T.; Ye, X.; Liu, D. Ultrasound Promotes Enzymatic Reactions by Acting on Different Targets: Enzymes, Substrates and Enzymatic Reaction Systems. Int. J. Biol. Macromol. 2018, 119, 453–461. [Google Scholar] [CrossRef]
- Sharma, H.; Singh, A.K.; Borad, S.; Deshwal, G.K. Processing Stability and Debittering of Tinospora Cordifolia (Giloy) Juice Using Ultrasonication for Potential Application in Foods. LWT 2021, 139, 110584. [Google Scholar] [CrossRef]
- Gao, X.; Feng, T.; Liu, E.; Shan, P.; Zhang, Z.; Liao, L.; Ma, H. Ougan Juice Debittering Using Ultrasound-Aided Enzymatic Hydrolysis: Impacts on Aroma and Taste. Food Chem. 2021, 345, 128767. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Wang, Y.; Liu, Z.; Ni, Y. Effects of Extraction Methods on the Structural Characteristics and Functional Properties of Dietary Fiber Extracted from Kiwifruit (Actinidia Deliciosa). Food Hydrocoll. 2021, 110, 106162. [Google Scholar] [CrossRef]
- Seal, T. Quantitative HPLC Analysis of Phenolic Acids, Flavonoids and Ascorbic Acid in Four Different Solvent Extracts of Two Wild Edible Leaves, Sonchus Arvensis and Oenanthe Linearis of North-Eastern Region in India. J. Appl. Pharm. Sci. 2016, 6, 157–166. [Google Scholar] [CrossRef]
- Singleton, V.; Orthofer, R.; Lamuela-Raventós, R. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Suri, S.; Dutta, A.; Chandra Shahi, N.; Raghuvanshi, R.S.; Singh, A.; Chopra, C.S. Numerical Optimization of Process Parameters of Ready-to-Eat (RTE) Iron Rich Extruded Snacks for Anemic Population. LWT 2020, 134, 110164. [Google Scholar] [CrossRef]
- Rafiq, S.; Singh, B.; Gat, Y. Effect of Different Drying Techniques on Chemical Composition, Color and Antioxidant Properties of Kinnow (Citrus Reticulata) Peel. J. Food Sci. Technol. 2019, 56, 2458–2466. [Google Scholar] [CrossRef]
- Deng, L.; Mujumdar, A.; Yang, W.; Zhang, Q.; Zheng, Z.; Wu, M.; Xiao, H. Hot Air Impingement Drying Kinetics and Quality Attributes of Orange Peel. J. Food Process. Preserv. 2020, 44, e14294. [Google Scholar] [CrossRef]
- Lagnika, C.; Zhang, M.; Nsor-Atindana, J.; Bashari, M. Effects of Ultrasound and Chemical Treatments on White Mushroom (Agaricus Bisporus) Prior to Modified Atmosphere Packaging in Extending Shelf-Life. J. Food Sci. Technol. 2014, 51, 3749–3757. [Google Scholar] [CrossRef] [PubMed]
- Hölker, U.; Lenz, J. Solid-State Fermentation—Are There Any Biotechnological Advantages? Curr. Opin. Microbiol. 2005, 8, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.M.; Zhu, C.F.; Zhong, S.A.; Zhou, M. Da Extraction of Naringin from Pomelo Peels as Dihydrochalcone’s Precursor. J. Sep. Sci. 2011, 34, 113–117. [Google Scholar] [CrossRef]
- Viswanatha, G.L.; Shylaja, H.; Moolemath, Y. The Beneficial Role of Naringin- a Citrus Bioflavonoid, against Oxidative Stress-Induced Neurobehavioral Disorders and Cognitive Dysfunction in Rodents: A Systematic Review and Meta-Analysis. Biomed. Pharmacother. 2017, 94, 909–929. [Google Scholar] [CrossRef] [PubMed]
- Kumar Gupta, A.; Pratim Sahu, P.; Mishra, P. Ultrasound Aided Debittering of Bitter Variety of Citrus Fruit Juice: Effect on Chemical, Volatile Profile and Antioxidative Potential. Ultrason. Sonochem. 2021, 81, 105839. [Google Scholar] [CrossRef]
- Srikantha, K.; Kapilan, R.; Vasantharuba, S.; Seevaratnam, V. Kinetic Properties and Metal Ion Stability of the Extracellular Naringinase Produced by Aspergillus Flavus Isolated from Decaying Citrus Maxima Fruits. Int. J. Sci. Res. Environ. Sci. 2017, 5, 0071–0081. [Google Scholar] [CrossRef]
- Scordino, M.; Di Mauro, A.; Passerini, A.; Maccarone, E. Adsorption of Flavonoids on Resins: Hesperidin. J. Agric. Food Chem. 2003, 51, 6998–7004. [Google Scholar] [CrossRef]
- Shanmugaprakash, M.; Vinoth Kumar, V.; Hemalatha, M.; Melbia, V.; Karthik, P. Solid-State Fermentation for the Production of Debittering Enzyme Naringinase Using Aspergillus Niger MTCC 1344. Eng. Life Sci. 2011, 11, 322–325. [Google Scholar] [CrossRef]
- Um, M.; Han, T.H.; Lee, J.W. Ultrasound-Assisted Extraction and Antioxidant Activity of Phenolic and Flavonoid Compounds and Ascorbic Acid from Rugosa Rose (Rosa Rugosa Thunb.) Fruit. Food Sci. Biotechnol. 2018, 27, 375–382. [Google Scholar] [CrossRef]
- Ajila, C.M.; Gassara, F.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Valéro, J.R. Polyphenolic Antioxidant Mobilization in Apple Pomace by Different Methods of Solid-State Fermentation and Evaluation of Its Antioxidant Activity. Food Bioprocess Technol. 2012, 5, 2697–2707. [Google Scholar] [CrossRef]
- Gulsunoglu, Z.; Purves, R.; Karbancioglu-Guler, F.; Kilic-Akyilmaz, M. Enhancement of Phenolic Antioxidants in Industrial Apple Waste by Fermentation with Aspergillus Spp. Biocatal. Agric. Biotechnol. 2020, 25, 101562. [Google Scholar] [CrossRef]
- Torres-León, C.; Ramírez-Guzmán, N.; Ascacio-Valdés, J.; Serna-Cock, L.; dos Santos Correia, M.T.; Contreras-Esquivel, J.C.; Aguilar, C.N. Solid-State Fermentation with Aspergillus Niger to Enhance the Phenolic Contents and Antioxidative Activity of Mexican Mango Seed: A Promising Source of Natural Antioxidants. LWT 2019, 112, 108236. [Google Scholar] [CrossRef]
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting Citrus Wastes into Value-Added Products: Economic and Environmently Friendly Approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef]
- Li, L.; Gong, J.; Wang, S.; Li, G.; Gao, T.; Jiang, Z.; Cheng, Y.S.; Ni, H.; Li, Q. Heterologous Expression and Characterization of a New Clade of Aspergillus α-L-Rhamnosidase Suitable for Citrus Juice Processing. J. Agric. Food Chem. 2019, 67, 2926–2935. [Google Scholar] [CrossRef]
- Mieszczakowska-Frąc, M.; Dyki, B.; Konopacka, D. Effects of Ultrasound on Polyphenol Retention in Apples After the Application of Predrying Treatments in Liquid Medium. Food Bioprocess Technol. 2016, 9, 543–552. [Google Scholar] [CrossRef]
- Ren, F.; Perussello, C.A.; Zhang, Z.; Kerry, J.P.; Tiwari, B.K. Impact of Ultrasound and Blanching on Functional Properties of Hot-Air Dried and Freeze Dried Onions. LWT 2018, 87, 102–111. [Google Scholar] [CrossRef]
- Pétrier, C.; Combet, E.; Mason, T. Oxygen-Induced Concurrent Ultrasonic Degradation of Volatile and Non-Volatile Aromatic Compounds. Ultrason. Sonochem. 2007, 14, 117–121. [Google Scholar] [CrossRef]
- Zou, Z.; Xi, W.; Hu, Y.; Nie, C.; Zhou, Z. Antioxidant Activity of Citrus Fruits. Food Chem. 2016, 196, 885–896. [Google Scholar] [CrossRef]
- Kaur, S.; Panesar, P.S.; Chopra, H.K. Standardization of Ultrasound-Assisted Extraction of Bioactive Compounds from Kinnow Mandarin Peel. Biomass Convers. Biorefinery 2021, 1, 1–11. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Liu, R.H. Processed Sweet Corn Has Higher Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 4959–4964. [Google Scholar] [CrossRef]
- Ashokkumar, M.; Sunartio, D.; Kentish, S.; Mawson, R.; Simons, L.; Vilkhu, K.; Versteeg, C. (Kees) Modification of Food Ingredients by Ultrasound to Improve Functionality: A Preliminary Study on a Model System. Innov. Food Sci. Emerg. Technol. 2008, 9, 155–160. [Google Scholar] [CrossRef]
S. No. | Independent Variables | Code | Values of Independent Variables | ||
---|---|---|---|---|---|
−1 | 0 | +1 | |||
1. | Temperature (°C) | X1 | 40 | 50 | 60 |
2. | Time (Min) | X2 | 30 | 60 | 90 |
3. | Aspergillus Niger Koji extract (%) | X3 | 1% | 2% | 3% |
Run | Temperature (°C) | Time (min) | Aspergillus niger Koji Extract (%) | Naringin Content (mg/g) | TPC (mg GAE/g) | TFC (mg QE/g) | TAA (%) |
---|---|---|---|---|---|---|---|
1 | 50 | 30 | 3 | 8.91 | 17.12 | 12.44 | 30.79 |
2 | 40 | 60 | 3 | 16.60 | 15.32 | 15.39 | 30.83 |
3 | 50 | 90 | 1 | 13.02 | 16.80 | 19.28 | 31.09 |
4 | 60 | 60 | 1 | 18.23 | 21.89 | 16.42 | 37.83 |
5 | 50 | 30 | 1 | 14.10 | 30.30 | 26.66 | 45.32 |
6 | 40 | 60 | 1 | 15.45 | 31.57 | 26.12 | 38.81 |
7 | 50 | 60 | 2 | 13.02 | 22.02 | 16.89 | 43.06 |
8 | 50 | 60 | 2 | 14.53 | 20.32 | 16.82 | 44.06 |
9 | 40 | 90 | 2 | 5.19 | 21.31 | 22.18 | 45.71 |
10 | 50 | 60 | 2 | 14.91 | 20.53 | 15.92 | 47.31 |
11 | 40 | 30 | 2 | 12.33 | 25.94 | 26.42 | 48.59 |
12 | 50 | 60 | 2 | 14.80 | 21.40 | 16.02 | 54.73 |
13 | 50 | 60 | 2 | 14.30 | 20.32 | 16.40 | 54.98 |
14 | 60 | 30 | 2 | 5.32 | 24.22 | 19.86 | 57.07 |
15 | 50 | 90 | 3 | 7.35 | 14.87 | 13.50 | 58.43 |
16 | 60 | 60 | 3 | 8.61 | 16.52 | 11.88 | 58.96 |
17 | 60 | 90 | 2 | 5.02 | 15.03 | 14.95 | 61.70 |
Factors | Product Responses | |||
---|---|---|---|---|
Naringin Content (mg/g) | TPC (mg GAE/g) | TFC (mg QE/g) | TAA (%) | |
Model F-value | 34.33 *** | 36.92 *** | 58.76 * | 7.94 ** |
Lack of fit | 2.35 ns | 3.33 ns | 6.51 ns | 0.18 ns |
CV (%) | 8.05 | 5.16 | 4.51 | 9.93 |
R2 | 0.9778 | 0.9794 | 0.9869 | 0.9108 |
Adjusted R2 | 0.9494 | 0.9528 | 0.9701 | 0.7960 |
Predicted R2 | 0.7613 | 0.7550 | 0.8230 | 0.7058 |
Model adequate precision | 18.1695 | 20.0454 | 24.9342 | 9.5839 |
Effect | Process Parameters | Product Responses | |||
---|---|---|---|---|---|
Fitted Model-Quadratic | Naringin Content (mg/g) | TPC (mg GAE/g) | TFC (mg QE/g) | TAA (%) | |
Intercept | 14.31 | 20.92 | 16.41 | 48.83 | |
Linear | X1 Temperature (°C) | −1.55 | −2.06 | −3.37 | 6.45 |
X2 Time (Min) | −1.26 | −3.70 | −1.93 | 1.89 | |
X3 Aspergillus niger Koji Extract (%) | −2.42 | −4.59 | −4.41 | 3.25 | |
Interactive | X1X2 | 1.71 | −1.14 | −0.170 | 1.88 |
X1X3 | −2.69 | 2.72 | +1.55 | 7.27 | |
X2X3 | −0.120 | 2.81 | +2.11 | 10.47 | |
Quadratic | X12 | −1.73 | 1.13 | +1.96 | 2.32 |
X22 | −5.61 | −0.42 | +2.48 | 2.12 | |
X32 | 2.15 | −0.72 | −0.923 | −9.54 | |
Fit statistics | Standard deviation | 0.95 | 0.87 | 0.81 | 0.61 |
Mean | 11.86 | 20.91 | 18.07 | 46.43 |
Particulars | Goal | Optimum Value | Desirability of Model | Error (%) |
---|---|---|---|---|
Temperature | Is in range | 40 °C | 0.756 | |
Time | Is in range | 30 min | ||
Aspergillus niger Koji extract (%) | Is in range | 1.45% | ||
Predicted Value | Experimental Value | |||
Naringin content (mg/g) | Minimize | 14.31 | 14.06 | 1.69 |
#TPC (mg GAE/g) | Maximize | 20.91 | 21.38 | 2.25 |
$TFC (mg QE/g) | Maximize | 16.40 | 16.90 | 3.05 |
*TAA (%) | Maximize | 48.82 | 49.23 | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suri, S.; Singh, A.; Nema, P.K.; Taneja, N.K. A Comparative Study on the Debittering of Kinnow (Citrus reticulate L.) Peels: Microbial, Chemical, and Ultrasound-Assisted Microbial Treatment. Fermentation 2022, 8, 389. https://doi.org/10.3390/fermentation8080389
Suri S, Singh A, Nema PK, Taneja NK. A Comparative Study on the Debittering of Kinnow (Citrus reticulate L.) Peels: Microbial, Chemical, and Ultrasound-Assisted Microbial Treatment. Fermentation. 2022; 8(8):389. https://doi.org/10.3390/fermentation8080389
Chicago/Turabian StyleSuri, Shweta, Anupama Singh, Prabhat K. Nema, and Neetu Kumra Taneja. 2022. "A Comparative Study on the Debittering of Kinnow (Citrus reticulate L.) Peels: Microbial, Chemical, and Ultrasound-Assisted Microbial Treatment" Fermentation 8, no. 8: 389. https://doi.org/10.3390/fermentation8080389
APA StyleSuri, S., Singh, A., Nema, P. K., & Taneja, N. K. (2022). A Comparative Study on the Debittering of Kinnow (Citrus reticulate L.) Peels: Microbial, Chemical, and Ultrasound-Assisted Microbial Treatment. Fermentation, 8(8), 389. https://doi.org/10.3390/fermentation8080389