Bioethanol: A New Synergy between Marine Chitinases from Bacillus haynesii and Ethanol Production by Mucor circinelloides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Colloidal Chitin Preparation
2.3. Quantification of Chitin Content in Colloidal Chitin
2.4. Screening and Isolation of Marine Bacteria
2.5. Production and Quantification of Chitin Oligomers
2.6. Ethanol Production from Chitin Oligosaccharides Using Mucor Circinelloides
2.7. Chitinase Assay
2.8. DNSA
2.9. Ethanol Quantification
2.9.1. Analytical Method
2.9.2. Gas Chromatography
2.9.3. Mass Spectrometry (MS) Analysis
3. Results and Discussion
3.1. Screening, Isolation, and Identification of Bacillus haynesii
3.2. Production of Chitin Oligomers
3.3. Mass Spectrometry Analysis
3.4. Ethanol Production from Chitin Oligomers: Effect of Various Process Parameters on Ethanol Production
3.4.1. Effect of Inoculum Age on Ethanol Production
3.4.2. Effect of Volume of Fermentation Medium on Ethanol Production
3.4.3. Effect of Substrate Concentration on Ethanol Production
3.4.4. Effect of Different Substrates on Ethanol Production
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bušić, A.; Mardetko, N.; Kundas, S.; Morzak, G.; Belskaya, H.; Šantek, M.I.; Komes, D.; Novak, S.; Šantek, B. Bioethanol Production from Renewable Raw Materials and Its Separation and Purification: A Review. Food Technol. Biotechnol. 2018, 56, 289–311. [Google Scholar] [CrossRef] [PubMed]
- Brennan, L.; Owende, P. Biofuels from Microalgae—A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D. Environmental, Economic, and Energetic Costs and Benefits of Biodiesel and Ethanol Biofuels. Proc. Natl. Acad. Sci. USA 2006, 103, 11206–11210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halder, P.; Azad, K.; Shah, S.; Sarker, E. Prospects and Technological Advancement of Cellulosic Bioethanol Ecofuel Production. In Advances in Eco-Fuels for a Sustainable Environment, 1st ed.; Azad, K., Ed.; Woodhead Publishing: Cambridge, UK, 2019; Volume 1, pp. 211–236. [Google Scholar]
- da Silva, A.R.G.; Torres Ortega, C.E.; Rong, B.G. Techno-Economic Analysis of Different Pretreatment Processes for Lignocellulosic-Based Bioethanol Production. Bioresour. Technol. 2016, 218, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Rooni, V.; Raud, M.; Kikas, T. The Freezing Pre-Treatment of Lignocellulosic Material: A Cheap Alternative for Nordic Countries. Energy 2017, 139, 1–7. [Google Scholar] [CrossRef]
- Nikolić, S.; Mojović, L.; Rakin, M.; Pejin, D.; Pejin, J. Utilization of Microwave and Ultrasound Pretreatments in the Production of Bioethanol from Corn. Clean Technol. Environ. Policy 2011, 13, 587–594. [Google Scholar] [CrossRef]
- Mithra, M.G.; Jeeva, M.L.; Sajeev, M.S.; Padmaja, G. Comparison of Ethanol Yield from Pretreated Lignocellulo-Starch Biomass under Fed-Batch SHF or SSF Modes. Heliyon 2018, 4, e00885. [Google Scholar] [CrossRef] [Green Version]
- Mat Aron, N.S.; Khoo, K.S.; Chew, K.W.; Show, P.L.; Chen, W.H.; Nguyen, T.H.P. Sustainability of the Four Generations of Biofuels—A Review. Int. J. Energy Res. 2020, 44, 9266–9282. [Google Scholar] [CrossRef]
- Sankaran, R.; Parra Cruz, R.A.; Pakalapati, H.; Show, P.L.; Ling, T.C.; Chen, W.H.; Tao, Y. Recent Advances in the Pretreatment of Microalgal and Lignocellulosic Biomass: A Comprehensive Review. Bioresour. Technol. 2020, 298, 122476. [Google Scholar] [CrossRef]
- Walter, A.; Ensinas, A.V. Combined Production of Second-Generation Biofuels and Electricity from Sugarcane Residues. Energy 2010, 35, 874–879. [Google Scholar] [CrossRef]
- Kamal, M.; Adly, E.; Alharbi, S.A.; Khaled, A.S.; Rady, M.H.; Ibrahim, N.A. Exploring Simplified Methods for Insect Chitin Extraction and Application as a Potential Alternative Bioethanol Resource. Insects 2020, 11, 788. [Google Scholar] [CrossRef]
- Veliz, E.A.; Martínez-Hidalgo, P.; Hirsch, A.M. Chitinase-Producing Bacteria and Their Role in Biocontrol. AIMS Microbiol. 2017, 3, 689–705. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, A.; Mo, X.; Zhou, N.; Yang, S.; Chen, K.; Ouyang, P. The Effect of Ultrasonication on Enzymatic Hydrolysis of Chitin to N-Acetyl Glucosamine via Sequential and Simultaneous Strategies. Process Biochem. 2020, 99, 265–269. [Google Scholar] [CrossRef]
- Tamadoni Jahromi, S.; Barzkar, N. Marine Bacterial Chitinase as Sources of Energy, Eco-Friendly Agent, and Industrial Biocatalyst. Int. J. Biol. Macromol. 2018, 120, 2147–2154. [Google Scholar] [CrossRef]
- Karthik, N.; Binod, P.; Pandey, A. Purification and Characterisation of an Acidic and Antifungal Chitinase Produced by a Streptomyces sp. Bioresour. Technol. 2015, 188, 195–201. [Google Scholar] [CrossRef]
- Karunya, S.K.; Reetha, D.; Saranraj, P.; Milton, D.J. Optimization and Purification of Chitinase Produced by Bacillus Subtilis and Its Antifungal Activity against Plant Pathogens. Int. J. Pharm. Biol. Arch. 2011, 2, 1680–1685. [Google Scholar]
- Swiontek Brzezinska, M.; Jankiewicz, U.; Burkowska, A.; Walczak, M. Chitinolytic Microorganisms and Their Possible Application in Environmental Protection. Curr. Microbiol. 2014, 68, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Li, R.K.; Hu, Y.J.; He, Y.J.; Ng, T.B.; Zhou, Z.M.; Ye, X.Y. A Thermophilic Chitinase 1602 from the Marine Bacterium Microbulbifer Sp. BN3 and Its High-Level Expression in Pichia Pastoris. Biotechnol. Appl. Biochem. 2021, 68, 1076–1085. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Y.; Tan, H.; Chi, N.; Zhang, Q.; Du, Y.; Yin, H. Characterisation of a Chitinase from Pseudoalteromonas sp. DL-6, a Marine Psychrophilic Bacterium. Int. J. Biol. Macromol. 2014, 70, 455–462. [Google Scholar] [CrossRef]
- Tsujibo, H.; Yoshida, Y.; Miyamoto, K.; Imada, C.; Okami, Y.; Inamori, Y. Purification, Properties, and Partial Amino Acid Sequence of Chitinase from a Marine Alteromonas sp. Strain O-7. Can. J. Microbiol. 1992, 38, 891–897. [Google Scholar] [CrossRef]
- Stefanidi, E.; Vorgias, C.E. Molecular Analysis of the Gene Encoding a New Chitinase from the Marine Psychrophilic Bacterium Moritella Marina and Biochemical Characterization of the Recombinant Enzyme. Extremophiles 2008, 12, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Cheba, B.A.; Zaghloul, T.I.; EL-Mahdy, A.R.; EL-Massry, M.H. Effect of pH and Temperature on Bacillus sp. R2 Chitinase Activity and Stability. Procedia Technol. 2016, 22, 471–477. [Google Scholar] [CrossRef] [Green Version]
- Annamalai, N.; Giji, S.; Arumugam, M.; Balasubramanian, T. Purification and Characterization of Chitinase from Micrococcus Sp.AG84 Isolated from Marine Environment. Afr. J. Microbiol. Res. 2010, 4, 2822–2827. [Google Scholar]
- Subramani, A.K.; Raval, R.; Sundareshan, S.; Sivasengh, R.; Raval, K. A Marine Chitinase from Bacillus Aryabhattai with Antifungal Activity and Broad Specificity toward Crystalline Chitin Degradation. Prep. Biochem. Biotechnol. 2022, 52, 1160–1172. [Google Scholar] [CrossRef] [PubMed]
- Inokuma, K.; Takano, M.; Hoshino, K. Direct Ethanol Production from N-Acetylglucosamine and Chitin Substrates by Mucor Species. Biochem. Eng. J. 2013, 72, 24–32. [Google Scholar] [CrossRef]
- Murthy, N.; Bleakley, B. Simplified Method of Preparing Colloidal Chitin Used For Screening of Chitinase- Producing Microorganisms. Internet J. Microbiol. 2012, 10, 1–5. [Google Scholar]
- Henriques, B.S.; Garcia, E.S.; Azambuja, P.; Genta, F.A. Determination of Chitin Content in Insects: An Alternate Method Based on Calcofluor Staining. Front. Physiol. 2020, 11, 117. [Google Scholar] [CrossRef] [Green Version]
- Pawaskar, G.M.; Raval, K.; Rohit, P.; Shenoy, R.P.; Raval, R. Cloning, Expression, Purification and Characterization of Chitin Deacetylase Extremozyme from Halophilic Bacillus Aryabhattai B8W22. 3 Biotech 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Ferreira, M.G.S.; Simões, A.M.P.; Compere, C.; Rondot, B.; Da Cunha Belo, M. Semiconducting Behaviour of Stainless Steel Passive Films in Contact with Artificial Seawater. Mater. Sci. Forum 1998, 289, 887–894. [Google Scholar]
- Bergey, B.H.; Buchanan, R.E.T.; Gibbons, N.E. Bergey’ s Manual of Determinative Bacteriology, 8th ed.; Williams & Wilkins Company: Baltimore, ML, USA, 1974; pp. 613–633. [Google Scholar]
- Ferrari, A.R.; Gaber, Y.; Fraaije, M.W. A Fast, Sensitive and Easy Colorimetric Assay for Chitinase and Cellulase Activity Detection. Biotechnol. Biofuels 2014, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Seo, H.B.; Kim, H.J.; Lee, O.K.; Ha, J.H.; Lee, H.Y.; Jung, K.H. Measurement of Ethanol Concentration Using Solvent Extraction and Dichromate Oxidation and Its Application to Bioethanol Production Process. J. Ind. Microbiol. Biotechnol. 2009, 36, 285–292. [Google Scholar] [CrossRef]
- Zhang, P.; Hai, H.; Sun, D.; Yuan, W.; Liu, W.; Ding, R.; Teng, M.; Ma, L.; Tian, J.; Chen, C. A High Throughput Method for Total Alcohol Determination in Fermentation Broths. BMC Biotechnol. 2019, 19, 30. [Google Scholar] [CrossRef]
- Quan, C.; Li, H.M.; Huang, T.; Zhang, W.; Ding, Z.T.; Shen, Y.X. High-Precision Analysis of Ethanol in Bioethanol by Gas Chromatography with Flame Ionization Detector. Accredit. Qual. Assur. 2012, 17, 535–541. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Chen, J.K.; Shen, C.R.; Yeh, C.H.; Fang, B.S.; Huang, T.L.; Liu, C.L. N-Acetyl Glucosamine Obtained from Chitin by Chitin Degrading Factors in Chitinbacter Tainanesis. Int. J. Mol. Sci. 2011, 12, 1187–1195. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Hong, J.; Lee, S.; Park, S.; Lee, J.H.; Kim, J. LC-MS/MS Analysis of Chitooligosaccharides. Carbohydr. Res. 2013, 372, 23–29. [Google Scholar] [CrossRef]
- Kamst, E.; Van der Drift, K.M.G.M.; Thomas-Oates, J.E.; Lugtenberg, B.J.J.; Spaink, H.P. Mass Spectrometric Analysis of Chitin Oligosaccharides Produced by Rhizobium NodC Protein in Escherichia coli. J. Bacteriol. 1995, 177, 6282–6285. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Kaur, K.; Bhushan, B.; Kaur, M.; Hans, M. Inoculum Size and Age Studies on Single and Mixed Strain Fermentation of Grape Juice. J. Pure Appl. Microbiol. 2020, 14, 2137–2145. [Google Scholar] [CrossRef]
- Manikandan, K.; Viruthagiri, T. Kinetic and Optimization Studies on Ethanol Production from Corn Flour. World Acad. Sci. Eng. Technol. 2010, 37, 1009–1013. [Google Scholar]
- Laluce, C.; Tognolli, J.O.; De Oliveira, K.F.; Souza, C.S.; Morais, M.R. Optimization of Temperature, Sugar Concentration, and Inoculum Size to Maximize Ethanol Production without Significant Decrease in Yeast Cell Viability. Appl. Microbiol. Biotechnol. 2009, 83, 627–637. [Google Scholar] [CrossRef]
- Jarzebski, A.B.; Malinowski, J.J.; Goma, G. Modeling of Ethanol Fermentation at High Yeast Concentrations. Biotechnol. Bioeng. 1989, 34, 1225–1230. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, D.; Suman, S.K.; Pandey, D.; Ghosh, D.; Khan, R.; Agrawal, D.; Jain, R.K.; Vadde, V.T.; Adhikari, D.K. Design and Optimization of Ethanol Production from Bagasse Pith Hydrolysate by a Thermotolerant Yeast Kluyveromyces Sp. IIPE453 Using Response Surface Methodology. Springerplus 2013, 2, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, M.; Moon, S.K.; Choi, G.W. Pretreatment Solution Recycling and High-Concentration Output for Economical Production of Bioethanol. Bioprocess Biosyst. Eng. 2014, 37, 2205–2213. [Google Scholar] [CrossRef] [PubMed]
- Mardawati, E.; Putri, A.V.; Yuliana, T.; Rahimah, S.; Nurjanah, S.; Hanidah, I. Effects of Substrate Concentration on Bioethanol Production from Oil Palm Empty Fruit Bunches with Simultaneous Saccharification and Fermentation (SSF). IOP Conf. Ser. Earth Environ. Sci. 2019, 230, 012079. [Google Scholar] [CrossRef]
- Triwahyuni, E.; Muryanto; Sudiyani, Y.; Abimanyu, H. The Effect of Substrate Loading on Simultaneous Saccharification and Fermentation Process for Bioethanol Production from Oil Palm Empty Fruit Bunches. Energy Procedia 2015, 68, 138–146. [Google Scholar] [CrossRef]
- Lübbehüsen, T.L.; Nielsen, J.; McIntyre, M. Aerobic and Anaerobic Ethanol Production by Mucor Circinelloides during Submerged Growth. Appl. Microbiol. Biotechnol. 2004, 63, 543–548. [Google Scholar] [CrossRef]
- Adewumi, C.N.; Ekpo, E.I.; Achugasim, O.; Ogali, R.E.; Akaranta, O. Substrate Concentration: A More Serious Consideration than the Amount of 5-Hydroxymethylfurfural in Acid-Catalyzed Hydrolysis during Bioethanol Production from Starch Biomass. Heliyon 2022, 8, e12047. [Google Scholar] [CrossRef]
- Chang, Y.H.; Chang, K.S.; Chen, C.Y.; Hsu, C.L.; Chang, T.C.; Jang, H.D. Enhancement of the Efficiency of Bioethanol Production by Saccharomyces Cerevisiae via Gradually Batch-Wise and Fed-Batch Increasing the Glucose Concentration. Fermentation 2018, 4, 45. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Kang, L.; Wei, H.; Arora, R.; Lee, Y.Y. Study on the Decreased Sugar Yield in Enzymatic Hydrolysis of Cellulosic Substrate at High Solid Loading. Appl. Biochem. Biotechnol. 2011, 164, 1139–1149. [Google Scholar] [CrossRef]
- Han, M.; Kang, K.E.; Kim, Y.; Choi, G.W. High Efficiency Bioethanol Production from Barley Straw Using a Continuous Pretreatment Reactor. Process Biochem. 2013, 48, 488–495. [Google Scholar] [CrossRef]
- Patil, S.G.; Patu, B.G. Chitin Supplement Speeds up the Ethanol Production in Cane Molasses Fermentation. Enzym. Microb. Technol. 1988, 11, 38–43. [Google Scholar] [CrossRef]
- Wendland, J.; Schaub, Y.; Walther, A. N-Acetylglucosamine Utilization by Saccharomyces Cerevisiae Based on Expression of Candida Albicans NAG Genes. Appl. Environ. Microbiol. 2009, 75, 5840–5845. [Google Scholar] [CrossRef] [Green Version]
- Cody, R.M.; Davis, N.D.; Lin, J.; Shaw, D. Screening Microorganisms for Chitin Hydrolysis and Production of Ethanol from Amino Sugars. Biomass 1990, 21, 285–295. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Govindaraj, V.; Subramani, A.K.; Gopalakrishnan, R.; Kim, S.-K.; Raval, R.; Raval, K. Bioethanol: A New Synergy between Marine Chitinases from Bacillus haynesii and Ethanol Production by Mucor circinelloides. Fermentation 2023, 9, 40. https://doi.org/10.3390/fermentation9010040
Govindaraj V, Subramani AK, Gopalakrishnan R, Kim S-K, Raval R, Raval K. Bioethanol: A New Synergy between Marine Chitinases from Bacillus haynesii and Ethanol Production by Mucor circinelloides. Fermentation. 2023; 9(1):40. https://doi.org/10.3390/fermentation9010040
Chicago/Turabian StyleGovindaraj, Vishnupriya, Arun Kumar Subramani, Ramya Gopalakrishnan, Se-Kwon Kim, Ritu Raval, and Keyur Raval. 2023. "Bioethanol: A New Synergy between Marine Chitinases from Bacillus haynesii and Ethanol Production by Mucor circinelloides" Fermentation 9, no. 1: 40. https://doi.org/10.3390/fermentation9010040
APA StyleGovindaraj, V., Subramani, A. K., Gopalakrishnan, R., Kim, S. -K., Raval, R., & Raval, K. (2023). Bioethanol: A New Synergy between Marine Chitinases from Bacillus haynesii and Ethanol Production by Mucor circinelloides. Fermentation, 9(1), 40. https://doi.org/10.3390/fermentation9010040