Development of Fermented Camel Milk Incorporating Oats and Sukkari Date Palm Fruit: Nutritional, Physicochemical, Functional, and Organoleptic Attributes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Ingredients, and Starter Culture
2.2. Preparation of Oat Beverage
2.3. Preparation of Fermented Camel Milk
2.4. Determination of Chemical and Physicochemical Properties
2.5. Estimation of Microbial Growth
2.6. Determination of β-Glucan Content
2.7. Determination of Total Phenolic Content and Antioxidant Capacity
2.8. Instrumental Color Measurements
2.9. Sensory Analysis
2.10. Statistical Analysis
3. Results
3.1. Chemical Composition
3.2. Mineral Contents
3.3. Microbial Growth, pH, and Acidity during Storage Time
3.4. β-Glucan Content
3.5. Total Phenolic Content and Antioxidant Activity
3.6. Color Measurements
3.7. Sensory Attributes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Hanafy, A.A.; Saad, Y.M.; Alkarim, S.A.; Almehdar, H.A.; Alzahrani, F.M.; Almatry, M.A.; Uversky, V.N.; Redwan, E.M. Yield and Composition Variations of the Milk from Different Camel Breeds in Saudi Arabia. Science 2023, 5, 2. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Crops and Livestock Products. Available online: https://www.fao.org (accessed on 11 September 2023).
- Hammam, A.R. Compositional and Therapeutic Properties of Camel Milk: A Review. Emir J. Food Agric. 2019, 31, 148–152. [Google Scholar] [CrossRef]
- Rahmeh, R.; Alomirah, H.; Akbar, A.; Sidhu, J. Composition and Properties of Camel Milk; IntechOpen: London, UK, 2019. [Google Scholar]
- Benmeziane–Derradji, F. Evaluation of Camel Milk: Gross Composition—A Scientific Overview. Trop. Anim. Health Prod. 2021, 53, 308. [Google Scholar] [CrossRef] [PubMed]
- Swelum, A.A.; El-Saadony, M.T.; Abdo, M.; Ombarak, R.A.; Hussein, E.O.; Suliman, G.; Alhimaidi, A.R.; Ammari, A.A.; Ba-Awadh, H.; Taha, A.E. Nutritional, Antimicrobial and Medicinal Properties of Camel’s Milk: A Review. Saudi J. Biol. Sci. 2021, 28, 3126–3136. [Google Scholar] [CrossRef] [PubMed]
- Shahein, M.R.; Atwaa, E.S.H.; Elkot, W.F.; Hijazy, H.H.A.; Kassab, R.B.; Alblihed, M.A.; Elmahallawy, E.K. The impact of date syrup on the physicochemical, microbiological, and sensory properties, and antioxidant activity of bio-fermented camel milk. Fermentation 2022, 8, 192. [Google Scholar] [CrossRef]
- Patel, P.; Butani, K.; Kumar, A.; Singh, S.; Prajapati, B.G. Effects of Fermented Food Consumption on Non-Communicable Diseases. Foods 2023, 12, 687. [Google Scholar] [CrossRef]
- Leeuwendaal, N.K.; Stanton, C.; O’Toole, P.W.; Beresford, T.P. Fermented foods, health and the gut microbiome. Nutrients 2022, 14, 1527. [Google Scholar] [CrossRef]
- Kesika, P.; Thangaleela, S.; Sivamaruthi, B.S.; Bharathi, M.; Chaiyasut, C. Fermented foods and their role in respiratory health: A mini-review. Fermentation 2022, 8, 162. [Google Scholar] [CrossRef]
- Cuamatzin-García, L.; Rodríguez-Rugarcía, P.; El-Kassis, E.G.; Galicia, G.; Meza-Jiménez, M.d.L.; Baños-Lara, M.d.R.; Zaragoza-Maldonado, D.S.; Pérez-Armendáriz, B. Traditional fermented foods and beverages from around the world and their health benefits. Microorganisms 2022, 10, 1151. [Google Scholar] [CrossRef]
- Maftei, N.-M.; Bogdan, R.E.G.; Boev, M.; Marin, D.B.; Ramos-Villarroel, A.Y.; Iancu, A.-V. Innovative Fermented Soy Drink with the Sea Buckthorn Syrup and the Probiotics Co-Culture of Lactobacillus Paracasei ssp. Paracasei (L. Casei® 431) and Bifidobacterium Animalis ssp. Lactis (Bb-12®). Fermentation 2023, 9, 806. [Google Scholar] [CrossRef]
- Chen, L.; Wu, D.; Schlundt, J.; Conway, P.L. Development of a dairy-free fermented oat-based beverage with enhanced probiotic and bioactive properties. Front. Microbiol. 2020, 11, 609734. [Google Scholar] [CrossRef] [PubMed]
- Hernández, H.; Nunes, M.C.; Prista, C.; Raymundo, A. Innovative and healthier dairy products through the addition of microalgae: A review. Foods 2022, 11, 755. [Google Scholar] [CrossRef] [PubMed]
- Kryuchkova, V.; Gorlov, I.; Belik, S.; Kamlatsky, A. Vegetable ingredients in functional fermented milk products. IOP Conf. Ser. Earth Environ. Sci. 2020, 548, 082092. [Google Scholar] [CrossRef]
- Aljutaily, T.; Barakat, H.; Moustafa, M.M.; Rehan, M. Incorporation of sukkari date in probiotic-enriched fermented camel milk improves the nutritional, physicochemical, and organoleptical characteristics. Fermentation 2021, 8, 5. [Google Scholar] [CrossRef]
- Hussain, M.I.; Farooq, M.; Syed, Q.A. Nutritional and Biological Characteristics of the Date Palm Fruit (Phoenix dactylifera L.)—A Review. Food Biosci. 2020, 34, 100509. [Google Scholar] [CrossRef]
- Assirey, E.A.R. Nutritional Composition of Fruit of 10 Date Palm (Phoenix dactylifera L.) Cultivars Grown in Saudi Arabia. J. Taibah Univ. Sci. 2015, 9, 75–79. [Google Scholar] [CrossRef]
- Amadou, I. Date fruits: Nutritional Composition of Dates (Balanites aegyptiaca Delile and Phoenix dactylifera L.). In Nutritional Composition of Fruit Cultivars; Elsevier: Amsterdam, The Netherlands, 2016; pp. 215–233. [Google Scholar]
- Hamad, I.; AbdElgawad, H.; Al Jaouni, S.; Zinta, G.; Asard, H.; Hassan, S.; Hegab, M.; Hagagy, N.; Selim, S. Metabolic Analysis of Various Date Palm Fruit (Phoenix dactylifera L.) Cultivars From Saudi Arabia to Assess their Nutritional Quality. Molecules 2015, 20, 13620–13641. [Google Scholar] [CrossRef]
- Angelov, A.; Yaneva-Marinova, T.; Gotcheva, V. Oats as A Matrix of Choice for Developing Fermented Functiona Beverages. J. Food Sci. Technol. 2018, 55, 2351–2360. [Google Scholar] [CrossRef]
- Ahmad, M.; Gul-Zaffar; Dar, Z.; Habib, M. A review on Oat (Avena sativa L.) as A Dual-Purpose Crop. Sci. Res. Essay 2014, 9, 52–59. [Google Scholar] [CrossRef]
- Sangwan, S.; Singh, R.; Tomar, S.K. Nutritional and Functional Properties of Oats: An Update. J. Innov. Biol. 2014, 1, 3–14. [Google Scholar]
- Chu, Y.-F.; Wise, M.L.; Gulvady, A.A.; Chang, T.; Kendra, D.F.; Van Klinken, B.J.-W.; Shi, Y.; O’Shea, M. In vitro antioxidant capacity and anti-inflammatory activity of seven common oats. Food Chem. 2013, 139, 426–431. [Google Scholar] [CrossRef]
- Żyła, E.; Dziendzikowska, K.; Kamola, D.; Wilczak, J.; Sapierzyński, R.; Harasym, J.; Gromadzka-Ostrowska, J. Anti-inflammatory activity of oat beta-glucans in a Crohn’s disease model: Time-and molar mass-dependent effects. Int. J. Mol. Sci. 2021, 22, 4485. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 9th ed.; AOAC INTERNATIONAL: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Vinderola, C.G.; Reinheimer, J.A. Culture Media for the Enumeration of Bifidobacterium bifidum and Lactobacillus acidophilus in the Presence of Yoghurt Bacteria. Int. Dairy J. 1999, 9, 497–505. [Google Scholar] [CrossRef]
- Yawadio Nsimba, R.; Kikuzaki, H.; Konishi, Y. Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem. 2008, 106, 760–766. [Google Scholar] [CrossRef]
- Lu, J.; Zhao, H.; Chen, J.; Fan, W.; Dong, J.; Kong, W.; Sun, J.; Cao, Y.; Cai, G. Evolution of Phenolic Compounds and Antioxidant Activity During Malting. J. Agr. Food Chem 2007, 55, 10994–11001. [Google Scholar] [CrossRef]
- Lavelli, V.; Corey, M.; Kerr, W.; Vantaggi, C. Stability and Anti-Glycation Properties of Intermediate Moisture Apple Products Fortified with Green Tea. Food Chem. 2011, 127, 589–595. [Google Scholar] [CrossRef]
- Parmar, P.; Singh, A.K.; Meena, G.S.; Borad, S.; Raju, P. Application of Ohmic Heating for Concentration of Milk. J. Food Sci. Technol. 2018, 55, 4956–4963. [Google Scholar] [CrossRef]
- Steel, R.G. Pinciples and Procedures of Statistics a Biometrical Approach, 3rd ed.; McGraw-Hill: Boston, MA, USA, 1997. [Google Scholar]
- Leonard, W.; Zhang, P.; Ying, D.; Adhikari, B.; Fang, Z. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnol. Adv. 2021, 49, 107763. [Google Scholar] [CrossRef]
- Dey, T.B.; Chakraborty, S.; Jain, K.K.; Sharma, A.; Kuhad, R.C. Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends Food Sci. Technol. 2016, 53, 60–74. [Google Scholar]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound phenolics in foods, a review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef]
- Gholamhosseinpour, A.; Hashemi, S.M.B. Ultrasound Pretreatment of Fermented Milk Containing Probiotic Lactobacillus Plantarum AF1: Carbohydrate Metabolism and Antioxidant Activity. J. Food Process Eng. 2019, 42, e12930. [Google Scholar] [CrossRef]
- Yu, P.; Li, N.; Geng, M.; Liu, Z.; Liu, X.; Zhang, H.; Zhao, J.; Zhang, H.; Chen, W. Lactose Utilization Of Streptococcus Thermophilus And Correlations with β-galactosidase and Urease. J. Dairy Sci. 2020, 103, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, M.B. Lactic Acid Bacteria as Potential Probiotics; Wiley: Hoboken, NJ, USA, 2022; pp. 57–72. [Google Scholar]
- García-Cano, I.; Rocha-Mendoza, D.; Kosmerl, E.; Zhang, L.; Jiménez-Flores, R. Technically Relevant Enzymes and Proteins Produced by Lab Suitable for Industrial and Biological Activity. Appl. Microbiol. Biotechnol. 2020, 104, 1401–1422. [Google Scholar] [CrossRef] [PubMed]
- Petrova, P.; Petrov, K. Lactic acid fermentation of cereals and pseudocereals: Ancient nutritional biotechnologies with modern applications. Nutrients 2020, 12, 1118. [Google Scholar] [CrossRef]
- Hu, X.; Zhao, J.; Zhao, Q.; Zheng, J. Structure and characteristic of β-glucan in cereal: A review. J. Food Process. Preserv. 2015, 39, 3145–3153. [Google Scholar] [CrossRef]
- Zhou, T.; Jung, J.; Zhang, Z.; Kim, I. Effect of Dietary β-glucan on Growth Performance, Fecal Microbial Shedding and Immunological Responses ater Lipopolysaccharide Challenge in Weaned Pigs. Anim. Feed Sci. Technol. 2013, 179, 85–92. [Google Scholar] [CrossRef]
- Wolever, T.M.; Jenkins, A.L.; Prudence, K.; Johnson, J.; Duss, R.; Chu, Y.; Steinert, R.E. Effect of Adding Oat Bran to Instant Oatmeal on Glycaemic Response in Humans–A Study to Establish the Minimum Effective Dose of Oat β-Glucan. Food Funct. 2018, 9, 1692–1700. [Google Scholar] [CrossRef]
- Walther, B.; Guggisberg, D.; Badertscher, R.; Egger, L.; Portmann, R.; Dubois, S.; Haldimann, M.; Kopf-Bolanz, K.; Rhyn, P.; Zoller, O. Comparison of Nutritional Composition Between Plant-Based Drinks and Cow’s Milk. Front. Nutr. 2022, 9, 2645. [Google Scholar] [CrossRef]
- Chauhan, S.; Powar, P.; Mehra, R. A review on nutritional advantages and nutraceutical properties of cow and goat milk. Int. J. Appl. Res. 2021, 7, 101–105. [Google Scholar] [CrossRef]
- Konuspayeva, G.S. Camel milk composition and nutritional value. In Handbook of Research on Health and Environmental Benefits of Camel Products; IGI Global: Hershey, PA, USA, 2020; pp. 15–40. [Google Scholar]
- Priyodip, P.; Prakash, P.Y.; Balaji, S. Phytases of Probiotic Bacteria: Characteristics and Beneficial Aspects. Indian J. Microbiol. 2017, 57, 148–154. [Google Scholar] [CrossRef]
- Marie Minihane, A.; Rimbach, G. Iron Absorption and the Iron Binding and Anti-Oxidant Properties of Phytic Acid. Int. J. Food Sci. Technol. 2002, 37, 741–748. [Google Scholar] [CrossRef]
- Sharma, N.; Angural, S.; Rana, M.; Puri, N.; Kondepudi, K.K.; Gupta, N. Phytase Producing Lactic Acid Bacteria: Cell Factories for Enhancing Micronutrient Bioavailability of Phytate Rich Foods. Trends Food Sci. Technol. 2020, 96, 1–12. [Google Scholar] [CrossRef]
- Robinson, R.K. Dairy Microbiology Handbook: The Microbiology of Milk and Milk Products; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Bezie, A.; Regasa, H. The role of starter culture and enzymes/rennet for fermented dairy products manufacture-A Review. Nutr. Food Sci. Int. J 2019, 9, 21–27. [Google Scholar]
- Asadzadeh, A.; Jalali, H.; Azizi, M.H.; Mohammadi Nafchi, A. Production of Oat Bran Functional Probiotic Beverage Using Bifidobacterium Lactis. J. Food Meas. Charact. 2021, 15, 1301–1309. [Google Scholar] [CrossRef]
- Sarica, E.; Coşkun, H. Effect of Frozen Storage on Some Characteristics of Kefir Samples Made from Cow’s and Goat’s Milk. Food Sci. Technol. Int. 2022, 28, 157–168. [Google Scholar] [CrossRef]
Constituents | Camel Milk ^ | Rolled Oats * | Sukkari Date Paste * |
---|---|---|---|
Macronutrients (g 100 g−1) | |||
Protein | 2.68 ± 0.09 | 10.5 | 2 |
Total carbohydrates | 70.5 | 75 | |
Dietary fibers | - | 10.8 | 8 |
Sugars ** | 3.69 ± 0.45 | 66 | |
Total Fat | 2.78 ± 0.13 | 9.3 | - |
Minerals (mg 100 g−1) | |||
Calcium | 105.09 ± 7.32 | - | 39 |
Magnesium | 8.93 ± 0.68 | 113 | 43 |
Potassium | 111.93 ± 3.09 | ND | 656 |
Sodium | 51.38 ± 3.87 | 7 | ND |
Phosphorus | 60.52 ± 3.92 | ND | ND |
Copper | 0.17 ± 0.04 | ND | 0.3 |
Iron | 0.63 ± 0.07 | 3.9 | 1 |
Manganese | ND | ND | 0.3 |
Zinc | 0.51 ± 0.04 | 2.4 | ND |
Treatments | Oat Beverage (%) | Dates Paste (Sukkari) (%) |
---|---|---|
T1 | 0 | 10 |
T2 | 25 | 10 |
T3 | 50 | 10 |
T4 | 75 | 10 |
T5 | 100 | 10 |
Parameter (%) | Treatments | ||||
---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | |
Moisture | 86.73 ± 0.08 e | 88.15 ± 0.02 d | 88.79 ± 0.03 c | 89.51 ± 0.01 b | 90.77 ± 0.03 a |
Total Solids | 13.27 ± 0.08 a | 11.85 ± 0.02 b | 11.21 ± 0.03 c | 10.49 ± 0.01 d | 9.23 ± 0.03 e |
Ash | 0.90 ± 0.04 a | 0.68 ± 0.02 b | 0.54 ± 0.01 c | 0.42 ± 0.01 d | 0.26 ± 0.01 e |
Crude Protein | 3.86 ± 0.06 a | 3.31 ± 0.09 b | 2.59 ± 0.18 c | 1.99 ± 0.06 d | 1.23 ± 0.09 e |
Fat | 3.50 ± 0.06 a | 2.63 ± 0.03 b | 1.87 ± 0.03 c | 0.87 ± 0.03 d | 0.38 ± 0.02 e |
Available Carbohydrates | 4.34 ± 0.19 c | 4.36 ± 0.10 c | 5.16 ± 0.21 b | 5.96 ± 0.13 a | 5.75 ± 0.17 a |
Dietary Fiber | 0.67 ± 0.06 c | 0.87 ± 0.09 d | 1.05 ± 0.04 c | 1.25 ± 0.11 b | 1.61 ± 0.11 a |
Elements | Treatments | |||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | ||
Macro-elements | Ca | 378.46 ± 0.97 a | 339.24 ± 7.08 b | 257.45 ± 3.10 c | 180.710.84 d | 57.38 ± 2.07 e |
Mg | 136.27 ± 0.76 a | 124.24 ± 1.25 b | 106.39 ± 2.80 c | 102.13 ± 0.44 c | 79.25 ± 0.73 d | |
K | 288.1 ± 0.68 a | 246.91 ± 3.28 b | 206.97 ± 1.14 c | 185.02 ± 3.22 d | 113.28 ± 2.43 e | |
Na | 256.82 ± 3.37 a | 228.13 ± 2.28 b | 100.18 ± 1.08 c | 84.46 ± 3.41 d | 38.85 ± 0.28 e | |
P | 22.26 ± 0.93 a | 20.94 ± 0.41 a | 15.85 ± 0.57 b | 8.76 ± 0.51 c | 5.83 ± 0.56 d | |
Micro-elements | Cu | 0.49 ± 0.12 a | 0.34 ± 0.11 a | 0.28 ± 0.07 a | 0.25 ± 0.08 a | 0.23 ± 0.04 a |
Fe | 3.68 ± 0.01 a | 4.80 ± 0.28 a | 4.40 ± 0.33 a | 4.16 ± 0.43 a | 3.85 ± 0.04 a | |
Mn | 0.57 ± 0.07 b | 0.51 ± 0.04 b | 0.55 ± 0.04 b | 0.72 ± 0.01 a | 0.74 ± 0.03 a | |
Zn | 2.09 ± 0.12 a | 1.73 ± 0.02 b | 1.12 ± 0.06 c | 0.86 ± 0.16 cd | 0.68 ± 0.15 d |
Bacterial Strain | Storage Period (Days) | Treatments | ||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | ||
Str. thermophiles | 1 | 7.30 ± 0.17 cBC | 7.46 ± 0.18 cA | 7.32 ± 0.17 cB | 7.19 ± 0.13 dC | 5.89 ± 0.04 abD |
7 | 7.91 ± 0.02 aB | 8.39 ± 0.01 aA | 7.74 ± 0.01 bC | 7.36 ± 0.06 cD | 5.84 ± 0.08 bE | |
14 | 7.98 ± 0.01 aA | 8.02 ± 0.08 bA | 7.91 ± 0.01 aA | 7.69 ± 0.05 aB | 6.00 ± 0.06 aC | |
21 | 7.77 ± 0.06 bB | 8.00 ± 0.07 bA | 7.79 ± 0.02 bB | 7.51 ± 0.04 bC | 5.93 ± 0.06 abD | |
L. acidophilus | 1 | 5.59 ± 0.09 dC | 6.00 ± 0.08 cA | 5.45 ± 0.06 cB | 5.40 ± 0.05 bB | 3.29 ± 0.07 aD |
7 | 5.81 ± 0.06 cB | 6.64 ± 0.09 aA | 5.70 ± 0.07 abB | 5.75 ± 0.09 aB | 3.23 ± 0.11 aC | |
14 | 6.05 ± 0.25 bB | 6.56 ± 0.07 bA | 5.57 ± 0.09 bC | 5.48 ± 0.06 bC | 2.30 ± 0.10 bD | |
21 | 5.74 ± 0.04 aA | 6.37 ± 0.07 bA | 5.73 ± 0.05 aB | 5.36 ± 0.07 bC | 2.18 ± 0.10 bD | |
B. bifidum | 1 | 7.28 ± 0.16 cA | 7.34 ± 0.03 bB | 7.20 ± 0.18 bA | 6.79 ± 0.18 cB | 5.53 ± 0.16 aC |
7 | 7.59 ± 0.02 abA | 7.88 ± 0.05 aC | 7.31 ± 0.19 abB | 6.99 ± 0.13 bC | 5.56 ± 0.15 aD | |
14 | 7.85 ± 0.01 aA | 7.53 ± 0.06 aD | 7.42 ± 0.20 aB | 7.23 ± 0.13 aC | 5.66 ± 0.08 aE | |
21 | 7.75 ± 0.08 bA | 7.30 ± 0.09 abC | 7.21 ± 0.19 abB | 7.01 ± 0.15 bC | 5.57 ± 0.10 aD |
Parameter | Treatments | ||||
---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | |
L* | 80.73 ± 0.11 a | 78.47 ± 0.06 b | 75.42 ± 0.21 c | 69.52 ± 0.22 d | 59.11 ± 0.33 e |
a* | 1.31 ± 0.12 c | 1.76 ± 0.17 bc | 1.96 ± 0.33 bc | 2.34 ± 0.15 b | 4.26 ± 0.21 a |
b* | 18.57 ± 0.07 e | 19.29 ± 0.06 d | 22.06 ± 0.06 c | 25.73 ± 0.09 b | 30.64 ± 0.26 a |
C* | 18.61 ± 0.07 e | 19.37 ± 0.05 d | 22.15 ± 0.05 c | 25.84 ± 0.10 b | 30.94 ± 0.29 a |
b/a | 14.44 ± 1.26 a | 11.15 ± 1.12 ab | 12.01 ± 2.25 a | 11.09 ± 0.72 ab | 7.23 ± 0.30 b |
H° | 86.02 ± 0.36 a | 84.82 ± 0.51 a | 84.97 ± 0.86 a | 84.85 ± 0.32 a | 82.14 ± 0.33 b |
BI | 26.76 ± 0.19 d | 29.26 ± 0.08 d | 35.75 ± 0.41 c | 47.55 ± 0.53 b | 75.60 ± 1.65 a |
∆E | 0 ± 0 e | 2.69 ± 0.07 d | 6.65 ± 0.20 c | 13.58 ± 0.24 b | 25.19 ± 0.43 a |
Visual Color | Figure 1A | Figure 1B | Figure 1C | Figure 1D | Figure 1E |
Attribute * | Storage Period (Days) | Treatments | ||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | ||
Taste | 1 | 8.6 ± 0.24 aA | 7.4 ± 0.24 bB | 6.8 ± 0.58 bcB | 3.4 ± 0.81 bC | 2.2 ± 0.49 bD |
7 | 8.2 ± 0.58 aA | 7.6 ± 0.51 bA | 7.6 ± 0.60 aB | 5.2 ± 1.24 aC | 2.2 ± 0.73 bD | |
14 | 8.4 ± 0.24 aA | 8.6 ± 0.24 aA | 7.4 ± 0.51 abB | 3.2 ± 0.20 bC | 3.2 ± 0.86 aC | |
21 | 8.0 ± 0.45 aA | 8.0 ± 0.45 abA | 6.6 ± 0.75 cB | 2.2 ± 0.20 cC | 1.0 ± 0.00 cD | |
Mean | 8.30 ± 0.19 A | 7.90 ± 0.2 A | 7.10 ± 0.3 B | 3.50 ± 0.43 C | 2.15 ± 0.33 D | |
Color | 1 | 8.2 ± 0.49 aA | 8.4 ± 0.40 aA | 7.6 ± 0.60 aA | 4.4 ± 0.68 bB | 2.8 ± 0.37 cC |
7 | 8.6 ± 0.40 aA | 8.2 ± 0.37 aAB | 7.6 ± 0.40 aB | 5.4 ± 0.98 aC | 3.8 ± 0.49 bD | |
14 | 8.4 ± 0.24 aA | 8.6 ± 0.24 aA | 7.4 ± 0.24 aB | 5.6 ± 0.68 aC | 3.8 ± 1.11 bD | |
21 | 8.4 ± 0.24 aA | 8.4 ± 0.24 aA | 8.0 ± 0.32 aA | 4.4 ± 1.12 bB | 4.8 ± 1.16 aB | |
Mean | 8.40 ± 0.17 A | 8.40 ± 0.15 A | 7.65 ± 0.20 A | 4.95 ± 0.43 B | 3.80 ± 0.43 C | |
Aroma | 1 | 8.0 ± 0.45 aA | 7.0 ± 0.63 aA | 5.8 ± 0.86 bB | 3.2 ± 0.73 aC | 2.2 ± 0.73 aC |
7 | 8.0 ± 0.77 aA | 7.2 ± 0.73 aA | 7.0 ± 0.63 aA | 3.8 ± 0.73 aC | 3.0 ± 0.55 aC | |
14 | 7.6 ± 0.68 aA | 7.4 ± 0.75 aAB | 6.4 ± 1.03 abB | 2.8 ± 0.37 aC | 2.6 ± 0.81 aC | |
21 | 7.4 ± 0.87 aA | 7.8 ± 0.37 aAB | 6.8 ± 0.37 aB | 3.6 ± 0.75 aC | 1.0 ± 0.00 bD | |
Mean | 7.75 ± 0.33 A | 7.35 ± 0.3 AB | 6.5 ± 0.37 B | 3.35 ± 0.32 C | 2.20 ± 0.33 D | |
Texture | 1 | 8.0 ± 0.55 abA | 7.6 ± 0.24 bA | 6.6 ± 0.75 bB | 3.4 ± 0.87 bC | 2.8 ± 0.73 bC |
7 | 7.6 ± 0.68 bA | 8.0 ± 0.77 abA | 7.4 ± 0.40 abA | 5.0 ± 1.18 aB | 4.4 ± 1.21 aB | |
14 | 8.6 ± 0.24 aA | 8.6 ± 0.24 aA | 8.0 ± 0.00 aA | 5.2 ± 0.66 aB | 2.8 ± 0.58 bC | |
21 | 8.4 ± 0.40 abAB | 8.6 ± 0.24 aA | 7.6 ± 0.40 aB | 4.0 ± 0.89 bC | 1.4 ± 0.24 cD | |
Mean | 8.15 ± 0.24 A | 8.20 ± 0.22 A | 7.40 ± 0.24 A | 4.4 ± 0.46 B | 2.85 ± 0.43 C | |
After Taste | 1 | 8.4 ± 0.24 aA | 7.6 ± 0.60 bAB | 6.6 ± 1.03 bB | 4.2 ± 0.73 bC | 2.0 ± 0.45 bcD |
7 | 8.0 ± 0.77 aA | 6.6 ± 1.44 cB | 7.4 ± 0.75 abAB | 5.2 ± 1.36 aC | 2.4 ± 0.68 bD | |
14 | 8.6 ± 0.24 aA | 8.6 ± 0.24 aA | 8.2 ± 0.20 aA | 5.8 ± 0.73 aB | 4.2 ± 0.80 aC | |
21 | 8.4 ± 0.24 aA | 8.4 ± 0.24 abA | 8.0 ± 0.32 aA | 4.0 ± 0.84 bB | 1.4 ± 0.24 cC | |
Mean | 8.35 ± 0.21 A | 7.8 ± 0.41 A | 7.55 ± 0.34 A | 4.8 ± 0.47 B | 2.5 ± 0.36 C | |
Overall Acceptability | 1 | 8.6 ± 0.24 aA | 8.00 ± 0.63 aA | 4.6 ± 0.75 cB | 4.00 ± 0.84 Ba | 2.2 ± 0.37 aC |
7 | 8.00 ± 0.77 abA | 7.4 ± 0.68 aA | 7.2 ± 0.66 aA | 4.00 ± 1.55 aB | 2.00 ± 0.77 aC | |
14 | 8.4 ± 0.24 abA | 8.2 ± 0.49 aA | 6.4 ± 0.75 abB | 2.6 ± 0.24 bC | 2.2 ± 0.37 aD | |
21 | 7.6 ± 0.4 bA | 7.6 ± 0.4 aA | 6.00 ± 0.71 bB | 2.2 ± 0.20 bC | 1.00 ± 0.00 bD | |
Mean | 8.15 ± 0.23 A | 7.8 ± 0.27 A | 6.05 ± 0.4 B | 3.2 ± 0.45 C | 1.85 ± 0.24 D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algonaiman, R.; Alharbi, H.F. Development of Fermented Camel Milk Incorporating Oats and Sukkari Date Palm Fruit: Nutritional, Physicochemical, Functional, and Organoleptic Attributes. Fermentation 2023, 9, 864. https://doi.org/10.3390/fermentation9100864
Algonaiman R, Alharbi HF. Development of Fermented Camel Milk Incorporating Oats and Sukkari Date Palm Fruit: Nutritional, Physicochemical, Functional, and Organoleptic Attributes. Fermentation. 2023; 9(10):864. https://doi.org/10.3390/fermentation9100864
Chicago/Turabian StyleAlgonaiman, Raya, and Hend F. Alharbi. 2023. "Development of Fermented Camel Milk Incorporating Oats and Sukkari Date Palm Fruit: Nutritional, Physicochemical, Functional, and Organoleptic Attributes" Fermentation 9, no. 10: 864. https://doi.org/10.3390/fermentation9100864
APA StyleAlgonaiman, R., & Alharbi, H. F. (2023). Development of Fermented Camel Milk Incorporating Oats and Sukkari Date Palm Fruit: Nutritional, Physicochemical, Functional, and Organoleptic Attributes. Fermentation, 9(10), 864. https://doi.org/10.3390/fermentation9100864