Enhancing Anaerobic Digestion with an UASB Reactor of the Winery Wastewater for Producing Volatile Fatty Acid Effluent Enriched in Caproic Acid
Abstract
:1. Introduction
2. Materials and Method
2.1. Substrate Characterization
2.2. Operating Conditions
2.3. Analytical Methods
2.4. Microbial Community Analysis
3. Results and Discussion
3.1. Influence of HRT on Effluent Characteristics
3.1.1. Removal Efficiencies of TSS and VSS with HRT
3.1.2. VFAs Production
3.2. Biogas Production
3.3. Microbial Community Dynamics
VFAs | Genus | % Abundance | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|
8 HRT | 5 HRT | 2.5 HRT | |||||||
PSU | I | F | I | F | I | F | |||
HAc | Acetobacter | 0.21 | 4.08 | 5.77 | 2.02 | 3.36 | 2.93 | 2.24 | [36,50,51,53] |
Clostridium | 2.11 | 4.07 | 9.13 | 4.88 | 3.65 | 11.03 | 1.01 | [36,50,51,53] | |
HPr | Propionibacterium | 0.38 | 0.54 | 0.29 | 0.21 | 1.18 | 0.11 | [36,50] | |
Acidaminococcus | 0.86 | 0.72 | 0.56 | 0.33 | 0.17 | 0.23 | 0.22 | [70] | |
HBu | Butyricicoccus | 0 | 0.02 | 0.04 | 0.1 | 0.03 | 0.05 | 0.1 | [71] |
Butyrivibrio | 0.02 | 0.02 | 0.01 | 0 | 0 | 0.01 | 0.05 | [36,50] | |
Acidaminococcus | 0.86 | 0.72 | 0.56 | 0.33 | 0.17 | 0.23 | 0.22 | [70] | |
Clostridium | 2.11 | 4.07 | 9.13 | 4.88 | 3.65 | 11.03 | 1.01 | [36,50] | |
Eubacterium | 0.5 | 0.22 | 0.14 | 0.06 | 0.06 | 0 | 0.08 | [36,50] | |
HCa | Caproiciproducens | 7.27 | 4.72 | 4.11 | 3.83 | 3.19 | 3.14 | 0.97 | [59] |
Clostridium | 2.11 | 4.07 | 9.13 | 4.88 | 3.65 | 11.03 | 1.01 | [36,50,59] |
4. Conclusions
- The maximum total production of Volatile Fatty Acids in the effluent was 1.7 gCOD/L, with a 45% of HCa (0.9 gCOD/L).
- Approximately 21% of feed COD is converted to VFA.
- The Archaeal population remained stable at over 35%, most of them (>96%) belonged to the phylum Euryarchaeota, within which the family Methanobacteriaceae (hydrogenotrophic methanogens) dominated with more than 98%.
- Within the Eubacteria population, we identified genera known for their HCa production capabilities, including Clostridium kluyveri and Clostridium sp. Both genera belong to the dominant phylum Firmicutes, which constituted 69% of the population.
- The biogas has a high methane content (>94%), with 24% of the fed COD converted into CH4.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuci, A.; Fogarassy, C. European Green Deal Policy for the Circular Economy: Opportunities and Challenges. Hung. Agric. Eng. 2021, 39, 65–73. [Google Scholar] [CrossRef]
- European Parliament. Available online: https://www.europarl.europa.eu/news/en/headlines/economy/20151201STO05603/circular-economy-definition-importance-and-benefits?&at_campaign=20234-Economy&at_medium=Google_Ads&at_platform=Search&at_creation=RSA&at_goal=TR_G&at_audience=circular%20economy&at_topic=Circular_Economy&at_location=ES&gclid=CjwKCAjwxOymBhAFEiwAnodBLO_wVOkTIxnucxu-_fh1c-y_r_XMJibQvl1RBl8h7h7fK-GVP2W8iRoCMFkQAvD_BwE (accessed on 21 September 2023).
- Gottardo, M.; Bolzonella, D.; Tuci, G.A.; Valentino, F.; Majone, M.; Pavan, P.; Battista, F. Producing volatile fatty acids and polyhydroxyalkanoates from foods by-products and waste: A review. Bioresour. Technol. 2022, 361, 127716. [Google Scholar] [CrossRef]
- Bolzonella, D.; Papa, M.; Da Ros, C.; Muthukumar, L.A.; Rosso, D. Winery wastewater treatment: A critical overview of advanced biological processes. Crit. Rev. Biotechnol. 2019, 39, 489–507. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. General Introduction. Gender and Land Rights Database, WWW Document. Available online: https://www.fao.org/home/en/ (accessed on 21 September 2023).
- Sivaprakasam, S.; Balaji, K. Effect of HRT on biogas yield in treating dairy industry wastewater using Upflow Anaerobic Sludge Fixed Film reactor. Mater. Today Proc. 2020, 43, 1443–1448. [Google Scholar] [CrossRef]
- Surendra, K.; Sawatdeenarunat, C.; Shrestha, S.; Sung, S.; Khanal, S.K. Anaerobic Digestion-Based Biorefinery for Bioenergy and Biobased Products. Ind. Biotechnol. 2015, 11, 103–112. [Google Scholar] [CrossRef]
- Patel, A.; Sarkar, O.; Rova, U.; Christakopoulos, P.; Matsakas, L. Valorization of volatile fatty acids derived from low-cost organic waste for lipogenesis in oleaginous microorganisms—A review. Bioresour. Technol. 2021, 321, 124457. [Google Scholar] [CrossRef] [PubMed]
- Del Nery, V.; Alves, I.; Damianovic, M.H.R.Z.; Pires, E.C. Hydraulic and organic rates applied to pilot scale UASB reactor for sugar cane vinasse degradation and biogas generation. Biomass-Bioenergy 2018, 119, 411–417. [Google Scholar] [CrossRef]
- Morales-Palomo, S.; González-Fernández, C.; Tomás-Pejó, E. Prevailing acid determines the efficiency of oleaginous fermentation from volatile fatty acids. J. Environ. Chem. Eng. 2022, 10, 107354. [Google Scholar] [CrossRef]
- Tomás-Pejó, E.; González-Fernández, C.; Greses, S.; Kennes, C.; Otero-Logilde, N.; Veiga, M.C.; Bolzonella, D.; Müller, B.; Passoth, V. Production of short-chain fatty acids (SCFAs) as chemicals or substrates for microbes to obtain biochemicals. Biotechnol. Biofuels Bioprod. 2023, 16, 1–17. [Google Scholar] [CrossRef]
- Ganesh, P.S.; Ramasamy, E.V.; Gajalakshmi, S.; Sanjeevi, R.; Abbasi, S.A. Studies on treatment of low-strength effluents by UASB reactor and its application to dairy industry wash waters. Indian J. Biotechnol. 2007, 6, 234–238. [Google Scholar]
- Gao, Y.; Cai, T.; Yin, J.; Li, H.; Liu, X.; Lu, X.; Tang, H.; Hu, W.; Zhen, G. Insights into biodegradation behaviors of methanolic wastewater in up-flow anaerobic sludge bed (UASB) reactor coupled with in-situ bioelectrocatalysis. Bioresour. Technol. 2023, 376, 128835. [Google Scholar] [CrossRef] [PubMed]
- Mainardis, M.; Buttazzoni, M.; Goi, D. Up-Flow Anaerobic Sludge Blanket (UASB) Technology for Energy Recovery: A Review on State-of-the-Art and Recent Technological Advances. Bioengineering 2020, 7, 43. [Google Scholar] [CrossRef]
- Tiwari, M.K.; Guha, S.; Harendranath, C.S.; Tripathi, S. Influence of extrinsic factors on granulation in UASB reactor. Appl. Microbiol. Biotechnol. 2006, 71, 145–154. [Google Scholar] [CrossRef]
- Boiocchi, R.; Zhang, Q.; Gao, M.; Liu, Y. Modeling and optimization of an upflow anaerobic sludge blanket (UASB) system treating blackwaters. J. Environ. Chem. Eng. 2022, 10, 107614. [Google Scholar] [CrossRef]
- Chuenchart, W.; Logan, M.; Leelayouthayotin, C.; Visvanathan, C. Enhancement of food waste thermophilic anaerobic digestion through synergistic effect with chicken manure. Biomass-Bioenergy 2020, 136, 105541. [Google Scholar] [CrossRef]
- Sillero, L.; Solera, R.; Pérez, M. Thermophilic-mesophilic temperature phase anaerobic co-digestion of sewage sludge, wine vinasse and poultry manure: Effect of hydraulic retention time on mesophilic-methanogenic stage. Chem. Eng. J. 2023, 451, 138478. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Caccamo, F.M.; Calatroni, S.; Torretta, V.; Katsoyiannis, I.A.; Miino, M.C.; Rada, E.C. Applications of Up-Flow Anaerobic Sludge Blanket (UASB) and Characteristics of Its Microbial Community: A Review of Bibliometric Trend and Recent Findings. Int. J. Environ. Res. Public Health 2021, 18, 10326. [Google Scholar] [CrossRef]
- Atasoy, M.; Owusu-Agyeman, I.; Plaza, E.; Cetecioglu, Z. Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresour. Technol. 2018, 268, 773–786. [Google Scholar] [CrossRef]
- Agler, M.T.; Wrenn, B.A.; Zinder, S.H.; Angenent, L.T. Waste to bioproduct conversion with undefined mixed cultures: The carboxylate platform. Trends Biotechnol. 2011, 29, 70–78. [Google Scholar] [CrossRef]
- He, J.; Shi, Z.; Luo, T.; Zhang, S.; Liu, Y.; Luo, G. Phenol promoted caproate production via two-stage batch anaerobic fermentation of organic substance with ethanol as electron donor for chain elongation. Water Res. 2021, 204, 117601. [Google Scholar] [CrossRef]
- Chen, W.-S.; Strik, D.P.; Buisman, C.J.; Kroeze, C. Production of Caproic Acid from Mixed Organic Waste: An Environmental Life Cycle Perspective. Environ. Sci. Technol. 2017, 51, 7159–7168. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, W.d.A.; Leitão, R.C.; Gehring, T.A.; Angenent, L.T.; Santaella, S.T. Anaerobic fermentation for n-caproic acid production: A review. Process. Biochem. 2017, 54, 106–119. [Google Scholar] [CrossRef]
- Choi, K.; Jeon, B.S.; Kim, B.-C.; Oh, M.-K.; Um, Y.; Sang, B.-I. In Situ Biphasic Extractive Fermentation for Hexanoic Acid Production from Sucrose by Megasphaera elsdenii NCIMB 702410. Appl. Biochem. Biotechnol. 2013, 171, 1094–1107. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Bao, X.; Guo, W.; Wang, B.; Li, Y.; Luo, H.; Wang, H.; Ren, N. Medium chain carboxylic acids production from waste biomass: Current advances and perspectives. Biotechnol. Adv. 2019, 37, 599–615. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-L.; Wei, W.; Sun, J.; Xu, Q.; Dai, X.; Ni, B.-J. Medium-Chain fatty acids and long-chain alcohols production from waste activated sludge via two-stage anaerobic fermentation. Water Res. 2020, 186, 116381. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Chua, A.S.M.; Yeoh, H.K.; Ngoh, G.C. A review of the production and applications of waste-derived volatile fatty acids. Chem. Eng. J. 2014, 235, 83–99. [Google Scholar] [CrossRef]
- Guarino, G.; Carotenuto, C.; Di Cristofaro, F.; Papa, S.; Morrone, B.; Minale, M. Does the C/N ratio really affect the bio-methane yield? a three years investigation of buffalo manure digestion. Chem. Eng. Trans. 2016, 49, 463–468. [Google Scholar] [CrossRef]
- Melis, E.; Asquer, C.; Carboni, G.; Scano, E.A. Role of Cannabis sativa L. in energy production: Residues as a potential lignocellulosic biomass in anaerobic digestion plants. In Current Applications, Approaches, and Potential Perspectives for Hemp; Academic Press: Cambridge, MA, USA, 2023; pp. 111–199. [Google Scholar] [CrossRef]
- Poh, P.E.; Chong, M.F. Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment. Bioresour. Technol. 2009, 100, 1–9. [Google Scholar] [CrossRef]
- Lim, S.J.; Kim, T.H. Applicability and trends of anaerobic granular sludge treatment processes. Biomass Bioenergy 2014, 60, 189–202. [Google Scholar] [CrossRef]
- Eaton, A.D. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1999. [Google Scholar]
- Seghezzo, L.; Zeeman, G.; van Lier, J.B.; Hamelers, H.V.M.; Lettinga, G. A Review: The anaerobic treatment of sewage in uasb and EGSB reactors. Bioresour. Technol. 1998, 65, 175–190. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Liu, X.; Fu, B.; Chen, J.; Yu, H.Q. Acidogenic fermentation of proteinaceous sewage sludge: Effect of Ph. Water Res. 2012, 46, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.A.D.M.; Mahboubi, A.; Sapmaz, T.; Varjani, S.; Qiao, W.; Koseoglu-Imer, D.Y.; Taherzadeh, M.J. A Glimpse of the World of Volatile Fatty Acids Production and Application: A review. Bioengineered 2022, 13, 1249–1275. [Google Scholar] [CrossRef]
- Sukphun, P.; Sittijunda, S.; Reungsang, A. Volatile fatty acid production from organic waste with the emphasis on membrane-based recovery. Fermentation 2021, 7, 159. [Google Scholar] [CrossRef]
- Cavinato, C.; Da Ros, C.; Pavan, P.; Bolzonella, D. Influence of temperature and hydraulic retention on the production of volatile fatty acids during anaerobic fermentation of cow manure and maize silage. Bioresour. Technol. 2017, 223, 59–64. [Google Scholar] [CrossRef]
- Bengtsson, S.; Hallquist, J.; Werker, A.; Welander, T. Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production. Biochem. Eng. J. 2008, 40, 492–499. [Google Scholar] [CrossRef]
- Latessa, S.H.; Hanley, L.; Tao, W. Characteristics and practical treatment technologies of winery wastewater: A review for wastewater management at small wineries. J. Environ. Manag. 2023, 342, 118343. [Google Scholar] [CrossRef]
- Yu, H.Q.; Fang, H.H.P. Acidification of mid-and high-strength dairy wastewaters. Water Res. 2001, 35, 3697–3705. [Google Scholar] [CrossRef]
- Sillero, L.; Solera, R.; Perez, M. Improvement of the anaerobic digestion of sewage sludge by co-digestion with wine vinasse and poultry manure: Effect of different hydraulic retention times. Fuel 2022, 321, 124104. [Google Scholar] [CrossRef]
- Fernández, B.; Seijo, I.; Ruiz-Filippi, G.; Roca, E.; Tarenzi, I.; Lema, J.M. Characterization, management and treatment of wastewater from white wine production. Water Sci. Technol. 2007, 56, 121–128. [Google Scholar] [CrossRef]
- Moletta, R. Winery and distillery wastewater treatment by anaerobic digestion. Water Sci. Technol. 2005, 51, 137–144. [Google Scholar] [CrossRef]
- Valderrama, C.; Ribera, G.; Bahí, N.; Rovira, M.; Giménez, T.; Nomen, R.; Lluch, S.; Yuste, M.; Martinez-Lladó, X. Winery wastewater treatment for water reuse purpose: Conventional activated sludge versus membrane bioreactor (MBR). A comparative case study. Desalination 2012, 306, 1–7. [Google Scholar] [CrossRef]
- Cheng, F.; Brewer, C.E. Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion. Renew. Sustain. Energy Rev. 2021, 146, 111167. [Google Scholar] [CrossRef]
- Tena, M.; Luque, B.; Perez, M.; Solera, R. Enhanced hydrogen production from sewage sludge by cofermentation with wine vinasse. Int. J. Hydrogen Energy 2020, 45, 15977–15984. [Google Scholar] [CrossRef]
- Wang, Q.; Kuninobu, M.; Ogawa, H.I.; Kato, Y. Degradation of Volatile Fatty Acids in Highly Efficient Anaerobic Digestion. Available online: www.elsevier.com/locate/biombioe (accessed on 21 September 2023).
- Malinowsky, C.; Nadaleti, W.; Debiasi, L.R.; Moreira, A.J.G.; Bayard, R.; Borges de Castilhos, A., Jr. Start-up phase optimization of two-phase anaerobic digestion of food waste: Effects of organic loading rate and hydraulic retention time. J. Environ. Manag. 2021, 296, 113064. [Google Scholar] [CrossRef]
- Kim, B.C.; Jeon, B.S.; Kim, S.; Kim, H.; Um, Y.; Sang, B.I. Caproiciproducens galactitolivorans gen. Nov., sp. nov., a bacterium capable of producing caproic acid from galactitol, isolated from a wastewater treatment plant. Int. J. Syst. Evol. Microbiol. 2015, 65, 4902–4908. [Google Scholar] [CrossRef]
- Mostafa, N.A. Production and recovery of volatile fatty acids from fermentation broth. Energy Convers. Manag. 1999, 40, 1543–1553. [Google Scholar] [CrossRef]
- Global Industry Analysts, Inc. Caproic Acid—Global Strategic Business Report; Global Industry Analysts, Inc.: San Jose, CA, USA, 2023. [Google Scholar]
- Lv, W.; Schanbacher, F.L.; Yu, Z. Putting microbes to work in sequence: Recent advances in temperature-phased anaerobic digestion processes. Bioresour. Technol. 2010, 101, 9409–9414. [Google Scholar] [CrossRef]
- Wang, D.; Duan, Y.; Yang, Q.; Liu, Y.; Ni, B.J.; Wang, Q.; Zeng, G.; Li, X.; Yuan, Z. Free ammonia enhances dark fermentative hydrogen production from waste activated sludge. Water Res. 2018, 133, 272–281. [Google Scholar] [CrossRef]
- Rawoof, S.A.A.; Kumar, P.S.; Vo, D.V.N.; Subramanian, S. Sequential production of hydrogen and methane by anaerobic digestion of organic wastes: A review. Environ. Chem. Lett. 2021, 19, 1043–1063. [Google Scholar] [CrossRef]
- Solera, R.; Romero, L.I.; Sales, D. Analysis of the methane production in thermophilic anaerobic reactors: Use of autofluorescence microscopy. Biotechnol. Lett. 2001, 23, 1889–1892. [Google Scholar] [CrossRef]
- García Morales, J.L. Dinámica de Colonización de la Biopelícula bacteriana en Reactores Anaerobios Termofílicos. Ph.D. Thesis, Universidad de Cádiz, Cádiz, Spain, 1998. [Google Scholar]
- Ramirez, I.; Volcke, E.I.P.; Rajinikanth, R.; Steyer, J.P. Modeling microbial diversity in anaerobic digestion through an extended ADM1 model. Water Res. 2009, 43, 2787–2800. [Google Scholar] [CrossRef]
- Dong, W.; Yang, Y.; Liu, C.; Zhang, J.; Pan, J.; Luo, L.; Wu, G.; Awasthi, M.K.; Yan, B. Caproic acid production from anaerobic fermentation of organic waste—Pathways and microbial perspective. Renew. Sustain. Energy Rev. 2023, 175, 113181. [Google Scholar] [CrossRef]
- Strazzera, G.; Battista, F.; Garcia, N.H.; Frison, N.; Bolzonella, D. Volatile fatty acids production from food wastes for biorefinery platforms: A review. J. Environ. Manag. 2018, 226, 278–288. [Google Scholar] [CrossRef]
- Zhou, H.; Brown, R.C.; Wen, Z. Anaerobic digestion of aqueous phase from pyrolysis of biomass: Reducing toxicity and improving microbial tolerance. Bioresour. Technol. 2019, 292, 121976. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, Y.; Yu, Q.; Dang, Y.; Li, Y.; Quan, X. Communities stimulated with ethanol to perform direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate. Water Res. 2016, 102, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Owusu-Agyeman, I.; Eyice, Ö.; Cetecioglu, Z.; Plaza, E. The study of structure of anaerobic granules and methane producing pathways of pilot-scale UASB reactors treating municipal wastewater under sub-mesophilic conditions. Bioresour. Technol. 2019, 290, 121733. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, J.; Liu, J.; Yang, F.; Zhu, W.; Yuan, X.; Hu, Y.; Ciu, Z.; Wang, X. Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass. Bioresour. Technol. 2017, 241, 349–359. [Google Scholar] [CrossRef]
- Liu, C.; Li, H.; Zhang, Y.; Si, D.; Chen, Q. Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge. Bioresour. Technol. 2016, 216, 87–94. [Google Scholar] [CrossRef]
- Lin, L.; Yu, Z.; Li, Y. Impact of different ratios of feedstock to liquid anaerobic digestion effluent on the performance and microbiome of solid-state anaerobic digesters digesting corn stover. Bioresour. Technol. 2016, 200, 744–752. [Google Scholar] [CrossRef]
- Lin, L.; Yu, Z.; Li, Y. Sequential batch thermophilic solid-state anaerobic digestion of lignocellulosic biomass via recirculating digestate as inoculum—Part II: Microbial diversity and succession. Bioresour. Technol. 2017, 241, 1027–1035. [Google Scholar] [CrossRef]
- Walker, C.B.; He, Z.; Yang, Z.K.; He, Q.; Zhou, J.; Voordouw, G.; Wall, J.D.; Arkin, A.P.; Hazen, T.C.; Stolyar, S.; et al. The electron transfer system of syntrophically grown Desulfovibrio vulgaris. J. Bacteriol. 2009, 191, 5793–5801. [Google Scholar] [CrossRef] [PubMed]
- Barker, H.A.; Taha, S.M. Clostridium kluyverii, an Organism Concerned in the Formation of Caproic Acid from Ethyl Alcohol. J. Bacteriol. 1942, 43, 347–363. [Google Scholar] [CrossRef] [PubMed]
- Böck, A. Fermentation. In Encyclopedia of Microbiology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 132–144. [Google Scholar] [CrossRef]
- Chang, S.C.; Shen, M.H.; Liu, C.Y.; Pu, C.M.; Hu, J.M.; Huang, C.J. A gut butyrate-producing bacterium Butyricicoccus pullicaecorum regulates short-chain fatty acid transporter and receptor to reduce the progression of 1,2-dimethylhydrazine-associated colorectal cancer. Oncol. Lett. 2020, 20, 327. [Google Scholar] [CrossRef]
Parameters | WW |
---|---|
TCOD (g/L) | 2.14 ± 0.01 |
SCOD (g/L) | 1.81 ± 0.13 |
TSS (g/L) | 0.24 ± 0.01 |
VSS (g/L) | 0.16 ± 0.01 |
pH | 7.45 ± 0.27 |
EtOH (gEtOH/L) | 0.036 ± 0.002 |
PO4-P (mgPO4-P/L) | 5.83 ± 0.26 |
TAN (gNH4/L) | 0.24 ± 0.02 |
TVFA (gCOD/L) | 0.20 ± 0.01 |
HRT (h) | 8 | 5 | 2.5 |
---|---|---|---|
OLR (gCOD/(L·d)) | 6.4 ± 0.01 | 10.3 ± 0.01 | 20.6 ± 0.01 |
FV (L/d) | 15 | 24 | 48 |
FR (mL/min) | 10.41 | 16.67 | 33.33 |
Influent | Effluent | |||
---|---|---|---|---|
HRT (h) | ||||
Parameters | 8 | 5 | 2.5 | |
pH | 7.45 ± 0.27 | 5.05 ± 0.24 | 4.81 ± 0.10 | 4.89 ± 0.10 |
TCOD (g/L) | 2.14 ± 0.01 | 2.48 ± 0.21 | 2.47 ± 0.20 | 2.47 ± 0.05 |
SCOD (g/L) | 1.81 ± 0.13 | 2.34 ± 0.34 | 2.34 ± 0.16 | 2.28 ± 0.18 |
TSS (g/L) | 0.24 ± 0.01 | 0.06 ± 0.01 | 0.17 ± 0.02 | 0.39 ± 0.07 |
VSS (g/L) | 0.16 ± 0.01 | 0.05 ± 0.01 | 0.06 ± 0.03 | 0.12 ± 0.02 |
TAN (gNH4/L) | 0.24 ± 0.02 | 0.25 ± 0.02 | 0.12 ± 0.00 | 0.12 ± 0.00 |
PO4-P (mgPO4-P/L) | 5.83 ± 0.26 | 2.36 ± 0.12 | 2.32 ± 0.07 | 3.51 ± 2.18 |
EtOH (gEtOH/L) | 0.036 ± 0.002 | 0.012 ± 0.001 | 0.005 ± 0.000 | 0.035 ± 0.002 |
TVFA (gCOD/L) | 0.20 ± 0.01 | 1.37 ± 0.16 | 1.72 ± 0.15 | 0.93 ± 0.33 |
HAc (gCOD/L) | 0.04 ± 0.00 | 0.29 ± 0.07 | 0.17 ± 0.06 | 0.25 ± 0.05 |
HPr (gCOD/L) | 0.00 ± 0.00 | 0.05 ± 0.01 | 0.08 ± 0.03 | 0.03 ± 0.00 |
HBu (gCOD/L) | 0.16 ± 0.10 | 0.27 ± 0.05 | 0.63 ± 0.12 | 0.40 ± 0.22 |
HVa (gCOD/L) | 0.00 ± 0.00 | 0.07 ± 0.04 | 0.06 ± 0.03 | 0.00 ± 0.01 |
HCa (gCOD/L) | 0.00 ± 0.00 | 0.69 ± 0.13 | 0.78 ± 0.08 | 0.25 ± 0.17 |
HRT (h) | Total Volume Biogas (mL/d) | CH4/CO2 | CO2 (mL) | CH4 (mL) | % CO2 | % CH4 | % CODCH4 (*) |
---|---|---|---|---|---|---|---|
8 | 600 ± 35.69 | 12.81 ± 1.09 | 43.39 ± 5.98 | 556.18 ± 29.70 | 7.22 ± 0.57 | 92.78 ± 0.57 | 24.83 ± 1.35 |
5 | 897 ± 31.25 | 16.11 ± 1.71 | 52.41 ± 7.02 | 844.69 ± 24.23 | 5.83 ± 0.58 | 94.17 ± 0.58 | 23.78 ± 0.64 |
2.5 | 51 ± 61.70 | 6.96 ± 8.77 | 6.41 ± 8.54 | 44.57 ± 53.15 | 9.08 ± 5.77 | 90.92 ± 5.77 | 0.63 ± 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibáñez-López, M.E.; Frison, N.; Bolzonella, D.; García-Morales, J.L. Enhancing Anaerobic Digestion with an UASB Reactor of the Winery Wastewater for Producing Volatile Fatty Acid Effluent Enriched in Caproic Acid. Fermentation 2023, 9, 958. https://doi.org/10.3390/fermentation9110958
Ibáñez-López ME, Frison N, Bolzonella D, García-Morales JL. Enhancing Anaerobic Digestion with an UASB Reactor of the Winery Wastewater for Producing Volatile Fatty Acid Effluent Enriched in Caproic Acid. Fermentation. 2023; 9(11):958. https://doi.org/10.3390/fermentation9110958
Chicago/Turabian StyleIbáñez-López, M. Eugenia, Nicola Frison, David Bolzonella, and José L. García-Morales. 2023. "Enhancing Anaerobic Digestion with an UASB Reactor of the Winery Wastewater for Producing Volatile Fatty Acid Effluent Enriched in Caproic Acid" Fermentation 9, no. 11: 958. https://doi.org/10.3390/fermentation9110958
APA StyleIbáñez-López, M. E., Frison, N., Bolzonella, D., & García-Morales, J. L. (2023). Enhancing Anaerobic Digestion with an UASB Reactor of the Winery Wastewater for Producing Volatile Fatty Acid Effluent Enriched in Caproic Acid. Fermentation, 9(11), 958. https://doi.org/10.3390/fermentation9110958