Effect of Alkaline Mineral Complex Buffer Supplementation on Rumen Fermentation, Rumen Microbiota and Rumen Epithelial Transcriptome of Newborn Calves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Study Design and Diets
2.2. Blood Sample and Ruminal Sample Collection
2.3. Rumen Fermentation Parameters
2.4. DNA Extraction, 16S rRNA Gene Sequencing and Composition Analysis of Rumen Microbiota
2.5. Rumen Epithelial RNA Extraction and Sequencing and Differential Expression Gene and Function Analysis
2.6. Statistical Analysis
3. Results
3.1. Serum Immunity Indexes
3.2. Rumen Fermentation Parameters
3.3. Rumen Microbiota
3.4. Transcriptome Analysis of Rumen Epithelial Tissue
3.5. Correlation Analysis
4. Discussion
4.1. Effects of AMCB on Serum Immunity Indexes and Rumen Fermentation Parameters of Newborn Calves
4.2. Effects of AMCB on Rumen Microbiota of Newborn Calves
4.3. Effects of AMCB on Ruminal Epithelium Transcriptome of Newborn Calves
4.4. Correlation Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, B.; Zhang, K.; Li, C.; Wang, X.; Chen, Y.; Yang, Y. Characterization and Comparison of Microbiota in the Gastrointestinal Tracts of the Goat (Capra hircus) during Preweaning Development. Front. Microbiol. 2019, 10, 2125. [Google Scholar] [CrossRef]
- Cheng, L.; Cantalapiedra-Hijar, G.; Meale, S.J.; Rugoho, I.; Jonker, A.; Khan, M.A.; Al-Marashdeh, O.; Dewhurst, R.J. Review: Markers and proxies to monitor ruminal function and feed efficiency in young ruminants. Animal 2021, 15, 100337. [Google Scholar] [CrossRef]
- Quigley, J.D. Symposium review: Re-evaluation of National Research Council energy estimates in calf starters. J. Dairy Sci. 2019, 102, 3674–3683. [Google Scholar] [CrossRef]
- Diao, Q.; Zhang, R.; Fu, T. Review of Strategies to Promote Rumen Development in Calves. Animals 2019, 9, 490. [Google Scholar] [CrossRef]
- Dai, H.; Ma, N.; Chang, G.; Aabdin, Z.U.; Shen, X. Long-term high-concentrate diet feeding induces apoptosis of rumen epithelial cells and inflammation of rumen epithelium in dairy cows. Anim. Biotechnol. 2022, 33, 289–296. [Google Scholar] [CrossRef]
- Gunther, C.; Neumann, H.; Neurath, M.F.; Becker, C. Apoptosis, necrosis and necroptosis: Cell death regulation in the intestinal epithelium. Gut 2013, 62, 1062–1071. [Google Scholar] [CrossRef]
- Dias, J.; Marcondes, M.I.; Noronha, M.F.; Resende, R.T.; Machado, F.S.; Mantovani, H.C.; Dill-McFarland, K.A.; Suen, G. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves. Front. Microbiol. 2017, 8, 1553. [Google Scholar] [CrossRef]
- Yeoman, C.J.; White, B.A. Gastrointestinal tract microbiota and probiotics in production animals. Annu. Rev. Anim. Biosci. 2014, 2, 469–486. [Google Scholar] [CrossRef]
- Gomez, D.E.; Arroyo, L.G.; Costa, M.C.; Viel, L.; Weese, J.S. Characterization of the Fecal Bacterial Microbiota of Healthy and Diarrheic Dairy Calves. J. Vet. Intern. Med. 2017, 31, 928–939. [Google Scholar] [CrossRef]
- Malmuthuge, N.; Griebel, P.J.; Guan, L.L. Taxonomic identification of commensal bacteria associated with the mucosa and digesta throughout the gastrointestinal tracts of preweaned calves. Appl. Environ. Microb. 2014, 80, 2021–2028. [Google Scholar] [CrossRef]
- Kashyap, P.C.; Quigley, E.M. Therapeutic implications of the gastrointestinal microbiome. Curr. Opin. Pharmacol. 2018, 38, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Kong, F.; Li, S.; Wang, X.; Sun, X.; Du, W.; Dai, D.; Wang, S.; Xie, B.; Xu, X. Effect of Alkaline Mineral Complex Buffer Supplementation on Milk Performance, Serum Variables, Rumen Fermentation and Rumen Microbiota of Transition Dairy Cows. Fermentation 2023, 9, 792. [Google Scholar] [CrossRef]
- Baldwin, R.T.; McLeod, K.R. Effects of diet forage:concentrate ratio and metabolizable energy intake on isolated rumen epithelial cell metabolism in vitro. J. Anim. Sci. 2000, 78, 771–783. [Google Scholar] [CrossRef]
- Kong, R.S.; Liang, G.; Chen, Y.; Stothard, P.; Guan, L.L. Transcriptome profiling of the rumen epithelium of beef cattle differing in residual feed intake. BMC Genom. 2016, 17, 592. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.; Crispie, F.; Lewis, E.; Reid, M.; O’Toole, P.W.; Cotter, P.D. The rumen microbiome: A crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 2019, 10, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Makkar, H.P.; Sharma, O.P.; Dawra, R.K.; Negi, S.S. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 1982, 65, 2170–2173. [Google Scholar] [CrossRef]
- Wu, Z.Z.; Peng, W.C.; Liu, J.X.; Xu, G.Z.; Wang, D.M. Effect of chromium methionine supplementation on lactation performance, hepatic respiratory rate and anti-oxidative capacity in early-lactating dairy cows. Animal 2021, 15, 100326. [Google Scholar] [CrossRef]
- Cui, K.; Qi, M.; Wang, S.; Diao, Q.; Zhang, N. Dietary energy and protein levels influenced the growth performance, ruminal morphology and fermentation and microbial diversity of lambs. Sci. Rep. 2019, 9, 16612. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.Y.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39, W316–W322. [Google Scholar] [CrossRef]
- Zahirian, M.; Seidavi, A.; Solka, M.; Nosrati, M.; Corazzin, M. Dietary supplementation of Aspergillus oryzae meal and its effect on performance, carcass characteristics, blood variables, and immunity of broiler chickens. Trop. Anim. Health Prod. 2019, 51, 2263–2268. [Google Scholar] [CrossRef]
- Barton, J.C.; Barton, J.C.; Bertoli, L.F.; Acton, R.T. Factors associated with IgG levels in adults with IgG subclass deficiency. BMC Immunol. 2021, 22, 53. [Google Scholar] [CrossRef]
- Bergstrom, J.J.; Xu, H.; Heyman, B. Epitope-Specific Suppression of IgG Responses by Passively Administered Specific IgG: Evidence of Epitope Masking. Front. Immunol. 2017, 8, 238. [Google Scholar] [CrossRef]
- Nagaraja, T.G.; Titgemeyer, E.C. Ruminal acidosis in beef cattle: The current microbiological and nutritional outlook. J. Dairy Sci. 2007, 90 (Suppl. S1), E17–E38. [Google Scholar] [CrossRef]
- Quigley, J.R.; Steen, T.M.; Boehms, S.I. Postprandial changes of selected blood and ruminal metabolites in ruminating calves fed diets with or without hay. J. Dairy Sci. 1992, 75, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Alugongo, G.M.; Li, J.; Wang, Y.; Li, S.; Cao, Z. Review: How Forage Feeding Early in Life Influences the Growth Rate, Ruminal Environment, and the Establishment of Feeding Behavior in Pre-Weaned Calves. Animals 2020, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Beharka, A.A.; Nagaraja, T.G.; Morrill, J.L.; Kennedy, G.A.; Klemm, R.D. Effects of form of the diet on anatomical, microbial, and fermentative development of the rumen of neonatal calves. J. Dairy Sci. 1998, 81, 1946–1955. [Google Scholar] [CrossRef]
- Imani, M.; Mirzaei, M.; Baghbanzadeh-Nobari, B.; Ghaffari, M.H. Effects of forage provision to dairy calves on growth performance and rumen fermentation: A meta-analysis and meta-regression. J. Dairy Sci. 2017, 100, 1136–1150. [Google Scholar] [CrossRef] [PubMed]
- Suárez, B.J.; Van Reenen, C.G.; Beldman, G.; van Delen, J.; Dijkstra, J.; Gerrits, W.J.J. Effects of Supplementing Concentrates Differing in Carbohydrate Composition in Veal Calf Diets: I. Animal Performance and Rumen Fermentation Characteristics. J. Dairy Sci. 2006, 89, 4365–4375. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Mirzaei-Alamouti, H.; Vazirigohar, M.; Mahjoubi, E.; Rezamand, P. Effects of whole milk feeding rate and straw level of starter feed on performance, rumen fermentation, blood metabolites, structural growth, and feeding behavior of Holstein calves. Anim. Feed. Sci. Tech. 2019, 255, 114238. [Google Scholar] [CrossRef]
- Shi, F.; Wang, H.; Degen, A.A.; Zhou, J.; Guo, N.; Mudassar, S.; Long, R. Rumen parameters of yaks (Bos grunniens) and indigenous cattle (Bos taurus) grazing on the Qinghai-Tibetan Plateau. J. Anim. Physiol. Anim. Nutr. 2019, 103, 969–976. [Google Scholar] [CrossRef]
- Dai, Q.; Ma, J.; Cao, G.; Hu, R.; Zhu, Y.; Li, G.; Zou, H.; Wang, Z.; Peng, Q.; Xue, B.; et al. Comparative study of growth performance, nutrient digestibility, and ruminal and fecal bacterial community between yaks and cattle-yaks raised by stall-feeding. AMB Express 2021, 11, 98. [Google Scholar] [CrossRef]
- Li, Q.; Tu, Y.; Ma, T.; Cui, K.; Zhang, J.; Diao, Q.; Bi, Y. Effects of Two Feeding Patterns on Growth Performance, Rumen Fermentation Parameters, and Bacterial Community Composition in Yak Calves. Microorganisms 2023, 11, 576. [Google Scholar] [CrossRef]
- Chiquette, J.; Allison, M.J.; Rasmussen, M.A. Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: Effect on ruminal fermentation characteristics, milk production, and milk composition. J. Dairy Sci. 2008, 91, 3536–3543. [Google Scholar] [CrossRef]
- Lee, C.G.; Baba, Y.; Asano, R.; Fukuda, Y.; Tada, C.; Nakai, Y. Identification of bacteria involved in the decomposition of lignocellulosic biomass treated with cow rumen fluid by metagenomic analysis. J. Biosci. Bioeng. 2020, 130, 137–141. [Google Scholar] [CrossRef]
- Kittelmann, S.; Seedorf, H.; Walters, W.A.; Clemente, J.C.; Knight, R.; Gordon, J.I.; Janssen, P.H. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS ONE 2013, 8, e47879. [Google Scholar] [CrossRef]
- Meehan, C.J.; Beiko, R.G. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol. Evol. 2014, 6, 703–713. [Google Scholar] [CrossRef]
- Yin, X.; Ji, S.; Duan, C.; Tian, P.; Ju, S.; Yan, H.; Zhang, Y.; Liu, Y. Age-Related Changes in the Ruminal Microbiota and Their Relationship With Rumen Fermentation in Lambs. Front. Microbiol. 2021, 12, 679135. [Google Scholar] [CrossRef]
- Mager, L.F.; Burkhard, R.; Pett, N.; Cooke, N.; Brown, K.; Ramay, H.; Paik, S.; Stagg, J.; Groves, R.A.; Gallo, M.; et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 2020, 369, 1481–1489. [Google Scholar] [CrossRef]
- Conte, G.; Dimauro, C.; Daghio, M.; Serra, A.; Mannelli, F.; McAmmond, B.M.; Van Hamme, J.D.; Buccioni, A.; Viti, C.; Mantino, A.; et al. Exploring the relationship between bacterial genera and lipid metabolism in bovine rumen. Animal 2022, 16, 100520. [Google Scholar] [CrossRef]
- He, M.; Li, L.; Wang, H.; Yan, S.; Zhang, Y. Effects of High-Grain Diet With Buffering Agent on the Hepatic Metabolism in Lactating Goats. Front. Physiol. 2019, 10, 661. [Google Scholar] [CrossRef]
- Wang, B.; Ma, M.P.; Diao, Q.Y.; Tu, Y. Saponin-Induced Shifts in the Rumen Microbiome and Metabolome of Young Cattle. Front. Microbiol. 2019, 10, 356. [Google Scholar] [CrossRef]
- Waters, J.L.; Ley, R.E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019, 17, 83. [Google Scholar] [CrossRef]
- Paraboschi, E.M.; Duga, S.; Asselta, R. Fibrinogen as a Pleiotropic Protein Causing Human Diseases: The Mutational Burden of Aalpha, Bbeta, and gamma Chains. Int. J. Mol. Sci. 2017, 18, 2711. [Google Scholar] [CrossRef]
- Litvinov, R.I.; Pieters, M.; de Lange-Loots, Z.; Weisel, J.W. Fibrinogen and Fibrin. Subcell Biochem. 2021, 96, 471–501. [Google Scholar] [CrossRef] [PubMed]
- Simurda, T.; Brunclikova, M.; Asselta, R.; Caccia, S.; Zolkova, J.; Kolkova, Z.; Loderer, D.; Skornova, I.; Hudecek, J.; Lasabova, Z.; et al. Genetic Variants in the FGB and FGG Genes Mapping in the Beta and Gamma Nodules of the Fibrinogen Molecule in Congenital Quantitative Fibrinogen Disorders Associated with a Thrombotic Phenotype. Int. J. Mol. Sci. 2020, 21, 4616. [Google Scholar] [CrossRef] [PubMed]
- Lue, H.; Kleemann, R.; Calandra, T.; Roger, T.; Bernhagen, J. Macrophage migration inhibitory factor (MIF): Mechanisms of action and role in disease. Microbes Infect. 2002, 4, 449–460. [Google Scholar] [CrossRef]
- Paiva, C.N.; Bozza, M.T. Are reactive oxygen species always detrimental to pathogens? Antioxid. Redox Signal. 2014, 20, 1000–1037. [Google Scholar] [CrossRef]
- Hai, T.; Hartman, M.G. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: Activating transcription factor proteins and homeostasis. Gene 2001, 273, 1–11. [Google Scholar] [CrossRef]
- Ku, H.C.; Cheng, C.F. Master Regulator Activating Transcription Factor 3 (ATF3) in Metabolic Homeostasis and Cancer. Front. Endocrinol. 2020, 11, 556. [Google Scholar] [CrossRef]
- Lee, Y.S.; Sasaki, T.; Kobayashi, M.; Kikuchi, O.; Kim, H.J.; Yokota-Hashimoto, H.; Shimpuku, M.; Susanti, V.Y.; Ido-Kitamura, Y.; Kimura, K.; et al. Hypothalamic ATF3 is involved in regulating glucose and energy metabolism in mice. Diabetologia 2013, 56, 1383–1393. [Google Scholar] [CrossRef]
- Apostolou, A.; Shen, Y.; Liang, Y.; Luo, J.; Fang, S. Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death. Exp. Cell Res. 2008, 314, 2454–2467. [Google Scholar] [CrossRef]
- Chen, L.; Feng, L.; Wang, X.; Du, J.; Chen, Y.; Yang, W.; Zhou, C.; Cheng, L.; Shen, Y.; Fang, S.; et al. Mesencephalic astrocyte-derived neurotrophic factor is involved in inflammation by negatively regulating the NF-kappaB pathway. Sci. Rep. 2015, 5, 8133. [Google Scholar] [CrossRef]
- Carroll, M.C. Complement and humoral immunity. Vaccine 2008, 26 (Suppl. S8), I28–I33. [Google Scholar] [CrossRef]
- Hovhannisyan, L.P.; Mkrtchyan, G.M.; Sukiasian, S.H.; Boyajyan, A.S. Alterations in the complement cascade in post-traumatic stress disorder. Allergy Asthma Clin. Immunol. 2010, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Sulimai, N.H.; Brown, J.; Lominadze, D. Fibrinogen, Fibrinogen-like 1 and Fibrinogen-like 2 Proteins, and Their Effects. Biomedicines 2022, 10, 1712. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.; Peeters, A.J.; Koiwai, H.; Oritani, T.; Marion-Poll, A.; Zeevaart, J.A.; Koornneef, M.; Kamiya, Y.; Koshiba, T. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc. Natl. Acad. Sci. USA 2000, 97, 12908–12913. [Google Scholar] [CrossRef] [PubMed]
- Ando, S.; Tsushima, S.; Tagiri, A.; Kamachi, S.; Konagaya, K.; Hagio, T.; Tabei, Y. Increase in BrAO1 gene expression and aldehyde oxidase activity during clubroot development in Chinese cabbage (Brassica rapa L.). Mol. Plant Pathol. 2006, 7, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef]
- Zhao, G.; Jiang, K.; Wu, H.; Qiu, C.; Deng, G.; Peng, X. Polydatin reduces Staphylococcus aureus lipoteichoic acid-induced injury by attenuating reactive oxygen species generation and TLR2-NFkappaB signalling. J. Cell Mol. Med. 2017, 21, 2796–2808. [Google Scholar] [CrossRef]
- Li, Y.H.; Wen, K.; Zhu, L.L.; Lv, S.K.; Cao, Q.; Li, Q.; Deng, L.; Chen, T.; Wang, X.; Deng, K.Y.; et al. Tautomerase Activity-Lacking of the Macrophage Migration Inhibitory Factor Alleviates the Inflammation and Insulin Tolerance in High Fat Diet-Induced Obese Mice. Front. Endocrinol. 2020, 11, 134. [Google Scholar] [CrossRef]
- Zapatero, M.C.; Perez, P.; Vazquez, M.J.; Colmenarejo, G.; de Los, F.M.; Ramon, F. Discovery of Novel Inhibitors of the Tautomerase Activity of Macrophage Migration Inhibitory Factor (MIF). J. Biomol. Screen 2016, 21, 446–458. [Google Scholar] [CrossRef]
- Spaan, A.N.; Surewaard, B.G.; Nijland, R.; van Strijp, J.A. Neutrophils versus Staphylococcus aureus: A biological tug of war. Annu. Rev. Microbiol. 2013, 67, 629–650. [Google Scholar] [CrossRef]
- Bian, N.; Chen, X.; Ren, X.; Yu, Z.; Jin, M.; Chen, X.; Liu, C.; Luan, Y.; Wei, L.; Chen, Y.; et al. 7,8-Dihydroxyflavone attenuates the virulence of Staphylococcus aureus by inhibiting alpha-hemolysin. World J. Microbiol. Biotechnol. 2022, 38, 200. [Google Scholar] [CrossRef]
- Maliszewska, I. On the Synergism of Biogenic Gold Nanoparticles and Hydroxyaluminum Phthalocyanines in the Photoeradication of Staphylococcus aureus. Molecules 2021, 26, 7378. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Wanapat, M.; Hou, F. Chemical Composition of Milk and Rumen Microbiome Diversity of Yak, Impacting by Herbage Grown at Different Phenological Periods on the Qinghai-Tibet Plateau. Animals 2020, 10, 1030. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K.; Yu, Z. Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray) analysis. Front. Microbiol. 2015, 6, 297. [Google Scholar] [CrossRef]
- Ploger, S.; Stumpff, F.; Penner, G.B.; Schulzke, J.D.; Gabel, G.; Martens, H.; Shen, Z.; Gunzel, D.; Aschenbach, J.R. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann. N. Y. Acad. Sci. 2012, 1258, 52–59. [Google Scholar] [CrossRef]
- Yue, S.J.; Liu, J.; Wang, W.X.; Wang, A.T.; Yang, X.Y.; Guan, H.S.; Wang, C.Y.; Yan, D. Berberine treatment-emergent mild diarrhea associated with gut microbiota dysbiosis. Biomed. Pharmacother. 2019, 116, 109002. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Jin, L.; Xia, D.; Zhang, Q.; Ma, L.; Zheng, H.; Xu, T.; Chang, S.; Li, X.; Xun, Z.; et al. Nitrate ameliorates dextran sodium sulfate-induced colitis by regulating the homeostasis of the intestinal microbiota. Free. Radical. Biol. Med. 2020, 152, 609–621. [Google Scholar] [CrossRef]
Nutrient Component | Detection Value % |
---|---|
CP | 18.18 |
CF | 9.12 |
Ash | 7.70 |
Ca | 0.89 |
Total P | 0.56 |
Water | 12.5 |
Nutrient Component | Detection Value % |
---|---|
CP | 22.24 |
EE | 17.73 |
CF | 0.25 |
Ash | 6.67 |
Ca | 0.61 |
Total P | 0.32 |
Water | 5.60 |
Lactose | 44.03 |
Nutrient Component | Normal Milk % | Feeding Milk % |
---|---|---|
CP | 2.90 | 3.25 |
EE | 3.50 | 3.40 |
Lactose | 5.20 | 5.30 |
Total Solid | 13.30 | 13.65 |
Ingredient | Content | Chemical Formula |
---|---|---|
Sodium metasilicate pentahydrate | 200 g/L | 5H2O·Na2SiO3 |
Potassium bicarbonate | 100 g/L | KHCO3 |
Zinc oxide | 10 mg/L | ZnO |
Bis-(carboxyethyl germanium) sesquioxide | 1 mg/L | Ge-132 |
Items | Group | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
Con | Tre | Group | Time | Group × Time | |||
TP (g/L) | 1 d | 57.08 | 57.66 | 0.966 | 0.783 | ||
15 d | 55.77 | 57.89 | 0.419 | 0.002 | |||
30 d | 54.80 | 56.92 | 0.619 | 0.084 | |||
45 d | 55.78 | 54.22 | 0.523 | 0.145 | |||
60 d | 56.47 | 58.41 | 0.417 | 0.008 | 0.077 | 0.302 | |
ALB (g/L) | 1 d | 24.66 | 22.94 | 0.492 | 0.078 | ||
15 d | 26.69 | 25.80 | 0.455 | 0.354 | |||
30 d | 29.79 | 29.46 | 0.417 | 0.715 | |||
45 d | 29.01 | 30.05 | 0.395 | 0.203 | |||
60 d | 30.44 | 31.34 | 0.390 | 0.275 | <0.001 | 0.009 | |
GLB (g/L) | 1 d | 32.42 | 34.72 | 1.078 | 0.314 | ||
15 d | 29.07 | 32.10 | 0.695 | 0.017 | |||
30 d | 25.02 | 27.47 | 0.553 | 0.015 | |||
45 d | 26.77 | 24.17 | 0.710 | 0.061 | |||
60 d | 26.02 | 27.07 | 0.555 | 0.374 | <0.001 | 0.006 | |
IgG (mg/mL) | 1 d | 20.02 | 20.61 | 0.467 | 0.563 | ||
15 d | 19.42 | 20.46 | 0.417 | 0.231 | |||
30 d | 20.09 | 20.75 | 0.426 | 0.473 | |||
45 d | 21.68 | 23.37 | 0.283 | 0.001 | |||
60 d | 21.74 | 23.94 | 0.437 | 0.002 | <0.001 | 0.053 |
Items | Group | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
Con | Tre | Group | Time | Group × Time | |||
pH | 30 d | 5.67 | 6.29 | 0.134 | 0.009 | ||
45 d | 5.47 | 5.82 | 0.089 | 0.037 | |||
60 d | 5.41 | 5.53 | 0.030 | 0.039 | <0.001 | 0.052 | |
NH3-N (mg/dL) | 30 d | 7.54 | 11.68 | 1.084 | 0.047 | ||
45 d | 8.01 | 11.27 | 0.894 | 0.063 | |||
60 d | 6.41 | 6.77 | 0.641 | 0.796 | 0.014 | 0.219 | |
MCP (mg/mL) | 30 d | 3.36 | 3.54 | 0.473 | 0.591 | ||
45 d | 2.71 | 3.57 | 0.424 | 0.345 | |||
60 d | 3.05 | 3.15 | 0.161 | 0.876 | 0.874 | 0.844 | |
Acetic acid (mmol/L) | 30 d | 40.78 | 41.43 | 1.659 | 0.859 | ||
45 d | 47.57 | 45.79 | 2.594 | 0.753 | |||
60 d | 47.61 | 61.91 | 6.090 | 0.263 | 0.065 | 0.311 | |
Propionic acid (mmol/L) | 30 d | 19.91 | 17.05 | 1.483 | 0.366 | ||
45 d | 28.55 | 18.77 | 2.819 | 0.080 | |||
60 d | 27.31 | 34.39 | 3.684 | 0.367 | 0.012 | 0.106 | |
Butyric acid (mmol/L) | 30 d | 5.91 | 4.12 | 0.565 | 0.117 | ||
45 d | 8.27 | 4.68 | 0.954 | 0.052 | |||
60 d | 8.45 | 11.37 | 1.263 | 0.273 | 0.002 | 0.046 | |
Acetic/ Propionic | 30 d | 2.09 | 2.52 | 0.142 | 0.140 | ||
45 d | 1.70 | 2.61 | 0.207 | 0.016 | |||
60 d | 1.77 | 1.84 | 0.089 | 0.729 | 0.028 | 0.082 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Guo, C.; Xu, X.; Zhang, L.; Li, S.; Dai, D.; Du, W. Effect of Alkaline Mineral Complex Buffer Supplementation on Rumen Fermentation, Rumen Microbiota and Rumen Epithelial Transcriptome of Newborn Calves. Fermentation 2023, 9, 973. https://doi.org/10.3390/fermentation9110973
Wang X, Guo C, Xu X, Zhang L, Li S, Dai D, Du W. Effect of Alkaline Mineral Complex Buffer Supplementation on Rumen Fermentation, Rumen Microbiota and Rumen Epithelial Transcriptome of Newborn Calves. Fermentation. 2023; 9(11):973. https://doi.org/10.3390/fermentation9110973
Chicago/Turabian StyleWang, Xiaowei, Cheng Guo, Xiaofeng Xu, Lili Zhang, Shengli Li, Dongwen Dai, and Wen Du. 2023. "Effect of Alkaline Mineral Complex Buffer Supplementation on Rumen Fermentation, Rumen Microbiota and Rumen Epithelial Transcriptome of Newborn Calves" Fermentation 9, no. 11: 973. https://doi.org/10.3390/fermentation9110973
APA StyleWang, X., Guo, C., Xu, X., Zhang, L., Li, S., Dai, D., & Du, W. (2023). Effect of Alkaline Mineral Complex Buffer Supplementation on Rumen Fermentation, Rumen Microbiota and Rumen Epithelial Transcriptome of Newborn Calves. Fermentation, 9(11), 973. https://doi.org/10.3390/fermentation9110973