Optimization of the Brewing Process and Analysis of Antioxidant Activity and Flavor of Elderberry Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Single Factor Experiments
2.2.2. Experimental Design
2.2.3. Elderberry Wine Index Determination
2.3. Sensory Evaluation
2.4. Analysis of Volatile Flavor Substances
2.5. Antioxidant Activity Experiment
2.5.1. Determination of (DPPH) Scavenging Rate
2.5.2. Determination of (ABTS+) Scavenging Rate
2.5.3. Determination of the Superoxide Anion Radical () Scavenging Rate
3. Results and Analysis
3.1. Optimal Fermentation Conditions for Elderberry Wine
3.1.1. Single-Factor Experiment Results
- (a)
- Influence of the solid–liquid ratio on fermentation
- (b)
- Effect of sugar-sweetening on fermentation
- (c)
- Effect of yeast inoculum on fermentation
- (d)
- Effect of temperature on fermentation
3.1.2. Fitting the Response Surface Models
- (a)
- RSM model for sensory score
- (b)
- RSM Model for Alcohol Content
3.1.3. Validation and Verification of the Optimized Conditions
3.2. Analysis Results for Flavor Substances
3.3. Experimental Results and Analysis of Antioxidant Activity
3.3.1. DPPH Free Radical Scavenging Ability
3.3.2. ABTS Free Radical Scavenging Ability
3.3.3. Superoxide Anion Radical Scavenging Ability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saranraj, P.; Sivasakthivelan, P.; Naveen, M. Fermentation of fruit wine and its quality analysis: Areview. Aust. J. Sci Technol. 2017, 2, 85–97. [Google Scholar]
- Joshi, V.K.; Panesar, P.S.; Rana, V.S.; Kaur, S. Science and technology of fruit wines: An overview. In Science and Technology of Fruit Wine Production; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–72. [Google Scholar] [CrossRef]
- Joshi, V.; Kumar, V. Importance, nutritive value, role, present status and future strategies in fruit wines in India. In Bio-Processing Foods; Panesar, P.S., Sharma, H.K., Sarkar, B.C., Eds.; Asiatech Publishers, Inc.: New Delhi, India, 2011; pp. 39–62. Available online: https://www.researchgate.net/profile/Vikas-Kumar-190/publication/271906365_Importance_Nutritive_Value_Role_Present_Status_and_Future_Strategies_in_Fruit_Wines_in_India/links/54d5e6a90cf25013d02c1388/Importance-Nutritive-Value-Role-Present-Status-and-Future-Strategies-in-Fruit-Wines-in-India.pdf (accessed on 13 December 2022).
- Liu, Y.; Wei, Y.; Li, H.; Li, F.; Song, M.; Li, Z.; Zhang, T.; Han, S.; Pan, C. Optimization of fermentation technology for com posite fruit and vegetable wine by response surface methodology and analysis of its aroma components. RSC Adv. 2022, 55, 35616–35626. [Google Scholar] [CrossRef]
- Yang, X.S.; Zhao, F.Q.; Yang, L.; Li, J.; Zhu, X. Enhancement of the aroma in low-alcohol apple-blended pear wine mixed fermented with Saccharomyces cerevisiae and non-Saccharomyces yeasts. LWT Food Sci. Technol. 2022, 155, 112994. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michalowska, A. Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food—A review. J. Funct. Foods. 2015, 18, 941–958. [Google Scholar] [CrossRef]
- Xiao, H.H.; Zhang, Y.; Cooper, R.; Yao, X.S.; Wong, M.S. Phytochemicals and potential health effects of Sambucus williamsii Hance (Jiegumu). Chin. Med. UK 2016, 11, 36. [Google Scholar] [CrossRef] [Green Version]
- Schmitzer, V.; Veberic, R.; Slatnar, A.; Stampar, F. Elderberry (Sambucus nigra L.) wine: A product rich in health promoting compounds. J. Agric. Food. Chem. 2010, 58, 10143–10146. [Google Scholar] [CrossRef]
- Senica, M.; Stampar, F.; Veberic, R.; Mikulic-Petkovsek, M. Processed elderberry (Sambucus nigra L.) products: A beneficial or harmful food alternative? LWT Food Sci. Technol. 2016, 72, 182–188. [Google Scholar] [CrossRef]
- Liu, D.; He, X.Q.; Wu, D.T.; Li, H.B.; Feng, Y.B.; Zou, L.; Gan, R.Y. Elderberry (Sambucus nigra L.): Bioactive compounds, health functions, and applications. J. Agric. Food. Chem. 2022, 70, 4202–4220. [Google Scholar] [CrossRef]
- Wieland, L.S.; Piechotta, V.; Feinberg, T.; Ludeman, E.; Hutton, B.; Kanji, S.; Seely, D.; Garritty, C. Elderberry for prevention and treatment of viral respiratory illnesses: A systematic review. BMC Complement. Med. Ther. 2021, 21, 112. [Google Scholar] [CrossRef]
- Jagtap, U.B.; Bapat, V.A. Wines from fruits other than grapes: Current status and future prospectus. Food Biosci. 2015, 9, 80–96. [Google Scholar] [CrossRef]
- Nzabuheraheza, F.D.; Nyiramugwera, A.N. Golden wine produced from mixed juices of passion fruit (Passiflora edulis), mango (Mangifera indica) and pineapple (Ananas comosus). Afr. J. Food Agric. Nutr. Dev. 2014, 14, 9104–9116. [Google Scholar] [CrossRef]
- Ogodo, A.C.; Ugbogu, O.C.; Ugbogu, A.E.; Ezeonu, C.; Ugbogu, A.E.; Ezeonu, C.S. Production of mixed fruit (pawpaw, ba nana and watermelon) wine using Saccharomyces cerevisiae isolated from palm wine. Springerplus 2015, 4, 683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massera, A.; Assof, M.; Sari, S.; Ciklic, I.; Mercado, L.; Jofre, V.; Combina, M. Effect of low temperature fermentation on the yeast-derived volatile aroma composition and sensory profile in merlot wines. LWT Food Sci. Technol. 2021, 142, 111069. [Google Scholar] [CrossRef]
- Duarte, W.F.; Amorim, J.C.; Lago, L.D.A.; Dias, D.R.; Schwan, R.F. Optimization of fermentation conditions for production of the jabuticaba (myrciaria cauliflora) spirit using the response surface methodology. J. Food Sci. 2011, 76, 782–790. [Google Scholar] [CrossRef]
- Coelho, E.; Vilanova, M.; Genisheva, Z.; Oliveira, J.M.; Teixeira, J.A.; Domingues, L. Systematic approach for the develop ment of fruit wines from industrially processed fruit concentrates, including optimization of fermentation parameters, chemical characterization and sensory evaluation. LWT Food Sci. Technol. 2015, 62, 1043–1052. [Google Scholar] [CrossRef] [Green Version]
- Rupasinghe, H.P.V.; Clegg, S. Total antioxidant capacity, total phenolic content, mineral elements, and histamine concentra tions in wines of different fruit sources. J. Food Compos. Anal. 2007, 20, 133–137. [Google Scholar] [CrossRef]
- Francis, I.L.; Williamson, P.O. Application of consumer sensory science in wine research. Aust. J. Grape Wine Res. 2015, 21, 554–567. [Google Scholar] [CrossRef]
- Aznar, M.; Lopez, R.; Cacho, J.F.; Ferreira, V. Identification and quantification of impact odorants of aged red wines from Rioja. GC-olfactometry, quantitative GC-MS, and odor evaluation of HPLC fractions. J. Agric. Food Chem. 2001, 49, 2924–2929. [Google Scholar] [CrossRef]
- Yang, H.; Hua, J.L.; Wang, C. Anti-oxidation and anti-aging activity of polysaccharide from Malus micromalus Makino fruit wine. Int. J. Biol. Macromol. 2019, 121, 1203–1212. [Google Scholar]
- Tian, T.T.; Yang, H.; Yang, F.; Li, B.W.; Sun, J.Y.; Wu, D.H.; Lu, J. Optimization of fermentation conditions and comparison of flavor compounds for three fermented greengage wines. LWT Food Sci. Technol. 2018, 89, 542–550. [Google Scholar] [CrossRef]
- Kwaw, E.; Ma, Y.; Tchabo, W.; Apaliya, M.T.; Wu, M.; Sackey, A.S.; Xiao, L.; Tahir, H.E. Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Food Chem. 2018, 250, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, T.D.; Kunathigan, V.; Kitsawad, K.; Panprivech, S. Impact of fermentation conditions on the extraction of phenolics and sensory characteristics of Mangosteen wine. Appl. Sci. Eng. Prog. 2021, 14, 406–416. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Q.; Liu, K.; An, J.; Zhang, S.; Chen, Q.; Zhang, J. Optimization of solid-state fermentation technology and analysis of key aroma components of compound rice wine. Food Sci. Technol. Res. 2022, 28, 35–43. [Google Scholar] [CrossRef]
- Boondaeng, A.; Kasemsumran, S.; Ngowsuwan, K.; Vaithanomsat, P.; Apiwatanapiwat, W.; Trakunjae, C.; Janchai, P.; Jungtheerapanich, S.; Niyomvong, N. Fermentation condition and quality evaluation of pineapple fruit wine. Fermentation 2022, 8, 11. [Google Scholar] [CrossRef]
- Fu, H.; Yang, Y.; Li, J. Optimization of fermentation conditions and volatile substance analysis of wine. J. Food Process. Preserv. 2022, 46, e17044. [Google Scholar] [CrossRef]
- Liang, H.; Gao, D.; Wang, C.; Gao, H.; Guo, Y.; Zhao, Z.; Shi, H. Effect of fermentation strategy on the quality and aroma characteristics of yellow peach wines. Fermentation 2022, 8, 604. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, S.; Han, X.; Zhou, Z.; Mao, J. Combined effects of fermentation temperature and saccharomyces cerevisiae strains on free amino acids, flavor substances, and undesirable secondary metabolites in huangjiu fermentation. Food Microbiol. 2022, 108, 104091. [Google Scholar] [CrossRef]
- Qi, J.; Huang, H.; Wang, J.; Liu, N.; Chen, X.; Jiang, T.; Xu, H.; Lei, H. Insights into the improvement of bioactive phytochemi cals, antioxidant activities and flavor profiles in Chinese wolfberry juice by select lactic acid bacteria. Food Biosci. 2021, 43, 101264. [Google Scholar] [CrossRef]
- Landete, J.M.; Curiel, J.A.; Hector, R.; Rivas, B.; Munoz, R. Aryl glycosidases from Lactobacillus plantarum increase antioxi dant activity of phenolic compounds. J. Funct. Foods. 2014, 7, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Wang, Y.; Liu, Q.; Zhao, D.; Han, S.; Yang, X. Effects of co-fermentation on the aroma of Italian Riesling low-alcohol sweet white wine. Food Ferment. Ind. 2019, 45, 95–102. [Google Scholar]
- Pino, J.A.; Queris, O. Analysis of volatile compounds of mango wine. Food Chem. 2011, 125, 1141–1146. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Q.; Quan, J.; Zheng, Q.; Xi, W. Determination of sugars, organic acids, aroma components, and carote noids in grapefruit pulps. Food Chem. 2016, 205, 112–121. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, P.; Lucardi, R.D.; Su, Z.; Li, S. Natural sources and bioactivities of 2,4-di-tert-butylphenol and its analogs. Toxins 2020, 12, 35. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, R.; Zhang, L.; Rocchetti, G.; Lucini, L.; Pateiro, M.; Munekata, P.E.S.; Lorenzo, J.M. Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chem. 2020, 330, 127266. [Google Scholar] [CrossRef]
- Lee, M.Y.; Yoo, M.S.; Whang, Y.J.; Jin, Y.J.; Hong, M.H.; Pyo, Y.H. Vitamin c, total polyphenol, flavonoid contents and antioxidant capacity of several fruit peels. Korean J. Food Sci. Technol. 2012, 44, 540–544. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.L.; Gan, R.; Shah, N.P.; Corke, H. Enhancing antioxidant capacity of Lactobacillus acidophilus-fermented milk forti fied with pomegranate peel extracts. Food Biosci. 2018, 26, 185–192. [Google Scholar] [CrossRef]
- Zhang, Y.; De Stefano, R.; Robine, M.; Butelli, E.; Bulling, K.; Hill, L.; Rejzek, M.; Martin, C.; Schoonbeek, H. Different reactive oxy gen species scavenging properties of flavonoids determine their abilities to extend the shelf life of tomato. Plant Physiol. 2015, 169, 1568–1583. [Google Scholar]
- Gustafson, S.J.; Dunlap, K.L.; McGill, C.M.; Kuhn, T.B.; Longevity, C. A nonpolar blueberry fraction blunts NADPH oxidase activation in neuronal cells exposed to tumor necrosis factor-α. Oxidative Med. Cell. Longev. 2012, 2012, 768101. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.S.; Eweys, A.S.; Zhang, J.Y.; Zhu, Y.; Bai, J.; Darwesh, O.M.; Zhang, H.B.; Xiao, X. Fermentation affects the antioxi dant activity of plant-based food material through the release and production of bioactive components. Antioxidants 2021, 10, 2004. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, Y.; Yang, N.; Jiang, T.; Xu, H.; Lei, H. Fermentation of kiwifruit juice from two cultivars by probiotic bacteria: Bioactive phenolics, antioxidant activities and flavor volatiles. Food Chem. 2022, 373, 131455. [Google Scholar] [CrossRef]
Factor | Name | Low Actual | High Actual | Low Coded | High Coded |
A | Solid–liquid ratio | 1:8 | 1:6 | −1 | 1 |
B | Yeast inoculum | 0.6 | 0.8 | −1 | 1 |
C | Fermentation temperature | 18 | 24 | −1 | 1 |
Response | Name | Observed | Min | Max | Mean |
Y1 | Sensory score | 15 | 60 | 96 | 78 |
Y2 | Alcohol content | 15 | 6.86 | 8.66 | 7.76 |
Run | Independent Variable | Response | |||
---|---|---|---|---|---|
A | B | C | Sensory Score (Y1) | Alcohol Content/% Vol (Y2) | |
1 | −1 | −1 | 0 | 80 | 8.09 |
2 | 1 | 1 | 0 | 71 | 7.72 |
3 | 0 | 0 | 0 | 94 | 8.35 |
4 | 1 | 0 | −1 | 87 | 6.86 |
5 | 1 | 0 | 1 | 85 | 7.29 |
6 | 0 | −1 | −1 | 86 | 7.62 |
7 | 0 | 0 | 0 | 96 | 8.32 |
8 | 0 | 1 | −1 | 67 | 7.52 |
9 | 0 | 1 | 1 | 65 | 8.66 |
10 | 0 | 0 | 0 | 93 | 8.30 |
11 | 0 | −1 | 1 | 69 | 7.74 |
12 | −1 | 1 | 0 | 60 | 8.29 |
13 | 1 | −1 | 0 | 76 | 6.94 |
14 | −1 | 0 | 1 | 73 | 8.43 |
15 | −1 | 0 | −1 | 80 | 7.83 |
Index | Description | Score |
---|---|---|
aroma (20) | The aroma is fragrant and clear, with obvious fruit ester aroma, fragrance coordination, and odorless | 15–20 |
The flavor is plain, the fragrance is not coordinated and odorless | 10–15 | |
No fruity aroma, unpleasant odor | 0–10 | |
color (20) | Ruby red, uniform color distribution | 15–20 |
Pink, uneven color distribution | 10–15 | |
Scarlet, uneven color distribution | 0–10 | |
clarity (20) | Clear and bright, inclusion-free | 15–20 |
Slight loss of light, no obvious impurities | 10–15 | |
Turbid, with obviously suspended solids | 0–10 | |
taste (20) | Fresh and delicate taste, sweet and sour, tastes delicious and special | 15–20 |
Refreshing taste, sour or sweet | 10–15 | |
No obvious taste, too sour or too sweet | 0–10 | |
typicality (20) | Obvious fruit flavor and characteristics | 15–20 |
Part of the fruit flavor and characteristics | 10–15 | |
Almost nothing of the fruit flavor and characteristics | 0–10 |
Source | SS | DF | MS | F Value | p-Value | SS | DF | MS | F Value | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Sensory Score (Y1) (a) | Alcohol Content (Y2) (b) | |||||||||
Model | 1734.73 | 9 | 192.75 | 27.02 | 0.001 | 4.20 | 9 | 0.47 | 77.49 | 0.0001 |
A | 84.50 | 1 | 84.50 | 11.85 | 0.0184 | 1.83 | 1 | 1.83 | 304.67 | <0.0001 |
B | 288.00 | 1 | 288.00 | 40.37 | 0.0014 | 0.4 | 1 | 0.40 | 67.29 | <0.0001 |
C | 98.00 | 1 | 98.00 | 13.74 | 0.0139 | 0.66 | 1 | 0.66 | 108.92 | 0.0004 |
AB | 56.25 | 1 | 56.25 | 7.89 | 0.0376 | 0.084 | 1 | 0.084 | 13.97 | 0.0001 |
AC | 6.25 | 1 | 6.25 | 0.88 | 0.3922 | 0.0072 | 1 | 0.00723 | 1.20 | 0.0135 |
BC | 56.25 | 1 | 56.25 | 7.89 | 0.0376 | 0.26 | 1 | 0.26 | 43.22 | 0.3232 |
A2 | 158.01 | 1 | 158.01 | 22.15 | 0.0053 | 0.66 | 1 | 0.66 | 109.73 | 0.0012 |
B2 | 950.16 | 1 | 950.16 | 133.2 | <0.0001 | 0.073 | 1 | 0.073 | 12.10 | 0.0001 |
C2 | 158.01 | 1 | 158.01 | 22.15 | 0.0053 | 0.33 | 1 | 0.33 | 54.45 | 0.0177 |
Residual | 35.67 | 5 | 7.13 | 4.43 | 0.1897 | 0.030 | 5 | 0.006 | 15.17 | 0.0625 |
Lack of fit | 31.00 | 3 | 10.33 | 0.029 | 3 | 0.0096 | ||||
Pure error | 4.67 | 2 | 2.33 | 0.00127 | 2 | 0.0006 | ||||
total | 1770.40 | 14 | 4.23 | 14 | ||||||
R2 | 0.9799 | 0.9929 |
Alcohol Content /% Vol | Residual Sugar /(g/L) | Total Acid/(g/L) | Total Phenol /(mg/mL) | Total Flavone /(mg/mL) | |
---|---|---|---|---|---|
Pre-fermentation | — | 25.68 ± 0.96 | 9.72 ± 0.23 | 3.34 ± 0.09 | 0.7 ± 0.06 |
Post-fermentation | 7.73 ± 0.13 | 8.32 ± 0.82 | 9.78 ± 0.19 | 8.73 ± 0.11 | 1.6 ± 0.11 |
No. | Compounds | Descriptors | Relative Peak Area/% |
---|---|---|---|
1 | Ethyl caprylate | Lychee | 19.183 |
2 | Ethyl butyrate | Fruity, Apple, | 11.779 |
3 | Ethyl caprate | Grape, Fruity | 2.735 |
4 | 2-methyl pentane-3-acetate | Fruity | 0.322 |
5 | Ethyl acetate | Fruity | 0.808 |
6 | Ethyl 4-ketovalerate | Floral | 0.421 |
7 | Triglyceride triacetate | Fruit, fruity, sweet | 0.312 |
8 | Methyl benzoate | Holly oil, grass | 0.720 |
9 | Glycerol 1,2-diacetate | — | 1.870 |
10 | Methyl dimethoxy acetate | Fruity | 0.949 |
11 | Ethyl 2-methyl butyrate | Apple, Strawberry, grape | 3.590 |
12 | Diethyl succinate | Pleasant scent | 0.723 |
13 | Ethyl 3-methylbutyrate | Blueberry, fruity, floral | 2.815 |
14 | Isoamyl acetate | Banana | 2.168 |
15 | Methyl acetate | Apples, peaches | 16.123 |
16 | Ethyl benzoate | Fruity, floral | 2.818 |
17 | Ethyl lactate | Fruity, ester, grass | 4.748 |
18 | Benzyl alcohol | Mint, sweet, fruity | 0.311 |
19 | 1-Hexanol | Floral, sweet | 1.422 |
20 | 3-Methyl-1-butanol | Sweet | 0.602 |
21 | 2-Ethyl hexanol | Flowers, grass | 0.721 |
22 | 2-Methyl-1-propanol | Mellow, grassy | 1.770 |
23 | Cis-3-hexene-1-ol | Sweet, grass | 1.325 |
24 | 2-Nonanone | Honey | 0.343 |
25 | Alpha-Ionone | Fruity | 1.161 |
26 | Beta-damascenone | Rose | 0.942 |
27 | 2, 3-butanol ketone | Sweet, fruity | 0.930 |
28 | Trans-3-pentene-2-one | Alcohol, sweet | 1.215 |
29 | Trans-3-hexenoic acid | Honey, fruity | 7.474 |
30 | 2,4-Di-tert-butylphenol | Lemon | 5.209 |
31 | N-butyric acid | Fruity | 1.760 |
32 | Nonanal | Sweet | 1.540 |
33 | N-caprylic acid | Fruity, pineapple, honey | 1.193 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H.; Bai, M.; Lou, Y.; Yang, X.; Zhao, C.; Lu, K.; Zhang, P. Optimization of the Brewing Process and Analysis of Antioxidant Activity and Flavor of Elderberry Wine. Fermentation 2023, 9, 276. https://doi.org/10.3390/fermentation9030276
Cao H, Bai M, Lou Y, Yang X, Zhao C, Lu K, Zhang P. Optimization of the Brewing Process and Analysis of Antioxidant Activity and Flavor of Elderberry Wine. Fermentation. 2023; 9(3):276. https://doi.org/10.3390/fermentation9030276
Chicago/Turabian StyleCao, Huaqiang, Meiyu Bai, Yueyue Lou, Xiaotian Yang, Chenchen Zhao, Kuan Lu, and Pengpai Zhang. 2023. "Optimization of the Brewing Process and Analysis of Antioxidant Activity and Flavor of Elderberry Wine" Fermentation 9, no. 3: 276. https://doi.org/10.3390/fermentation9030276
APA StyleCao, H., Bai, M., Lou, Y., Yang, X., Zhao, C., Lu, K., & Zhang, P. (2023). Optimization of the Brewing Process and Analysis of Antioxidant Activity and Flavor of Elderberry Wine. Fermentation, 9(3), 276. https://doi.org/10.3390/fermentation9030276