Comparative Compositions and Activities of Flavonoids from Nine Sanghuang Strains Based on Solid-State Fermentation and In Vitro Assays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Optimization of Flavonoid Extraction Conditions
2.3. Growth of Strains under SSF
2.4. Purification of Flavonoids
2.5. DPPH Radical Scavenging Ability of SHFs
2.6. Iron Reducing Ability of SHFs
2.7. α-AI Activity
2.8. Composition Analysis of SHFs
2.9. Statistical Analysis
3. Results
3.1. The Effects of Various Factors on the Extraction of Total Sanghuang Flavonoids (SHFs)
3.2. Optimization of the Total SHF Extraction Program Based on the Orthogonal Test
3.3. SSF of Nine Sanghuang Strains
3.4. Screening of Macroporous Resins and Optimization of Purification Conditions
3.5. Comparative Antioxidant Activities and α-AI Activities of Various SHFs
3.6. Component Analysis of Mycelial SHFs from Nine Sanghuang Strains
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, T.B.; Kim, S.H.; Chen, C.Y. A medicinal mushroom: Phellinus linteus. Curr. Med. Chem. 2008, 15, 1330–1335. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Kong, J.; Ge, X.; Mao, M.; Yu, H.; Wang, Y. An antisense oligonucleotide-loaded blood-brain barrier penetrable nanoparticle mediating recruitment of endogenous neural stem cells for the treatment of Parkinson’s disease. ACS Nano. 2023, 17, 4414–4432. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.C.; Xu, M.Q. Studies on the medicinal polypore, Phellinus baumii, and its kin, P. linteus. Mycotaxon 1998, 67, 191–200. [Google Scholar]
- Kim, G.Y.; Park, S.K.; Lee, M.K.; Lee, S.H.; Oh, Y.H.; Kwak, J.Y.; Yoon, S.; Lee, J.D.; Park, Y.M. Proteoglycan isolated from Phellinus linteus activates murine B lymphocytes via protein kinase C and protein tyrosine kinase. Int. Immunopharmacol. 2003, 3, 1281–1292. [Google Scholar] [CrossRef] [PubMed]
- Oh, G.S.; Lee, M.S.; Pae, H.O.; Kwon, J.; Lee, S.S.; Jeong, J.G.; Shin, M.K.; Kwon, T.O.; Chung, H.T. Effects of oral administration of Phellinus linteus on the production of Th1- and Th2-type cytokines in mice. Immunopharmacol. Immunotoxicol. 2006, 28, 281–293. [Google Scholar] [CrossRef]
- Cheng, J.; Song, J.; Liu, Y.; Lu, N.; Wang, Y.; Hu, C.; He, L.; Wei, H.; Lv, G.; Yang, S.; et al. Conformational properties and biological activities of alpha-D-mannan from Sanghuangporus sanghuang in liquid culture. Int. J. Biol. Macromol. 2020, 164, 3568–3579. [Google Scholar] [CrossRef]
- Suabjakyong, P.; Nishimura, K.; Toida, T.; Van Griensven, L.J. Structural characterization and immunomodulatory effects of polysaccharides from Phellinus linteus and Phellinus igniarius on the IL-6/IL-10 cytokine balance of the mouse macrophage cell lines (RAW 264.7). Food Funct. 2015, 6, 2834–2844. [Google Scholar] [CrossRef] [Green Version]
- Zheng, N.; Ming, Y.; Chu, J.; Yang, S.; Wu, G.; Li, W.; Zhang, R.; Cheng, X. Optimization of extraction process and the antioxidant activity of phenolics from Sanghuangporus baumii. Molecules 2021, 26, 3850. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, L.; Zhu, Y.; Wu, J.; Hao, C.; Song, S.; Shi, W. Optimization of culture medium for Sanghuangporus vaninii and a study on its therapeutic effects on gout. Biomed Pharmacother. 2021, 135, 111194. [Google Scholar] [CrossRef]
- Cai, C.; Ma, J.; Han, C.; Jin, Y.; Zhao, G.; He, X. Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, Sanghuangporus sanghuang. Sci. Rep. 2019, 9, 7418. [Google Scholar] [CrossRef] [Green Version]
- Zuo, K.; Tang, K.; Liang, Y.; Xu, Y.; Sheng, K.; Kong, X.; Wang, J.; Zhu, F.; Zha, X.; Wang, Y. Purification and antioxidant and anti-Inflammatory activity of extracellular polysaccharopeptide from sanghuang mushroom, Sanghuangporus lonicericola. J. Sci. Food Agric. 2021, 101, 1009–1020. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Shen, Y.; Su, H.; Zheng, X. Hispidin derived from Phellinus linteus affords protection against acrylamide-induced oxidative stress in Caco-2 cells. Chem. Biol. Interact. 2014, 219, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Liu, Y.; Liu, X.; Chen, K.; Xiong, W.; Qiu, Y.; He, X.; Liu, B.; Zeng, F. Sanghuangporus vaninii mixture ameliorated type 2 diabetes mellitus and altered intestinal microbiota in mice. Food Funct. 2022, 13, 11758–11769. [Google Scholar] [CrossRef]
- Cheng, J.; Song, J.; Wei, H.; Wang, Y.; Huang, X.; Liu, Y.; Lu, N.; He, L.; Lv, G.; Ding, H.; et al. Structural characterization and hypoglycemic activity of an intracellular polysaccharide from Sanghuangporus sanghuang mycelia. Int. J. Biol. Macromol. 2020, 164, 3305–3314. [Google Scholar] [CrossRef]
- Zhou, L.W.; Ghobad-Nejhad, M.; Tian, X.M.; Wang, Y.F.; Wu, F. Current status of ‘Sanghuang’ as a group of medicinal mushrooms and their perspective in industry development. Food Rev. Int. 2022, 38, 589–607. [Google Scholar] [CrossRef]
- Liang, C.H.; Wu, C.Y.; Ho, W.J.; Liang, Z.C. Influences of carbon and nitrogen source addition, water content, and initial pH of grain medium on hispidin production of Phellinus linteus by solid-state fermentation. J. Biosci. Bioeng. 2020, 130, 616–621. [Google Scholar] [CrossRef]
- Wang, K.W.; Zhang, T.T. Bioactive Flavonoids from Verbenaceae. Mini-Rev. Org. Chem. 2020, 17, 754–766. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, Q.; Zhou, X.; Wang, X.; Li, H.; Zhang, W.; Yuan, H.; Sun, C. Flavonoids regulate tumor-associated macrophages—From structure-activity relationship to clinical potential (Review). Pharmacol. Res. 2022, 184, 106419. [Google Scholar] [CrossRef]
- Wang, X.; Cao, Y.; Chen, S.; Lin, J.; Bian, J.; Huang, D. Anti-inflammation activity of flavones and their structure-activity relationship. J. Agric. Food Chem. 2021, 69, 7285–7302. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, J.X.; Zhang, C.L.; Li, P.; Zhao, Y.S.; Zhang, M.H.; Zhou, P.G. Influence of flavonoids from Phellinus igniarius on sturgeon caviar: Antioxidant effects and sensory characteristics. Food Chem. 2012, 131, 206–210. [Google Scholar] [CrossRef]
- Martemucci, G.; Portincasa, P.; Di Ciaula, A.; Mariano, M.; Centonze, V.; D’Alessandro, A.G. Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mech. Ageing Dev. 2022, 206, 111707. [Google Scholar] [CrossRef] [PubMed]
- Comert, E.D.; Gokmen, V. Antioxidants Bound to an Insoluble Food Matrix: Their Analysis, Regeneration Behavior, and Physiological Importance. Compr. Rev. Food Sci. Food Saf. 2017, 16, 382–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udani, J.; Tan, O.; Molina, J. Systematic review and meta-analysis of a proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris L.) on weight and fat loss in humans. Foods 2018, 7, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, L.K.; Sharma, K.R. Analysis of phenolic and flavonoid content, alpha-amylase inhibitory and free radical scavenging activities of some medicinal plants. Sci. World J. 2022, 2022, 4000707. [Google Scholar] [CrossRef]
- Tian, X.M.; Dai, Y.C.; Song, A.R.; Xu, K.; Ng, L.T. Optimization of Liquid Fermentation Medium for Production of Inonotus sanghuang (Higher Basidiomycetes) Mycelia and Evaluation of their Mycochemical Contents and Antioxidant Activities. Int. J. Med. Mushrooms 2015, 17, 681–691. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, C.R.; Li, J.S.; Mei, Y.X.; Liang, Y.X. Hypoglycemic and Hypolipidemic Effects of Phellinus Linteus Mycelial Extract from Solid-State Culture in A Rat Model of Type 2 Diabetes. Nutrients 2019, 11, 296. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Jiao, X.; Zhou, W.; Sun, Y.; Liu, W.; Lin, W.; Liu, A.; Song, A.; Zhu, H. Enhanced production of total flavones from Inonotus baumii by multiple strategies. Prep. Biochem. Biotechnol. 2018, 48, 103–112. [Google Scholar] [CrossRef]
- Kamarozaman, A.S.; Ahmat, N.; Isa, S.N.M.; Hafiz, Z.Z.; Adenan, M.I.; Yusof, M.I.M.; Azmin, N.F.N.; Latip, J. New dihydrostilbenes from Macaranga heynei I.M. Johnson, biological activities and structure-activity relationship. Phytochem. Lett. 2019, 30, 174–180. [Google Scholar] [CrossRef]
- Tewabe Gebeyehu, B. Determination of caffeine content and antioxidant activity of coffee. Am. J. Appl. Chem. 2015, 3, 69. [Google Scholar] [CrossRef] [Green Version]
- Nisar, J.; Shah, S.M.A.; Akram, M.; Ayaz, S.; Rashid, A. Phytochemical Screening, Antioxidant, and inhibition activity of picrorhiza kurroa against alpha-amylase and alpha-glucosidase. Dose Response 2022, 20, 15593258221095960. [Google Scholar] [CrossRef]
- Zulkifli, S.A.; Abd, G.S.S.; Zaidan, U.H.; Halmi, M.I.E. Optimization of total phenolic and flavonoid contents of defatted pitaya (Hylocereus polyrhizus) seed extract and its antioxidant properties. Molecules 2020, 25, 787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, Y.; Wang, Y.; Li, W.; Ma, C.; Liu, S. Homogenization-assisted cavitation hybrid rotation extraction and macroporous resin enrichment of dihydroquercetin from Larix gmelinii. J. Chromatogr. B 2017, 1070, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhao, M.; Wang, X.; Li, C.; Wang, J.; Liu, Z.; Shen, X.; Zhou, D. Response surface methodology-optimized extraction of flavonoids with antioxidant and antimicrobial activities from the exocarp of three genera of coconut and characterization by HPLC-IT-TOF-MS/MS. Food Chem. 2022, 391, 132966. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.; Singh, D.; Nigam, P. Solid-state fermentation: A promising microbial technology for secondary metabolite production. Appl. Microbiol. Biotechnol. 2001, 55, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Viniegra-González, G.; Favela-Torres, E.; Aguilar, C.N.; Rómero-Gomez, S.D.J.; Díaz-Godínez, G.; Augur, C. Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem. Eng. J. 2003, 13, 157–167. [Google Scholar] [CrossRef]
- Ismail, B.B.; Yusuf, H.L.; Pu, Y.; Zhao, H.; Guo, M.; Liu, D. Ultrasound-assisted adsorption/desorption for the enrichment and purification of flavonoids from baobab (Adansonia digitata) fruit pulp. Ultrason. Sonochem. 2020, 65, 104980. [Google Scholar] [CrossRef]
- Ri, H.I.; Kim, C.S.; Pak, U.H.; Kang, M.S.; Kim, T.M. Purification of total flavonoids from aurea helianthus flowers and in vitro hypolipidemic effect. arXiv 2019, arXiv:1906.12007. [Google Scholar]
- Lin, W.C.; Deng, J.S.; Huang, S.S.; Wu, S.H.; Lin, H.Y.; Huang, G.J. Evaluation of antioxidant, anti-inflammatory and anti-proliferative activities of ethanol extracts from different varieties of Sanghuang species. RSC Adv. 2017, 7, 7780–7788. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.C.; El-Shazly, M.; Wu, T.Y.; Du, Y.C.; Chang, T.T.; Chen, C.F.; Hsu, Y.M.; Lai, K.H.; Chiu, C.P.; Chang, F.R.; et al. Recent research and development of Antrodia cinnamomea. Pharmacol. Ther. 2013, 139, 124–156. [Google Scholar] [CrossRef]
- Xiao, S.; Fei, C.Z.; Zhang, L.F.; Zheng, W.L.; Zhang, K.Y.; Xue, F.Q. Spectrum-effect relationship between high performance liquid chromatography fingerprints and anticoccidial activities of a compound Chinese medicine. J. Integr. Agric. 2014, 13, 1082–1089. [Google Scholar] [CrossRef]
- Nijat, D.; Lu, C.; Lu, J.; Abdulla, R.; Hasan, A.; Aidarhan, N.; Aisa, H.A. Spectrum-effect relationship between UPLC fingerprints and antidiabetic and antioxidant activities of Rosa rugosa. J. Chromatogr. B 2021, 1179, 122843. [Google Scholar] [CrossRef] [PubMed]
- Deconinck, E.; Djiogo, C.A.S.; Kamugisha, A.; Courselle, P. The use of Stationary Phase Optimized Selectivity Liquid Chromatography for the development of herbal fingerprints to detect targeted plants in plant food supplements. Talanta 2017, 170, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.J.; Hu, J.; Li, Z.Y.; Qin, X.M.; Zhang, L.Z.; Guo, X.Q. Species classification and quality assessment of Chaihu (Radix Bupleuri) based on high-performance liquid chromatographic fingerprint and combined chemometrics methods. Arch. Pharm. Res. 2011, 34, 961–969. [Google Scholar] [CrossRef] [PubMed]
Level | Factors | |||
---|---|---|---|---|
A 1 | B 2 | C 3 | D 4 | |
1 | 60 | 4 | 50% | 1:40 |
2 | 70 | 6 | 60% | 1:60 |
3 | 80 | 8 | 70% | 1:80 |
μL | Blank Group (A1) | Blank Control Group (A2) | Test Group (A3) | Test Background Group (A4) |
---|---|---|---|---|
Amylase solution | 50 | 0 | 50 | 0 |
SHFs | 0 | 0 | 100 | 100 |
PBS | 300 | 350 | 200 | 250 |
Soluble starch | 400 | 400 | 400 | 400 |
DNS | 250 | 250 | 250 | 250 |
Experiment Number | A | B | C | D | SHF Content (mg/g) |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 9.11 |
2 | 1 | 2 | 2 | 2 | 10.56 |
3 | 1 | 3 | 3 | 3 | 11.93 |
4 | 2 | 1 | 2 | 3 | 13.39 |
5 | 2 | 2 | 3 | 1 | 13.69 |
6 | 2 | 3 | 1 | 2 | 11.79 |
7 | 3 | 1 | 3 | 2 | 18.06 |
8 | 3 | 2 | 1 | 3 | 14.94 |
9 | 3 | 3 | 2 | 1 | 14.26 |
K1 1 | 31.600 | 40.564 | 35.846 | 37.063 | |
K2 1 | 38.873 | 39.195 | 38.216 | 40.418 | |
K3 1 | 47.272 | 37.987 | 43.683 | 40.266 | |
1 2 | 10.533 | 13.521 | 11.949 | 12.354 | |
2 2 | 12.958 | 13.065 | 12.739 | 13.472 | |
3 2 | 15.757 | 12.662 | 14.561 | 13.422 | |
Range | 5.224 | 0.859 | 2.612 | 1.118 |
Macroporous Resin | Adsorption Rate (%) | Desorption Rate (%) |
---|---|---|
D101 | 57.71 ± 0.27 c | 90.38 ± 0.40 a |
AB-8 | 54.06 ± 0.68 d | 76.96 ± 0.98 c |
DM301 | 62.03 ± 0.55 b | 88.81 ± 0.13 b |
Polyamide resin | 99.04 ± 0.58 a | 2.22 ± 0.04 d |
Strain | Similarity |
---|---|
S1 | 0.60 |
S2 | 0.90 |
S3 | 0.89 |
S4 | 0.88 |
S5 | 0.79 |
S6 | 0.94 |
S7 | 0.91 |
S8 | 0.91 |
S9 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Mei, Y.; Li, J.; Yang, W.; He, F.; Ge, J.; Chen, F.; Yang, Y.; Xie, A.; Liu, Y.; et al. Comparative Compositions and Activities of Flavonoids from Nine Sanghuang Strains Based on Solid-State Fermentation and In Vitro Assays. Fermentation 2023, 9, 308. https://doi.org/10.3390/fermentation9030308
Li T, Mei Y, Li J, Yang W, He F, Ge J, Chen F, Yang Y, Xie A, Liu Y, et al. Comparative Compositions and Activities of Flavonoids from Nine Sanghuang Strains Based on Solid-State Fermentation and In Vitro Assays. Fermentation. 2023; 9(3):308. https://doi.org/10.3390/fermentation9030308
Chicago/Turabian StyleLi, Tian, Yuxia Mei, Ji Li, Wendi Yang, Fanfan He, Jiaxin Ge, Fei Chen, Yicheng Yang, Aowen Xie, Yangyang Liu, and et al. 2023. "Comparative Compositions and Activities of Flavonoids from Nine Sanghuang Strains Based on Solid-State Fermentation and In Vitro Assays" Fermentation 9, no. 3: 308. https://doi.org/10.3390/fermentation9030308
APA StyleLi, T., Mei, Y., Li, J., Yang, W., He, F., Ge, J., Chen, F., Yang, Y., Xie, A., Liu, Y., & Liang, Y. (2023). Comparative Compositions and Activities of Flavonoids from Nine Sanghuang Strains Based on Solid-State Fermentation and In Vitro Assays. Fermentation, 9(3), 308. https://doi.org/10.3390/fermentation9030308