Anaerobic Digestion of Lignocellulosic Biomass: Substrate Characteristics (Challenge) and Innovation
Abstract
:1. Introduction
2. Description of Lignocellulosic Wastes (Agricultural Wastes)
3. Traditional Disposal or Management of Lignocellulosic Wastes
The Economy and Transferability at Real Scale/Applicability of Conventional Methods of Waste Disposal
4. From Waste to Recovery and Energy (Anaerobic Digestion)
4.1. Details of Anaerobic Digestion Process
- (a)
- Degradation of cellulose and non-degradation of lignin: Cellulose constitutes about 30–50% of the dry weight of lignocellulose, thus presenting as the whole polysaccharide structure of the plant’s cell wall. It contains a linear chain of β (1→4) linked D-glucose units. The cellulose chains are interlinked by hydrogen bonds and Van der Waal’s forces, resulting in high tensile strength microfibrils. Owing to the different orientations of the cellulose molecule throughout the structure, it has varying levels of crystallinity. Moreover, Ahmed et al. [67] mentioned that cellulose microfibrils are connected to one another with the help of pectin and hemicellulose and are then covered with lignin, thus hindering easy degradation. It consists of an amorphous (non-crystalline) and a crystalline domain, with varying degrees of hydrolysis; the amorphous portion hydrolyses first before the crystalline [23]. Cellulose has the propensity to be degraded to simple sugars via the actions of cellulase after pretreatment is applied. Through pretreatment, the inter- and intra-hydrogen bonds are disrupted, making the solid material and macromolecules become hydrolysed and solubilised in the medium. This is achieved through the mechanisms of the extracellular enzymes of acidogenic bacteria, facilitating their utilisation by microorganisms [67]. Lignin may originate from three different building blocks, namely coniferyl alcohol (G), p-coumaryl alcohol (H), and sinapyl alcohol (S). Following cellulose, lignin is referred to as the second most abundant carbon source. It is a non-carbohydrate aromatic heteropolymer, different from cellulose and hemicellulose; therefore, it does not contribute simple monomeric sugars. It is the most complex component of lignocellulose, forming an irregular network with cellulose and hemicellulose. It fills the spaces in the cell wall, which results in the formation of a multistage fibre structure, thus providing lignocellulose with structural stability.
- (b)
- Biogas production and valorisation: Biogas is produced via the anaerobic degradation of organic matter via the concerted activities of different microorganisms, occurring at the four distinct phases of the biological process, wherein the metabolites/end products of the previous phase serve as substrates for the subsequent phase [74]. Firstly, complex polymers, including carbohydrates, proteins, and fats, are decomposed into their monomeric units, e.g., sugars, amino acids, and fatty acids by hydrolytic bacteria. The acidogenic or fermentative bacteria utilise monomers, converting them into a blend of short-chain fatty acids. Subsequently, short-chain fatty acids are converted by acetogenic bacteria to produce acetate, carbon dioxide, and hydrogen, which are precursors for methane production. Methane is produced via the process of methanogenesis through either the hydrogenotrophic or acetoclastic pathways of methanogens [75]. However, the quantity of methane produced, which determines its calorific value, varies with the type and source of substrates, as well as the digester’s operating conditions employed in the anaerobic digestion process. Naturally, lignocellulosic materials have very small interior surfaces, especially when dried. The anaerobic co-digestion of lignocellulosic wastes with other substrates exerts synergistic effects on process stability and methane generation, and it enriches the microbial population, thus enabling contact between the substrates and microbes or enzymes as well as increasing the biodegradable components. Anaerobic digestion is the best-suited approach for lignocellulosic waste management and valorisation, producing biogas consisting of a mixture of gases, including methane (55–65%), carbon dioxide (30–35%), hydrogen sulphide, water, and traces of other gases [76].
- (c)
- Biodigestate: The residual liquid or solid material discharged from the biodigester after the completion of anaerobic digestion is termed digestate. The successful co-digestion of lignocellulosic wastes with other substrates is a potential economic process, leaving a nutrient-rich residue known as the digestate [81]. During anaerobic digestion, biogas is produced through the degradation of organic matter via bacterial actions. Therefore, the subsequent digestate is a complex matrix, comprising partly degraded organic matter, inorganic compounds, and microbial biomass in volumes, based on the makeup of the biomass feedstock and process parameters (designated temperature and retention time) [82]. This explains the fact that the content of each component in a digestate may differ when recovered from different installations. This is because it is known that most of the nutrients required by plants that occur in raw feedstock are retained during anaerobic digestion; thus, digestate contains all the critical macro- and micronutrients in different portions, reflecting those in the substrates. This indicates that the amount and composition of the digestate synchronises with those of the feedstock [83].
4.2. Characteristics of Substrates Employed in Anaerobic Digestion
4.2.1. Biochemical Methane Potential (BMP)
- (i)
- The substrate-to-inoculum ratio should be above 0.1, and the inoculum must be greatly stabilised to exclude further degradation during the assay [99].
- (ii)
- The inoculum should be withdrawn from an active digester operating on a complex feed material; thus, it will provide a microbial population that is varied and balanced, e.g., a wastewater treatment plant (WWTP) [93]. The inoculum is responsible for providing the initial microbial population in the anaerobic digestion process. An active inoculum has the tendency to provide extra methane-producing microorganisms and a good source of inoculum is endowed with the potential to positively augment anaerobic biodegradability, shorten the lag phase and thus further stabilise the process. Of high recommendation is the fact that the inoculum should be preincubated for 1 to 5 days at 35 °C to degas and lessen the influence of its methane production [100].
- (iii)
- The batch process should be carried out using a temperature-controlled system (mesophilic), and the preferred temperature of the bottles must be the same as the temperature of the system from which the inoculum was withdrawn [92].
- (iv)
- In order to design the test and eradicate the problem of process inhibition, the substrate should be evaluated for total solids, volatile solids, volatile fatty acids, and total Kjeldahl nitrogen, as well as ammonium and alkalinity concentrations [92].
- (v)
- Most importantly, biogas is the key factor to determine methane potential and the biodegradability of a feedstock; therefore, biogas production has to be monitored very closely so that no significant losses or errors occur during its collection. Correction factors are applied to convert the observed methane potential to that under standard temperature and pressure conditions for standardised results [101].
Theoretical Biochemical Methane Potential (BMP)
Biodegradability Based on Theoretical BMP
Proposal of a Real or an Industrial Application of Anaerobic Digestion of Lignocellulosic Biomass, Economics, Limitations, and Advantages
4.2.2. Biochemical Oxygen Demand (BOD)
4.2.3. Chemical Oxygen Demand (COD)
4.2.4. Total Solids
4.2.5. Volatile Solids
4.2.6. Carbon–Nitrogen (C:N) Ratio
4.2.7. Trace Elements
4.2.8. Microbial Composition
4.2.9. Moisture Content
5. Pretreatment Methods for Lignocellulosic Biomass Involved in Anaerobic Digestion
5.1. Physical Treatment
5.1.1. Mechanical Pretreatment/Comminution
5.1.2. Irradiation
5.2. Chemical Pretreatments
5.3. Physicochemical Pretreatment
5.3.1. Thermal Pretreatments
5.3.2. Hydrothermal Pretreatment
5.3.3. Steam Explosion
5.4. Biological Pretreatment
5.4.1. Fungal Pretreatment
5.4.2. Microbial Consortium
5.4.3. Bacterial Pretreatment
5.4.4. Ensiling
5.4.5. Bioaugmentation
5.5. Technical and Economic Considerations of the Pretreatment Methods
6. Anaerobic Co-Digestion of Agricultural Wastes
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arpia, A.A.; Chen, W.H.; Lam, S.S.; Rousset, P.; De Luna, M.D. Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating: A comprehensive review. Chem. Eng. J. 2020, 13, 126233. [Google Scholar]
- Zoghlami, A.; Paës, G. Lignoc ellulosic Biomass: Understanding recalcitrance and predicting hydrolysis. Front. Chem. 2019, 7, 874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber, G.W. Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydrocarbon Biorefineries; National Science Foundation: Alexandria, VA, USA, 2008. [Google Scholar]
- Inyang, V.; Laseinde, O.T.; Kanakana, G.M. Techniques and applications of lignocellulose biomass sources as transport fuels Gil, A. Current insights into lignocellulose related waste valorization. Chem. Eng. J. Adv. 2021, 8, 100186. [Google Scholar]
- Isikgor, F.H.; Becer, C.R. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015, 6, 4497–4559. [Google Scholar]
- Liu, H.; Zhang, X.; Hong, Q. Emission characteristics of pollution gases from the combustion of food waste. Energies 2021, 14, 6439. [Google Scholar] [CrossRef]
- Abubakar, I.R.; Maniruzzaman, K.M.; Dano, U.L.; AlShihri, F.S.; AlShammari, M.S.; Ahmed, S.M.S.; Al-Gehlani, W.A.G.; Alrawaf, T.I. Environmental sustainability impacts of solid waste management practices in the global South. Int. J. Environ. Res. Public Health 2022, 19, 12717. [Google Scholar] [CrossRef] [PubMed]
- Obi, L.U.; Roopnarain, A.; Tekere, M.; Adeleke, R.A. Bioaugmentation potential of inoculum derived from anaerobic digestion feedstock for enhanced methane production using water hyacinth. World J. Microbiol. Biotechnol. 2023, 39, 153. [Google Scholar] [CrossRef]
- Inyang, V.; Laseinde, O.T.; Kanakana, G.M. Techniques and applications of lignocellulose biomass sources as transport fuels and other bioproducts. Int. J. Low-Carbon Technol. 2022, 17, 900–909. [Google Scholar] [CrossRef]
- Siddiqua, A.; John, N.; Hahladakis, J.N.; Al-Attiya, W.A.K.A. An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environ. Sci. Pollut. Res. 2022, 29, 58514–58536. [Google Scholar]
- Istrate, I.-R.; Galvez-Martos, J.-L.; Dufour, J. The impact of incineration phase-out on municipal solid waste landfilling and life cycle environmental performance: Case study of Madrid, Spain. Sci. Total Environ. 2021, 755, 142537. [Google Scholar] [CrossRef] [PubMed]
- Iravanian, A.; Sh, O.; Ravari, S.O. Types of Contamination in Landfills and Effects on The Environment: A Review Study. IOP Conf. Ser. Earth Environ. Sci. 2020, 614, 012083. [Google Scholar] [CrossRef]
- Njoku, P.O.; Edokpayi, J.N.; Odiyo, J.O. Health and Environmental Risks of Residents Living Close to a Landfill: A Case Study of Thohoyandou Landfill, Limpopo Province, South Africa. Int. J. Environ. Res. Public Health 2019, 16, 2125. [Google Scholar] [PubMed] [Green Version]
- Silwadi, M.; Mousa, H.; AL-Hajji, B.Y.; A-LWahaibi, S.S.; AL-Harrasi, Z.Z. Enhancing biogas production by anaerobic digestion of animal manure. Int. J. Green Energy 2022, 20, 257–264. [Google Scholar] [CrossRef]
- Safieddin Ardebili, S.M.; Asakereh, A.; Soleymani, M. An analysis of renewable electricity generation potential from municipal solid waste: A case study (Khuzestan Province, Iran). Biomass Convers. Biorefinery 2020, 13, 89–97. [Google Scholar] [CrossRef]
- Olatunji, K.O.; Ahmed, N.A.; Ogunkunle, O. Optimization of biogas yield from lignocellulosic materials with diferent pretreatment methods: A review. Biotechnol. Biofuels 2021, 14, 159. [Google Scholar] [CrossRef]
- Liu, C.M.; Yuan, H.R.; Zou, D.X.; Liu, Y.P.; Zhu, B.N.; Li, X. Improving biomethane production and mass bioconversion of corn stover anaerobic digestion by adding NaOH pretreatment and trace elements. BioMed Res. Int. 2015, 2015, 125241. [Google Scholar]
- Ab Rasid, N.S.; Shamjuddin, A.; Rahman, A.Z.A.; Amin, N.A.S. Recent advances in green pre-treatment methods of lignocellulosic biomass for enhanced biofuel production. J. Clean. Prod. 2021, 321, 129038. [Google Scholar] [CrossRef]
- Uddin, M.; Wright, M.M. Anaerobic digestion fundamentals, challenges, and technological advances. Phys. Sci. Rev. 2022. [Google Scholar] [CrossRef]
- Ortner, M.; Rachbauer, L.; Somitsch, W.; Fuchs, W. Can bioavailability of trace nutrients be measured in anaerobic digestion? Appl. Energy 2014, 126, 190–198. [Google Scholar]
- Molaey, R.; Bayrakdar, A.; Sürmeli, R.O.; Çalli, B. Anaerobic digestion of chicken manure: In fluence of trace element supplementation. Eng. Life Sci. 2019, 19, 143–150. [Google Scholar]
- Dermirbas, H. Higher heating values of lignin types from woody and non woody lignoce3llulosic biomasses. Energy Source Part A Recovery Util. Environ. Eff. 2017, 39, 592–598. [Google Scholar]
- Agregán, R.; Lorenzo, J.M.; Kumar, M.; Shariati, M.A.; Khan, M.U.; Sarwar, A.; Sultan, M.; Rebezov, M.; Usman, M. Anaerobic Digestion of Lignocellulose Components: Challenges and Novel Approaches. Energies 2022, 15, 8413. [Google Scholar] [CrossRef]
- Hashemi, B.; Sarker, S.; Lamb, J.J.; Lien, K.M. Yield improvements in anaerobic digestion of lignocellulosic feedstocks. J. Clean. Prod. 2021, 288, 125447. [Google Scholar]
- David, A.; Govil, T.; Tripathi, A.K.; McGeary, J.; Farrar, K.; Sani, R.K. Thermophilic Anaerobic Digestion: Enhanced and Sustainable Methane Production from Co-Digestion of Food and Lignocellulosic Wastes Energies. Energies 2018, 11, 2058. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.-T.; Chen, B.-Y.; Li, B.-Y.; Tseng, M.-C.; Han, C.-C.; Shyu, S.-G. Efficient pretreatment of lignocellulosic biomass with high recovery of solid lignin and fermentable sugars using Fenton reaction in a mixed solvent. Biotechnol. Biofuels 2018, 11, 287. [Google Scholar]
- Yamamoto, M.; Iakovlev, M.; Bankar, S.; Tunc, M.S.; van Heiningen, A. Enzymatic hydrolysis of hardwood and softwood harvest residue fbers released by sulfur dioxide-ethanol-water fractionation. Bioresour. Technol. 2014, 167, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Umoh, E.M.; Edidiong, S.S. The recycling of sawdust waste into particleboard using Starch. Based Modified Adhesive. Commun. Phys. Sci. 2020, 6, 760–766. [Google Scholar]
- Cultrone, G.; Aurrekoetxea, I.; Casado, C.; Anna Arizzi, A. Sawdust recycling in the production of lightweight bricks: How the amount of additive and the firing temperature influence the physical properties of the bricks. Constr. Build. Mater. 2020, 235, 117436. [Google Scholar]
- Adegoke, K.A.; Adesina, O.O.; Okon-Akan, O.A.; Adegoke, O.R.; Olabintan, A.B.; Ajala, O.A.; Halimat Olagoke, H.; Maxakato, N.W.; Bello, O.S. Sawdust-biomass based materials for sequestration of organic and inorganic pollutants and potential for engineering applications. Curr. Res. Green Sustain. Chem. 2022, 5, 100274. [Google Scholar] [CrossRef]
- Adewuyi, A. Underutilized Lignocellulosic Waste as Sources of Feedstock for Biofuel Production in Developing Countries. Front. Energy Res. 2022, 10, 741570. [Google Scholar] [CrossRef]
- Tipayarom, A.; Kim Oanh, N.T. Influence of rice straw open burning on levels and profiles of semivolatile organic compounds in ambient air. Chemosphere 2020, 243, 125379. [Google Scholar] [PubMed]
- Jin, Z.; Shah, T.; Zhang, L.; Liu, H.; Peng, S.; Nie, L. Effect of straw returning on soil organic carbon in rice–wheat rotation system: A review. Food Energy Secur. 2020, 9, e200. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Fang, C.; Meng, Y.; Dai, Y.; Liu, J. Long-term ditch-buried straw return increases functionality of soil microbial communities. Catena 2021, 202, 105316. [Google Scholar] [CrossRef]
- Wang, Y.; Adnan Abbas, A.; Xiaochan Wang, X.; Sijun Yang, S.; Odhiambo, M.R.O.; Qishuo Ding, Q.; Sun, G.; Yinyan Shi, Y. Study of the Mechanics and Micro-Structure of Wheat Straw Returned to Soil in Relation to Different Tillage Methods. Agronomy 2020, 10, 894. [Google Scholar] [CrossRef]
- Chen, L.; Sun, S.; Yao, B.; Peng, Y.; Gao, C.; Qin, T.; Zhou, Y.; Sun, C.; Quan, W. Effects of straw return and straw biochar on soil properties and crop growth: A review. Front. Plant Sci. 2022, 13, 986763. [Google Scholar] [CrossRef] [PubMed]
- Harindintwali, J.D.; Zhou, J.; Yu, X. Lignocellulosic crop residue composting by cellulolytic nitrogen-fixing bacteria: A novel tool for environmental sustainability. Sci. Total Environ. 2020, 715, 136912. [Google Scholar] [CrossRef] [PubMed]
- Wei, S. The application of biotechnology on the enhancing of biogas production from lignocellulosic waste. Appl. Microbiol. Biotechnol. 2016, 100, 9821–9836. [Google Scholar] [CrossRef] [PubMed]
- Bohacz, J. Composts and Water Extracts of Lignocellulosic Composts in the Aspect of Fertilization, Humus-Forming, Sanitary, Phytosanitary and Phytotoxicity Value Assessment. Waste Biomass Valorization 2019, 10, 2837–2850. [Google Scholar]
- Santos, A.; Bustamante, M.A.; Tortosa, G.; Moral, R.; Bernal, M.P. Gaseous emissions and process development during composting of pig slurry: The influence of the proportion of cotton gin waste. J. Cleaner Prod. 2016, 112, 81–90. [Google Scholar] [CrossRef]
- Quina, M.J.; Quinta-Ferreira, R.; Bordado, J. Air Pollution Control in Municipal Solid Waste Incinerators. In The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources; Khallaf, M., Ed.; InTechOpen: London, UK, 2014; pp. 331–358. ISBN 978-953-307-528-0. Available online: http://www.intechopen.com/books/the-impact-of-air-pollution-on-health-economy-environment-andagricultural-sources/air-pollution-control-in-municipal-solid-waste-incinerators (accessed on 16 June 2023).
- Sabki, M.H.; Leea, C.T.; Bonga, C.P.C.; Klemešc, J.J. A Review on the Economic Feasibility of Composting for Organic Waste Management in Asian Countries. Chem. Eng. Trans. 2018, 70, 49–54. [Google Scholar] [CrossRef]
- Gillespie, A.; Halog, A. Community-Scale Composting Initiatives in South-East Queensland and Beyond: A Review of Successes, Challenges and Lessons for a Pilot Project on Karragarra Island, southern Moreton Bay. Circ.Econ.Sust. 2023, 3, 305–319. [Google Scholar] [CrossRef]
- Alsaidi, M.S.; Dudin, P.V.; Jedidi, I. Techno-Economic Feasibility Study of Solid Waste Recycling System for Dry Waste from Water Treatment Plants: Sultanate of Oman Case. Technol. Investig. 2021, 12, 16–42. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Olanrewaju, O.S.; Babalola, O.O.; Odeyemi, O. Waste Management through Composting: Challenges and Potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Cudjoe, D.; Acquah, P.M. Environmental impact analysis of municipal solid wastes incineration in African countries. Chemosphere 2021, 265, 129186. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, S. Economic and Environmental Cost Analysis of Incineration and Recovery Alternatives for Flammable IndustrialWaste: The Case of South Korea. Sustainability 2017, 9, 1638. [Google Scholar] [CrossRef] [Green Version]
- Jacelaa, D.M.R.; Lopeza, E.J.P.; Magtibay, B.B. Technical Applicability of Small-Scale Incineration with Energy Recovery Scheme as An Effective Thermal Treatment for Infectious Healthcare Waste in San Lazaro Hospital, Manila. Easy Cahir Preperint 2020, 4656. [Google Scholar]
- Palese, A.M.; Persiani, A.; D’Adamo, C.; Pergola, M.; Pastore, V.; Sileo, R.; Ippolito, G.; Lombardi, M.A.; Celano, G. Composting as Manure Disposal Strategy in Small/Medium-Size Livestock Farms: Some Demonstrations with Operative Indications. Sustainability 2020, 12, 3315. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, A. Decentralized Composting of Food Waste: A Perspective on Scientific Knowledge. Front. Chem. Eng. 2022, 4, 850308. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, B.; Luo, L.; Zhang, F.; Yi, Y.; Shan, Y.; Liu, B.; Zhou, Y.; Wang, X.; Lv, X. A review on recycling techniques for bioethanol production from lignocellulosic biomass. Renew. Sustain. Energy Rev. 2021, 2021, 149. [Google Scholar]
- Osman, A.I. Mass spectrometry study of lignocellulosic biomass combustion and pyrolysis with NOx removal. Renew Energy 2020, 146, 484–496. [Google Scholar] [CrossRef]
- Azni, M.A.; Md Khalid, R.; Hasran, U.A.; Kamarudin, S.K. Review of the Effects of Fossil Fuels and the Need for a Hydrogen Fuel Cell Policy in Malaysia. Sustainability 2023, 15, 4033. [Google Scholar] [CrossRef]
- Saini, J.K.; Saini, R.; Tewari, L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech 2015, 5, 337–353. [Google Scholar] [CrossRef] [Green Version]
- Jha, S.; Nanda, S.; Acharya, B.; Dalai, A.K. A Review of Thermochemical Conversion of Waste Biomass to Biofuels. Energies 2022, 15, 6352. [Google Scholar] [CrossRef]
- Gangopadhyay, A.; Seshadri, A.K.; Sparks, N.J.; Toumi, R. The Role of Wind-Solar Hydrid Plants in Mitgating enewable Energy Droughts. Renew. Energy 2022, 194, 926–937. [Google Scholar] [CrossRef]
- Kumar Sarangi, K.; Sanjukta, S.; Latika, B.A.; Koel, S.; Divya, M.; Krushna, P.S.; Surendra, V.; Rajesh, S.; Srivastava, K. Utilization of agricultural waste biomass and recycling towards circular bioeconomy. Environ. Sci. Pollut. Res. Int. 2023, 30, 8526–8539. [Google Scholar] [CrossRef] [PubMed]
- Levavasseur, F.; Kouakou, P.K.; Constantin, J.; Cresson, R.; Ferchaud, F.; Girault, R.; Jean-Baptiste, V.; Lagrange, H.; Sylvain Marsac, S.; Sylvain Pellerin, S.; et al. Energy cover crops for biogas production increase soil organic carbon stocks: A modeling approach. GCB Bioenergy 2023, 15, 224–238. [Google Scholar] [CrossRef]
- Chaher, N.E.H.; Engler, N.; Abdallah Nassour, A.; Nelles, M. 2,4 Effects of co substrates’ mixing ratios and loading rate variations on food and agricultural wastes’ anaerobic co digestion performance. Biomass Conv. Bioref. 2023, 13, 7051–7066. [Google Scholar] [CrossRef]
- Kushwaha, A.; Mishra, V.; Gupta, V.; Goswami, S.; Gupta, P.K.; Singh, L.K.; Gupt, C.B.; Kaustubh Rakshit, K.; Lalit Goswami, L. Anaerobic digestion as a sustainable biorefinery concept for waste to energy conversion, Waste to energy approaches toward zero waste. Interdiscip. Methods Control. Waste 2022, 129–163. [Google Scholar] [CrossRef]
- Kougias, P.G.; Angelidaki, I. Biogas and its opportunities—A review. Front. Environ. Sci. Eng. 2018, 12, 14. [Google Scholar] [CrossRef]
- Valecha, A. Microorganisms in the Anaerobic Digestion. Int. J. Eng. Res. Technol. 2021, 10, 495–498. [Google Scholar]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on Research Achievements of Biogas from Anaerobic Digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar]
- Wang, S.; Ma, F.; Ma, W.; Wang, P.; Zhao, G.; Lu, X. Influence of Temperature on Biogas Production Efficiency and Microbial Community in a Two-Phase Anaerobic Digestion System. Water 2019, 11, 133. [Google Scholar] [CrossRef] [Green Version]
- Akindolire, M.A.; Rama, H.; Roopnarain, A. Psychrophilic anaerobic digestion: A critical evaluation of microorganisms andenzymes to drive the process. Renew. Sustain. Energy Rev. 2022, 161, 112394. [Google Scholar] [CrossRef]
- Sudiartha, G.A.W.; Imai, T.; Hung, Y.-T. Effects of Stepwise Temperature Shifts in Anaerobic Digestion for Treating Municipal Wastewater Sludge: A Genomic Study. Int. J. Environ. Res. Public Health 2022, 19, 5728. [Google Scholar] [CrossRef]
- Ahmed, B.; Aboudi, K.; Tyagi, V.K.; Álvarez-Gallego, C.J.; Fernández-Güelfo, L.A.; Romero-García, L.I.; Kazmi, A.A. Improvement of Anaerobic Digestion of Lignocellulosic Biomass by Hydrothermal Pretreatment. Appl. Sci. 2019, 9, 3853. [Google Scholar] [CrossRef] [Green Version]
- Meenakshisundaram, S.; Fayeulle, A.; Léonard, E.; Ceballos, C.; Liu, X.; Pauss, A. Combined Biological and Chemical/Physicochemical Pretreatment Methods of Lignocellulosic Biomass for Bioethanol and Biomethane Energy Production—A Review. Appl. Microbiol. 2022, 2, 716–734. [Google Scholar] [CrossRef]
- Serrano, A.; Russo, E.; Chaves-Quesada, B.; Cubero-Cardoso, J.; Trujillo-Reyes, Á.; Esposito, G.; Xu, X.; Fermoso, F.G. Accumulation of Volatile Fatty Acids from Hydrothermally Treated Strawberry Extrudate through Anaerobic Fermentation at Different pH Values. Agronomy 2023, 13, 120. [Google Scholar] [CrossRef]
- Khan, M.U.; Ahring, B.K. Anaerobic Biodegradation of Wheat Straw Lignin: The Influence of Wet Explosion Pretreatment. Energies 2021, 14, 5940. [Google Scholar] [CrossRef]
- Khan, M.U.; Ahring, B.K. Lignin degradation under anaerobic digestion: Influence of lignin modifications—A review. BiomassBioenergy 2019, 128, 105325. [Google Scholar] [CrossRef]
- Janusz, G.; Pawlik, A.; Sulej, J.; Swiderska-Burek, U.; Jarosz-Wilkolazka, A.; Paszczynski, A. Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 2017, 41, 941–962. [Google Scholar]
- Nilsson, T.; Daniel, G. Developments in the Study of Soft Rot and Bacterial Decay. In Forest Products Biotechnology; CRC Press: Boca Raton, FL, USA, 2014; pp. 47–72. [Google Scholar]
- Manyi-Loh, C.E.; Mamphweli, S.N.; Meyer, E.L.; Okoh, A.I. Microbial anaerobic digestion: Process dynamics and implications from the renewable energy, environmental and agronomy perspectives. Int. J. Environ. Sci. Technol. 2019, 16, 3913–3934. [Google Scholar] [CrossRef]
- Xu, N.; Liu, S.; Xin, F.; Zhou, J.; Jia, H.; Xu, J.; Jiang, M.; Dong, W. Biomethane production from lignocellulose: Biomass recalcitrance and its impacts on anaerobic digestion. Front. Bioeng. Biotechnol. 2019, 7, 191. [Google Scholar] [CrossRef]
- Ghosh, T.; Ngo, T.D.; Kumar, A.; Ayranci, C.; Tang, T. Cleaning carbohydrate impurities from lignin using: Pseudomonas fluorescens. Green Chem. 2019, 21, 1648–1659. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, R.; Ghosh, P.; Kumar, M.; Vijay, V.K. Evaluation of Biogas Upgrading Technologies and Future Perspectives: A Review. Environ. Sci. Pollut. Res. 2019, 26, 11631–11661. [Google Scholar]
- Shonhiwa, C.; Mapantsela, Y.; Makaka, G.; Mukumba, P.; Shambira, N. Biogas Valorisation to Biomethane for Commercialisation in South Africa: A Review. Energies 2023, 16, 5272. [Google Scholar] [CrossRef]
- Gao, Q.; Li, L.; Zhao, Q.; Wang, K.; Zhou, H.; Wang, W.; Ding, J. Insights into high-solids anaerobic digestion of food waste concomitant with sorbate: Performance and mechanisms. Bioresour. Technol. 2023, 381, 129159. [Google Scholar] [CrossRef] [PubMed]
- De Llobet, S.; Laiglesia, I.S.; Álvarez, M.R. Biogas Valorisation through Catalytic Decomposition to Produce Synthesis Gas and Carbon Nanofibers; Grupo Español del Carbón: Zaragoza, Spain, 2016; pp. 49–50. [Google Scholar]
- Czekala, W. Digestate as a Source of Nutrients: Nitrogen and Its Fractions. Water 2022, 14, 4067. [Google Scholar] [CrossRef]
- Risberg, K. Quality and Function of Anaerobic Digestion Residues. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2015. [Google Scholar]
- Lamolinara, B.; Pérez-Martínez, A.; Guardado-Yordi, E.; Fiallos, C.G.; Diéguez-Santana, K.; Ruiz-Mercado, G.J. Anaerobic digestate management, environmental impacts, and techno-economic challenges. Waste Manag. 2022, 140, 14–30. [Google Scholar]
- Drosg, B.; Fuchs, W.; Al Seadi, T.; Madsen, M.; Linke, B. Nutrient Recovery by Biogas Digestate Processing; IEA Bioenergy: London, UK, 2015. [Google Scholar]
- Weimers, K.; Bergstrand, K.-J.; Hultberg, M.; Asp, H. Liquid Anaerobic Digestate as Sole Nutrient Source in Soilless Horticulture—Or Spiked With Mineral Nutrients for Improved Plant Growth. Front. Plant Sci. 2022, 13, 770179. [Google Scholar] [CrossRef]
- Häfner, F.; Hartung, J.; Möller, K. Digestate Composition Affecting N Fertiliser Value and C Mineralisation Waste and Biomass. Valorization 2022, 13, 3445–3462. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Lues, R. Reduction in Bacterial Pathogens in a Single-Stage Steel Biodigester Co-Digesting Saw Dust and Pig Manure at Psychrophilic Temperature. Appl. Sci. 2022, 12, 10071. [Google Scholar] [CrossRef]
- Hammerschmiedt, T.; Kintl, A.; Holatko, J.; Mustafa, A.; Vitez, T.; Malicek, O.; Baltazar, T.; Elbl, J.; Brtnicky, M. Assessment of digestates prepared from maize, legumes, and their mixed culture as soil amendments: Effects on plant biomass and soil properties. Front. Plant Sci. 2022, 13, 1017191. [Google Scholar] [CrossRef]
- Slepetiene, A.; Kochiieru, M.; Jurgutis, L.; Mankeviciene, A.; Skersiene, A.; Belova, O. The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania. Land 2022, 11, 133. [Google Scholar] [CrossRef]
- Ndubuisi-Nnaji, U.U.; Utibe AOfon, U.A.; Ekponne, N.I.; Offiong, N.-A.O. Improved biofertilizer properties of digestate from codigestion of brewer’ spent grain and palm oil mill effluent by manure supplementation. Sustain. Environ. Res. 2020, 30, 14. [Google Scholar]
- Koch, K.; Hafner, S.D.; Weinrich, S.; Astals, S.; Holliger, C. Power and Limitations of Biochemical Methane Potential (BMP) Tests. Front. Energy Res. 2020, 8, 63. [Google Scholar] [CrossRef]
- Filer, J.; Ding, H.H.; Chang, S. Biochemical Methane Potential (BMP) Assay Method for Anaerobic Digestion Research. Water 2019, 11, 921. [Google Scholar] [CrossRef] [Green Version]
- Jensen, P.D.; Ge, H.; Batstone, D.J. Assessing the role of biochemical methane potential tests in determining anaerobic degradability rate and extent. Water Sci. Technol. 2011, 64.4, 880–886. [Google Scholar] [CrossRef]
- Anuar, N.K.; Man, H.C.; Idrus, S.; Daud, N.N.N. Biochemical methane potential (BMP) from anaerobic codigestion of sewage sludge and decanter cake. IOP Conf. Ser. Mater. Sci. Eng. 2018, 368, 012027. [Google Scholar] [CrossRef]
- Janke, L.; McCabe, B.K.; Harris, P.; Hill, A.; Lee, S.; Weinrich, S.; Marchuk, S.; Baillie, C. Ensiling fermentation reveals pre-treatment effects for anaerobic digestion of sugarcane biomass: An assessment of ensiling additives on methane potential. Bioresour. Technol. 2019, 279, 398–403. [Google Scholar] [CrossRef]
- De Vrieze, J.; Raport, L.; Willems, B.; Verbrugge, S.; Volcke, E.; Meers, E.; Angenent, L.T.; Boon, N. Inoculum selection influences the biochemical methane potential of agro-industrial substrates. Microb. Biotechnol. 2015, 8, 776–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasinski, S. Mesophilic and Thermophilic Anaerobic Digestion of Organic Fraction Separated during Mechanical Heat Treatment of Municipal Waste. Appl. Sci. 2020, 10, 2412. [Google Scholar] [CrossRef] [Green Version]
- Hamzah, M.A.F.; Jahim, J.M.; Abdul, P.M. Comparative start-up between mesophilic and thermophilic for acidified palm oil mill effluent treatment. IOP Conf. Ser. Earth Environ. Sci. 2019, 268, 012028. [Google Scholar] [CrossRef]
- Yoon, Y.-M.; Kim, S.-H.; Shin, K.-S.; Kim, C.-H. Effects of Substrate to Inoculum Ratio on the Biochemical Methane Potential of Piggery Slaughterhouse Wastes Asian Australas. J. Anim. Sci. 2014, 27, 600–607. [Google Scholar] [CrossRef]
- Orangun, A.; Kaur, H.; Kommalapati, R.R. Batch Anaerobic Co-Digestion and Biochemical Methane Potential Analysis of Goat Manure and Food Waste. Energies 2021, 14, 1952. [Google Scholar] [CrossRef]
- Strömberg, S.; Nistor, M.; Liu, J. Towards eliminating systematic errors caused by the experimental conditions in Biochemical Methane Potential (BMP) tests. Waste Manag. 2014, 34, 1939–1948. [Google Scholar] [CrossRef]
- Esposito, G.; Frunzo, L.; Liotta, F.; Panico, A.; Pirozzi, F. Bio-Methane Potential Tests To Measure The Biogas Production From The Digestion and Co-Digestion of Complex Organic Substrates. Open Environ. Eng. J. 2012, 5, 1–8. [Google Scholar]
- Jingura, R.M.; Kamusoko, R. Methods for determination of biomethane potential of feedstocks: A review. Biofuel Res. J. 2017, 14, 573–586. [Google Scholar] [CrossRef]
- Yasim, N.S.E.M.; Faeiza Buyong, F. Comparative of experimental and theoretical biochemical methane potential generated by municipal solid waste. Environ. Adv. 2023, 11, 100345. [Google Scholar] [CrossRef]
- Fogacs, G. Biogas Production from Citrus Wastes and Chicken Feather: Pretreatment and Co-Digestion. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden, 2012. [Google Scholar]
- Odedina, M.J.; Adeyemi, F.O.; Oladokun, A.S.; Olomo, O.O. Biogas production from lignocellulosic waste materials. In Reinvigorating Nigerian Universities for Sustainable Development; Ajayi Crowther University: Oyo, Nigeria, 2020. [Google Scholar]
- Buitrόn, G.; Hernández-Juárez, A.; Hernández-Ramirez, M.D.; Sanchez, A. Biochemical methane potential from lignocellulosic wastes hydrothermally pretreated. Indust. Crops Prod. 2019, 139, 111555. [Google Scholar] [CrossRef]
- Ali, S.; Shah, T.A.; Afza, A.; Tabassum, R. Exploring lignocellulosic biomass for bio-methane potential by anaerobic digestion and its economic feasibility. Energy Environ. 2018, 29, 742–751. [Google Scholar] [CrossRef]
- Nielfa, A.; Cano, R.; Fdz-Polanco, M. Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol. Rep. 2015, 5, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Ugwu, S.N.; Enweremadu, C.C. Biodegradability and kinetic studies on biomethane production from okra (Abelmoschus esculentus) waste. S. Afr. J. Sci. 2019, 115, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbugua, J.K.; Mbui, D.N.; Mwaniki, J.M.; Mwaura, F.B. Biochemical Methane Potential (BMP) of Market Wastes from Nairobi Inoculated With Dagoretti Slaughterhouse Waste. Int. J. Sci. Res. Sci. Eng. Technol. 2020, 7, 81–90. [Google Scholar]
- Calabrò, P.S.; Folino, A.; Maesano, M.; Domenica Pangallo, D.; Zema, D.A. Exploring the Possibility to Shorten the Duration and Reduce the Number of Replicates in Biomethane Potential Tests (BMP). Waste Biomass Valor. 2022, 14, 2481–2493. [Google Scholar] [CrossRef]
- Labatut, R.A.; Angenent, L.T.; Scott, N.R. Biochemical methane potential and biodegradability of complex organic substrates. Bioresour. Technol. 2011, 102, 2255–2264. [Google Scholar] [CrossRef]
- Manyi-Loh, C.E.; Mamphweli, S.N.; Meyer, E.L.; Okoh, A.I.; Makaka, G.; Simon, M. Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester). Int. J. Environ. Res. Public Health 2014, 11, 7184–7194. [Google Scholar] [CrossRef] [Green Version]
- Meegoda, J.N.; Li, B.; Patel, K.; Wang, L.B. A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion. Int. J. Environ. Res. Public Health 2018, 15, 2224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asam, Z.U.Z.; Poulsen, T.G.; Nizami, A.S.; Rafique, R.; Kiely, G.; Murphy, J.D. How can we improve biomethane production per unit of feedstock in biogas plants? Appl. Energy 2011, 88, 2013–2018. [Google Scholar] [CrossRef]
- Poskart, A.; Skrzyniarz, M.; Sajdak, M.; Zajemska, M.; Skibínski, A. Management of Lignocellulosic Waste towards Energy Recovery by Pyrolysis in the Framework of Circular Economy Strategy. Energies 2021, 14, 5864. [Google Scholar] [CrossRef]
- Myszograj, S.; Stadnik, A.; Płuciennik-koropczuk, E. The influence of trace elements on anaerobic digestion process. Ceer Civ. Environ. Eng. Rep. 2018, 28, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Novaidi, R.; Ziariful, Z.; Candra, A. Improvement of carbon-to-nitrogen (c/n) ratio by making cassava leaf silage and its implications in digestibility in goat. Bangl. J. Vet. Med. 2018, 15, 127. [Google Scholar] [CrossRef] [Green Version]
- Majuga, J.C.N.; Scholberg, M.M.S.; Egbert, A. Lantinga, E.A Effects Of Grass-Clover Silage Quality And Application Rate On Organic Potato Performance. Int. J. Progress. Sci. Technol. 2022, 36, 168–181. [Google Scholar]
- Whitmore, A.P.; Groot, J.J.R. The decomposition of sugar beet residues: Mineralization versus immobilization in contrasting soil types. Plant Soil 1997, 192, 237–247. [Google Scholar] [CrossRef]
- Reichel, R.; Wei, J.; Islam, M.S.; Schmid, C.; Wissel, H.; Schröder, P.; Schloter, M.; Brüggemann, N. Potential of Wheat Straw, Spruce Sawdust, and Lignin as High Organic Carbon Soil Amendments to Improve Agricultural Nitrogen Retention Capacity: An Incubation Study. Front. Plant Sci. 2018, 9, 900. [Google Scholar] [CrossRef] [PubMed]
- Hadiyarto, A.; Soetrisnanto, D.; Rosyidin, I.; Fitriana, A. Co-Digestion of Bagasse and Water hyacinth for Biogas Production with Variation of C/N and Activated Sludge. IOP Conf. Ser. J. Phys. Conf. Series 2019, 1295, 012050. [Google Scholar] [CrossRef]
- Alabi, D.; Coopoosamy, R.; Naidoo, K.; Georgina, A. Composted Bagasse: An Impact on Agricultural Crop Production. J. Agric. Sci. Food Res. 2022, 13, 448. [Google Scholar]
- Srikanlayanukul, M.; Suksabye, P. Effect of Mixture Ratio of Food Waste and Vetiver Grass on Biogas Production. App. Envi. Res. 2020, 42, 40–48. [Google Scholar] [CrossRef]
- Khalib, S.N.B.; Zakarya, I.A.; Izhar, T.N.T. The Effect of Low Initial C:N Ratio during Composting of Rice Straw Ash with Food Waste in Evaluating the Compost Quality. IOP Conf. Ser. Earth Environ. Sci. 2020, 476, 012144. [Google Scholar] [CrossRef]
- Matheri, A.M.; Belaid, M.; Seodigeng, T.; Jane Ngila, J.C. The Role of trace elements on anaerobic co-digestion in biogas production. In Proceedings of the World Congress on Engineering 2016 Vol II WCE 2016, London, UK, 29 June–1 July 2016. [Google Scholar]
- Zhang, L.; Ouyang, W.; Li, A. Essential role of trace elements in continuous anaerobic digestion of food waste. Procedia Environ. Sci. 2012, 16, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, J.M.; Stres, B. Trace element enzymes in reactions essential for anaerobic digestion. In Trace Elements in Anaerobic Biotechnologies; Fernando, G., van Hullebusch, E.F., Gavin, C., Jimmy, R., Ana Paula, M., Giovanni, E., Eds.; IWA Publishing: London, UK, 2019; pp. 51–72. [Google Scholar]
- Maharaj, B.C.; Mattei, M.R.; Frunzo, L.; van Hullebusch, E.D.; Esposito, G. A general framework to model the fate of trace elements in anaerobic digestion environments. Sci. Rep. 2021, 11, 7476. [Google Scholar] [CrossRef]
- Yao, W.; Yongming, S.; Zhenhong, Y.; Lianhua, L.; Xinshu, Z. Effect of trace elements supplement on anaerobic fermentation of food waste. Nat. Env. Poll. Tech. 2016, 15, 747–753. [Google Scholar]
- Feng, X.M.; Karlsson, A.; Svensson, B.H.; Bertilsson, S. Impact of trace element addition on biogas production from food industrial waste ^ linking process to microbial communities. FEMS Microbiol. Ecol. 2010, 74, 226–240. [Google Scholar] [CrossRef] [Green Version]
- Ofosu, M.A.; Adonadaga, M.-G.; Sackey, I.; Ampadu, B. Substrate-Induced pH Changes and Process Stability of Anaerobic Digestion of Shea Waste. J. Appl. Sci. Environ. Manag. 2020, 24, 2035–2042. [Google Scholar] [CrossRef]
- Zhang, W.; Werner, J.J.; Agler, M.; Angenent, L. Substrate type drives variation in reactor microbiomes of anaerobic digesters. Bioresour. Technol. 2014, 151, 397–401. [Google Scholar] [CrossRef]
- Shi, J.; Xu, F.; Wang, Z.; Stiverson, J.A.; Yu, Z.; Li, Y. Effects of microbial and nonmicrobial factors of liquid anaerobic digestion effluent as inoculum on solid-state anaerobic digestion of corn stover. Bioresour. Technol. 2014, 157, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Cerný, M.; Monika Vítězová, M.; Vítěz, T.; Bartoš, M.; Kushkevych, I. Variation in the distribution of hydrogen producers from the Clostridiales order in biogas reactors depending on different input substrates. Energies 2018, 11, 3270. [Google Scholar] [CrossRef] [Green Version]
- Prajapati, K.K.; Pareek, N.; Vivekanand, V. Pretreatment and Multi-Feed Anaerobic Co-digestion of Agro-Industrial Residual Biomass for Improved Biomethanation and Kinetic Analysis. Front. Energy Res. 2018, 6, 111. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Sun, L.; Nordberg, A.; Schnürer, A. Substrate-induced response in biogas process performance and microbial community relates back to inoculum source. Microorganisms 2018, 6, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonoll, X.; Shrestha, S.; Khanal, S.K.; Dosta, J.; Mata-Alvarez, J.; Raskin, L. Understanding the anaerobic digestibility of lignocellulosic substrates using rumen content as a cosubstrate and an inoculum. ACS EST Eng. 2021, 1, 424–435. [Google Scholar] [CrossRef]
- Satpathy, P.; Steinigeweg, S.; Cypionka, H.; Engelen, B. Different substrates and starter inocula govern microbial community structures in biogas reactors. Environ. Technol. 2016, 37, 1441–1450. [Google Scholar] [CrossRef]
- Boundless. Counting Bacteria. In Microbiology; LibreTexts: 2021, UC Davis Library; The California State University: Fresno, CA, USA, 2021; pp. 1433–1436. [Google Scholar]
- Diez-Gonzalez, F. Total Viable Counts/Specific Techniques: In Enclyclopedia of Food Microbiology, 2nd ed.; Carl, A., Batt Pradip, P., Eds.; Elsevier Science Publishing Co., Inc.: San Diego, CA, USA, 2014; pp. 630–635. [Google Scholar]
- Lim, J.W.; Park, T.; Tong, Y.W.; Yu, Z. The microbiome driving anaerobic digestion and microbial analysis. Adv. Bioenergy 2020, 5, 1–61. [Google Scholar]
- Harirchi, S.; Wainaina, S.; Sar, T.; Nojoumi, S.A.; Parchami, M.; Parchami, M.; Sunita Varjani, S.; Khanal, S.K.; Jonathan Wong, J.; Awasthi, M.K.; et al. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): A review. Bioengineered 2022, 13, 6521–6557. [Google Scholar] [CrossRef] [PubMed]
- Ahlberg-Eliasson, K.; Liu, T.; Nadeau, E.; Schnürer, A. Forage types and origin of manure in co-digestion affect methane yield and microbial community structure. Grass Forage Sci. J. Br. Grassl. Soc. 2018, 73, 740–757. [Google Scholar] [CrossRef]
- Cioabla, A.E.; Lonel, L.; Dumitrel, G.-A.; Popescu, F. Comparative study of factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnol. Biofuels 2012, 5, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surendra, K.C.; Ogoshi, R.; Zaleski, H.M.; Hashimoto, A.G.; Khanal, S.K. High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition. Bioresour. Technol. 2018, 251, 218–229. [Google Scholar] [CrossRef]
- Basak, B.; Kumar, R.; Bharadwaj, A.V.S.L.S.; Kim, T.H.; Kim, J.R.; Jang, M.; Oh, S.-E.; Roh, H.-S.; Jeon, B.-H. Advances in physicochemical pretreatment strategies for lignocellulose biomass and their effectiveness in bioconversion for biofuel production. Resour. Technol. 2023, 136, 128413. [Google Scholar] [CrossRef]
- Amin, F.R.; Khalid, H.; Zhang, H.; Rahman, S.; Zhang, R.; Liu, G.; Chen, C. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express. 2017, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; He, Q.; Fan, G.; Cheng, Q.; Song, G. Extraction and modification of hemicellulose from lignocellulosic biomass: A review. Green Process. Synth. 2021, 10, 779–804. [Google Scholar] [CrossRef]
- Sun, L.; Liu, T.; Müller, B.; Schnürer, A. The Microbial Community Structure in Industrial Biogas Plants Influences the Degradation Rate of Straw and Cellulose in Batch Tests. Biotechnol. Biofuels 2016, 9, 128. [Google Scholar] [CrossRef] [Green Version]
- Fatma, S.; Hameed, A.; Noman, M.; Ahmed, T.; Shahid, M.; Tariq, M.; Sohail, I.; Tabassum, R. Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future. Protein Pept. Lett. 2018, 25, 148–163. [Google Scholar] [CrossRef]
- Abraham, A.; Mathewa, A.K.; Parka, H.; Choia, O.; Sindhub, R.; Parameswaran, B.; Ashok, P.; Park, J.H.; Sanga, B.-I. Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresour. Technol. 2020, 301, 122725. [Google Scholar] [CrossRef] [PubMed]
- Kamperidou, V.; Terzopoulou, P. Anaerobic digestion of lignocellulosic waste Materials. Sustainability 2021, 13, 12810. [Google Scholar] [CrossRef]
- Neshat, S.A.; Mohammadi, M.; Najafpour, G.D.; Lahijani, P. Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renew. Sustain. Energy Rev. 2017, 79, 308–322. [Google Scholar] [CrossRef]
- Ahmad, S.; Pathak, V.K.; Kotharia, R.; Singh, R.P. Prospects for pretreatment methods of lignocellulosic waste biomass for biogas enhancement: Opportunities and challenges. Biofuels 2017, 9, 575–594. [Google Scholar] [CrossRef]
- Sambusiti, C.; Ficara, E.; Malpei, F.; Steyer, J.P.; Carrére, H. Effect of particle size on methane production of raw and alkaline pre-treated ensiled sorghum forage. Waste Biomass Valor 2013, 4, 549–556. [Google Scholar] [CrossRef]
- Taokaew, S.; Kriangkrai, W. Recent Progress in Processing Cellulose Using Ionic Liquids as Solvents. Polysaccharides 2022, 3, 671–691. [Google Scholar] [CrossRef]
- Thomas, H.L.; Seira, J.; Escudié, R.; Carrère, H. Lime pretreatment of Miscanthus: Impact on BMP and batch dry co-digestion with cattle manure. Molecules 2018, 23, 1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.S.; Lee, Y.Y.; Kim, T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 2016, 199, 42–48. [Google Scholar] [CrossRef]
- Chandel, H.; Kumar, P.; Chandel, A.K.; Verma, M.L. Biotechnological advances in biomass pretreatment for bio-renewable production through nanotechnological intervention. Biomass Convers. Biorefin. 2022, 4, 1–23. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, X.; Qiu, X.; Zhang, J. Biochar influences the succession of microbial communities and the metabolic functions during rice straw composting with pig manure. Bioresour. Technol. 2019, 272, 10–18. [Google Scholar] [CrossRef]
- Taherzadeh, M.J.; Karimi, K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int. J. Mol. Sci. 2008, 9, 1621–1651. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Zhong, L.X.; Yuan, T.Q.; Peng, X.W.; Sun, R.C. Studies on the structural characterization of lignin, hemicelluloses and cellulose fractionated by ionic liquid followed by alkaline extraction from bamboo. Ind Crop Prod. 2013, 43, 141–149. [Google Scholar] [CrossRef]
- Banu, J.R.; Sugitha, S.; Kavitha, S.; Kannah, R.Y.; Merrylin, J.; Kumar, G. Lignocellulosic Biomass Pretreatment for Enhanced Bioenergy Recovery: Effect of Lignocelluloses Recalcitrance and Enhancement Strategies. Front. Energy Res. 2021, 9, 646057. [Google Scholar] [CrossRef]
- Abdel-Hamid, A.M.; Solbiati, J.O.; Cann, I.K.O. Insights into lignin degradation and its potential industrial applications. In Advances in Applied Microbiology; Sariaslani, S., Gadd, G.M., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 1–28. [Google Scholar] [CrossRef]
- Bao, Y.; Dolfing, J.; Guo, Z.; Chen, R.; Wu, M.; Li, Z.; Lin, X.; Feng, Y. Important ecophysiological roles of non-dominant Actinobacteria in plant residue decomposition, especially in less fertile soils. Microbiome 2021, 9, 84. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, P.K.; Dash, S.; Pattnaik, R. Microbial pretreatment of lignocellulosic biomass for enhanced biomethanation and waste management. 3 Biotech 2018, 8, 458. [Google Scholar] [CrossRef]
- Zhang, L.; Lee, Y.W.; Jahng, D. Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresour. Technol. 2011, 102, 5048–5059. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Yan, Q.; Jones, J.A.; Tang, Y.J.; Fong, S.S.; Koffas, M.A.G. Metabolic burden: Cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol. 2016, 34, 652–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Li, Q.; Zhang, Y.; Gu, Y. Effect of hydrothermal pretreatment on Miscanthus anaerobic digestion. Bioresour. Technol. 2017, 224, 721–726. [Google Scholar] [CrossRef]
- Tabatabaei, M.; Aghbashlo, M.; Valijanian, E.; Shariat, K.; Panahi, H.; Nizami, A.S.; Ghanavati, H.; Sulaiman, A.; Mirmohamadsadeghi, S.; Karimi, K. A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies. Renew. Energy 2020, 146, 1392–1407. [Google Scholar] [CrossRef]
- Müller, J.; Hahn, J. Ensilability of Biomass From Effloresced Flower Strips as Cosubstrate in Bioenergy Production. Front. Bioeng. Biotechnol. 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Cui, X.; Li, R.; Guo, J.; Dong, R. Ensiling process for efficient biogas production from lignocellulosic substrates: Methods, mechanisms, and measures. Bioresour. Technol. 2021, 342, 125928. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.T.; Buffière, P.; Bayard, R. Optimizing agricultural wastes storage before anaerobic digestion: Impact of ensiling on methane potential of lignocellulosic biomass. In Proceedings of the 4th International Conference on Sustainable Solid Waste Management, Limassol, Cyprus, 23–25 June 2016; p. ffhal01692814f. [Google Scholar]
- Rooke, J.A.; Hatfield, R.D. Biochemistry of ensiling. In Silage Science and Technology; Buxton, D., Muck, R., Harrison, J., Eds.; American Society of Agronomy: Madison, WI, USA, 2003; pp. 95–139. [Google Scholar]
- Kalač, P. The required characteristics of ensiled crops used as a feedstock for biogas production: A review. J. Agrobiol. 2012, 28, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Sieborg, M.U.; Jønson, B.D.; Larsen, S.U.; Vazifehkhoran, A.H.; Triolo, J.M. Coensiling of wheat straw as an alternative pre-treatment to chemical, hydrothermal and mechanical methods for methane production. Energies 2020, 13, 4047. [Google Scholar] [CrossRef]
- Cui, X.; Sun, H.; Wen, X.; Sobhi, M.; Guo, J.; Dong, R. Urea-assisted ensiling process of wilted maize stover for profitable biomethane production. Sci. Total Environ. 2021, 757, 143751. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, L.; Kang, X.; Sun, Y.; Yuan, Z.; Xing, T.; Lin, R. Improving methane production from Pennisetum hybrid by monitoring plant height and ensiling pretreatment. Renew. Energy 2019, 141, 57–63. [Google Scholar]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef]
- Hillion, M.-L.; Moscoviz, R.; Trably, E.; Leblanc, Y.; Bernet, N.; Torrijos, M.; Escudié, R. Co-ensiling as a new technique for long-term storage of agro-industrial waste with low sugar content prior to anaerobic digestion. Waste Manag. 2018, 71, 147–155. [Google Scholar] [CrossRef]
- Monlau, F.; Barakat, A.; Trably, E.; Dumas, C.; Steyer, J.-P.; Carrère, H. Lignocellulosic materials into biohydrogen and biomethane: Impact of structural features and pretreatment. Crit. Rev. Environ. Sci. Technol. 2013, 43, 260–322. [Google Scholar] [CrossRef]
- Tsapekos, P.; Kougias, P.G.; Vasileiou, S.A.; Treu, L.; Campanaro, S.; Lyberatos, G.; Angelidaki, I. Bioaugmentation with hydrolytic microbes to improve the anaerobic biodegradability of lignocellulosic agricultural residues. Bioresour Technol. 2017, 234, 350–359. [Google Scholar] [CrossRef]
- Ozbayram, E.G.; Kleinsteuber, S.; Nikolaus, M.; Ince, B.; Ince, O. Bioaugmentation of anaerobic digesters treating lignocellulosic feedstock by enriched microbial consortia. Eng. Life Sci. 2018, 18, 440–446. [Google Scholar] [CrossRef] [Green Version]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Global Rumen Census Collaborators; Janssen, P.H. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef] [Green Version]
- Roopnarain, A.; Nkuna, R.; Ndaba, B.; Adeleke, R. New insights into the metagenomic link between pre-treatment method, addition of an inoculum and biomethane yield during anaerobic digestion of water hyacinth (Eichhornia crassipes). J. Chem. Technol. Biotechnol. 2019, 94, 3217–3226. [Google Scholar] [CrossRef]
- Čater, M.; Fanedl, L.; Malovrh, Š.; Logar, R.M. Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria. Bioresour. Technol. 2015, 186, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Dutta, N.; Usman, M.; Luo, G.; Zhang, S. An Insight into Valorization of Lignocellulosic Biomass by Optimization with theCombination of Hydrothermal (HT) and Biological Techniques: A Review. Sustain. Chem. 2022, 3, 35–55. [Google Scholar] [CrossRef]
- Zhang, W.; Diao, C.; Wang, L. Degradation of lignin in different lignocellulosic biomass by steam explosion combined with microbial consortium treatment. Biotechnol. Biofuels Bioprod. 2023, 16, 55. [Google Scholar] [CrossRef]
- Rajput, A.A.; Sheikh, Z. Effect of inoculum type and organic loading on biogas production of sunflower meal and wheat straw Sustainable. Environ. Res. 2019, 29, 4. [Google Scholar]
- kiesel, A.; Lewandowski, I. Miscanthus as biogas substrate-cutting tolerance and potential for anaerobic digestion. GCB Bioenergy 2017, 9, 153–167. [Google Scholar] [CrossRef]
- Mayer, F.; Gerin, P.A.; Noo, A.; Lemaigre, S.; Stilmant, D.; Schmit, T.; Leclech, N.; Ruelle, L.; Gennen, J.; von Francken-Welz, H.; et al. Assessment of energy crops alternative to maize for biogas production in the greater region. Bioiresour. Technol. 2014, 166, 358. [Google Scholar] [CrossRef] [PubMed]
- Vogel, E.; Deumlich, D.; Kaupenjohann, M. Bioenergy maize and soil erosion—Risk assessment and erosion control concepts. Geoderma 2016, 261, 80–92. [Google Scholar] [CrossRef]
- Whittaker, C.; Hunt, J.; Misselbrook, T.; Shiel, I. How well does Miscanthus ensile for use in an anaerobic digestion plant? Biomass Bioenergy 2016, 88, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Perrin, A.; Wohlfahrt, J.; Morandi, F.; Østergård, H.; Flatberg, T.; De La Rua, C.; Bjørkvoll, T.; Gabrielle, B. Integrated design and sustainable assessment of innovative biomass supply chains: A case-study on miscanthus in France. Appl. Energy 2017, 204, 66–77. [Google Scholar] [CrossRef]
- Søndergaard, M.M.; Fotidis, I.A.; Kovalovszki, A.; Angelidaki, I. Anaerobic co-digestion of agricultural Byproducts with manure for enhanced biogas production. Energy Fuels 2015, 29, 8088–8094. [Google Scholar] [CrossRef] [Green Version]
- Jaman, K.; Amir, N.; Musa, M.A.; Zainal, A.; Yahya, L.; Abdul Wahab, A.M.; Suhartini, S.; Tuan Mohd Marzuki, T.N.; Harun, R.; Idrus, S. Anaerobic Digestion, Codigestion of Food Waste, and Chicken Dung: Correlation of Kinetic Parameters with Digester Performance and On-Farm Electrical Energy Generation Potential. Fermentation 2022, 8, 28. [Google Scholar] [CrossRef]
- Evranos, B.; Demirel, B. The impact of Ni, Co, and Mo supplementation on methane yield from anaerobic mono-digestion of maize silage. Environ. Technol. 2015, 36, 1556–1562. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Hu, J.; Lee, D.J. Biogas from anaerobic digestion processes: Research updates. Renew. Energy 2016, 98, 108–119. [Google Scholar] [CrossRef]
- Pellera, F.M.; Gidarakos, E. Anaerobic digestion of solid agroindustrial waste in semi-continuous mode: Evaluation of monodigestion and co-digestion systems. Waste Manag. 2017, 68, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Habagil, M.; Keucken, A.; Sárvári Horváth, I.S. Biogas production from food residues—The role of trace metals and co-digestion with primary sludge. Environments 2020, 7, 42. [Google Scholar] [CrossRef]
- Uzodinma, E.O.; Ofoefule, A.U.; Eze, J.I.; Mbaeyi, I.; Onwuka, N.D. Effect of some organic wastes on the biogas yield from carbonated soft drink sludge. Sci. Res. Essays 2008, 3, 401–405. [Google Scholar]
- Zhang, Y.; Chen, M.; Guo, J.; Liu, N.; Yi, W.; Yuan, Z.; Zeng, L. Study on dynamic changes of microbial community and lignocellulose transformation mechanism during green waste composting. Eng. Life Sci. 2022, 22, 376–390. [Google Scholar] [CrossRef]
- Fahlbusch, W.; Hey, K.; Sauer, B.; Ruppert, H. Trace element delivery for biogas production enhanced by alternative energy crops: Results from two-year field trials Energy. Sustain. Soc. 2018, 8, 38. [Google Scholar] [CrossRef]
- Aboudi, K.; Gómez-Quiroga, X.G.; Álvarez-Gallego, C.J.; Romero-García, L.I. Insights into Anaerobic Co-Digestion of Lignocellulosic Biomass (Sugar Beet By-Products) and Animal Manure in Long-Term Semi-Continuous Assays. Appl. Sci. 2020, 10, 5126. [Google Scholar] [CrossRef]
Parameters | Thermal Processes | Composting | Landfilling | ||
---|---|---|---|---|---|
Incineration | Gasification | Pyrolysis | |||
Level of oxygen | Excess air | Partial air | Absence of air | 5–15% | Little to no oxygen |
End products | |||||
Liquid | None | None | Pyrolysis oil and water | Water | Leachate |
Solid | Slag, ash | Slag, ash | Ash and coke | Compost | Humus |
Gas | CO2, H2O, O2, N2 | H2, CO, CO2, CH4, H2O, N2 | H2, CO, H2O, N2, hydrochloric | CO2 | CH4, CO2, NH3, SO2− |
Temperature | 980–1200 °C | 1000 °C (downdraft) 1500 °C (cross-draft) | 400–800 °C | 32–60 °C | Depends on the height and size, 34–55 °C |
Lignocellulosic Biomass | Theoretical BMP | References |
---|---|---|
Napier grass Longkong peel seed Lady finger banana peel | 0.46 L CH4/g VS 0.5 L CH4/g VS 0.41 L CH4/g VS | Odedina et al. [106] |
Sugarcane bagasse Agave Corn straw Wheat straw | 369 mLCH4/g COD 178 mL CH4/ g COD 230 mL CH4/g COD 195 mL CH4/g COD | Buitrόn et al. [107] |
Maize straw Wheat straw Corn cob Sugarcane bagasse Almond shell | 471.2 mL/g VS 471.5 mL/g VS 436.5 mL/g VS 425.6 mL/g VS 381.2 mL/g VS | Ali et al. [108] |
Cooked food waste Uncooked food waste Vegetable waste Fruit waste Garden waste Paper waste Textile waste | 487.20 mLCH4/g VS 117.39 mLCH4/g VS 401.17 mLCH4/g VS 362.50 mLCH4/g VS 336.65 mLCH4/g VS 496.84 mLCH4/g VS 743.10 mLCH4/g VS | Yasim and Buyong [104] |
Biological sludge Organic fraction municipal solid waste | 333.9 mLCH4/g VS 494.3 mLCH4/g VS | Nielfa et al. [109] |
Vegetable okra (Abelmoschus esculentus) | 444.8 mLCH4/ g VS 342.06 mL CH4/g VS | Ugwu and Enweremadu [110] |
Kales Cabbage | 449.6350 mLCH4/ g VS 491.6115 mLCH4/g VS | Mbugua et al. [111] |
Agricultural Substrates | Carbon–Nitrogen | References |
---|---|---|
Cassava leaf silage | 18.88:1 | Noviadi et al. [119] |
Grass clover silage | 16:1 | Majuga et al. [120] |
Sugar beet residues | 11:1 | Whitmore and Groot [121] |
Wheat straw Spruce sawdust | 44:1 46:1 | Reichel et al. [122] |
Bagasse Water hyacinth | 58:1 19:1 | Hadiyarto et al. [123] |
Sugarcane bagasse Sorghum stalk Rice straw Cattle manure Chicken manure Rice husks Maize stover Grass clippings | 100:1 73:1 78:1 22:1 5.7:1 87.5:1 68:1 67.9:1 | Alabi et al. [124] |
Vetiver grass | 45.03:1 | Srikanlayanukul and Suksabye [125] |
Goat dung Rice straw ash | 18.04:1 20.83:1 | Khalib et al. [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manyi-Loh, C.E.; Lues, R. Anaerobic Digestion of Lignocellulosic Biomass: Substrate Characteristics (Challenge) and Innovation. Fermentation 2023, 9, 755. https://doi.org/10.3390/fermentation9080755
Manyi-Loh CE, Lues R. Anaerobic Digestion of Lignocellulosic Biomass: Substrate Characteristics (Challenge) and Innovation. Fermentation. 2023; 9(8):755. https://doi.org/10.3390/fermentation9080755
Chicago/Turabian StyleManyi-Loh, Christy E., and Ryk Lues. 2023. "Anaerobic Digestion of Lignocellulosic Biomass: Substrate Characteristics (Challenge) and Innovation" Fermentation 9, no. 8: 755. https://doi.org/10.3390/fermentation9080755
APA StyleManyi-Loh, C. E., & Lues, R. (2023). Anaerobic Digestion of Lignocellulosic Biomass: Substrate Characteristics (Challenge) and Innovation. Fermentation, 9(8), 755. https://doi.org/10.3390/fermentation9080755