Physiological Characteristics and Transcriptional Differences of Growth Traits of Persimmon with Different Ploidy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Observation of Plant Phenotype and Leaf Phenotype
2.3. Observation of Leaf Tissue by Paraffin Section
2.4. Determination of Endogenous Hormone Content in Leaves Using HPLC-ESI-MS/MS Method
2.5. Transcriptome Sequencing
2.6. Statistical Analysis
3. Results
3.1. Comparison of Plant Phenotypes and Leaf Tissue Sections between Nonuploid and Hexaploid Persimmons
3.2. Comparative Analysis of Endogenous Hormone Content in Leaves of Nonuploid and Hexaploid Plants
3.3. Analysis of Gene Expression Difference between Hexaploid and Nonuploid Persimmons
3.3.1. Identification of Differentially Expressed Genes
3.3.2. GO and KEGG Entichment Analysis of DEGs
3.3.3. Analysis of DEGs Related to Plant Hormone Biosynthesis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, W.J.; Li, J.R.; Li, H.W.; Liang, Y.Q.; Sun, P.; Fu, J.M. Annual variation of total polyphenol and flavonoid contents in leaves of different species (varieties) of Diospyros. J. China Agric. Univ. 2016, 21, 31–40. [Google Scholar]
- Mei, Y.; Li, S.Z.; Suo, Y.J.; Sun, P.; Han, W.J.; Diao, S.F.; Wang, L.Y.; Li, H.W.; Fu, J.M. Identification of natural 2n pollens in different persimmon germplasms and ascertainment of their induction period. J. China Agric. Univ. 2019, 9, 44–52. [Google Scholar]
- Tong, M.; Kang, Z.X.; Cheng, S.M.; Chen, Y.W. Research Progress in the Genetic Resources of Dispyros kaki. Hubei Agric. Sci. 2008, 08, 960–964. [Google Scholar]
- Yang, X.Y.; Su, H.D.; Zhang, M.Z.; Zhu, G.T.; Cheng, S.F.; Han, F.P.; Huang, S.W. Polyploidization and domestication. Sci. China Life Sci. 2021, 51, 1457–1466. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Song, L.J.; Qi, Q.; Du, K.; Han, Q.; Kang, X.Y. Study of variation in the growth, photosynthesis, and content of secondary metabolites in Eucommia triploids. Trees 2019, 33, 817–826. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, D.; Hu, H.; Zuo, X.; Xia, T.; Xie, J. A comparative study on morphological and fruit quality traits of diploid and polyploid carambola (Averrhoa carambola L.) genotypes. Sci. Hortic. 2021, 277, 109843. [Google Scholar] [CrossRef]
- Lourkisti, R.; Oustric, J.; Quilichini, Y.; Froelicher, Y.; Herbette, S.; Morillon, R.; Berti, L.; Santini, J. Improved response of triploid citrus varieties to water deficit is related to anatomical and cytological properties. Plant Physiol. Biochem. 2021, 162, 762–775. [Google Scholar] [CrossRef] [PubMed]
- Dang, J.B.; Song, Q.; Li, C.; Guo, Q.G.; Liang, G.L. Application Status and Breeding Prospects of Triploid in Horticultural Plant. J. Hortic. 2018, 45, 1813–1830. [Google Scholar]
- Zhang, J.K.; Zeng, P.; Yu, H.; Meng, X.B.; Li, J.Y. De novo domestication of polyploid rice: A novel breeding strategy and future prospects. Chin. Sci. 2021, 51, 1467–1476. [Google Scholar]
- Wu, W.; Liao, T.; Du, K.; Wei, H.; Kang, X. Transcriptome comparison of different ploidy reveals the mechanism of photosynthetic efficiency superiority of triploid poplar. Genomics 2021, 113, 2211–2220. [Google Scholar] [CrossRef]
- Zhao, H. Master of Medicine, Transcriptome Expression Profile Analysis of Triploid Siraitia grosvenorii and Function of 4 Key Enzyme Genes in Glucoside V Biosynthesis. Master’s Thesis, Peking Union Medical College, Beijing, China, 2014. [Google Scholar]
- Gustafson, F.G. Growth Hormone Studies of Some Diploid And Autotetraploid Plants. J. Hered. 1944, 35, 269–272. [Google Scholar] [CrossRef]
- Luo, X.D.; Dai, L.F.; Qian, C.T.; Lou, Q.F.; Chen, J.F. Morphological and Physiological Characteristics in Cucumis Allopolyploids with Different Ploidy Level. Acta Bot. Sin. 2008, 28, 542–546. [Google Scholar]
- Chun, Q.S.; Fa, D.C.; Nian, J.T.; Zhao, L.L.; Wei, M.F.; Xi, L.H. Factors affecting seed set in the crosses between Dendranthema grandiflorum (Ramat.) Kitamura and its wild species. Euphytica 2010, 171, 181–192. [Google Scholar] [CrossRef]
- Sun, J.R.; Du, G.G.; Han, W.J.; Diao, S.F.; Suo, Y.J.; Li, F.D. Endogenous phytohormone profiles in male and female floral buds of the persimmons (Diospyros kaki Thunb.) during development. Sci. Hortic.-Amst. 2017, 218, 213–221. [Google Scholar] [CrossRef]
- Li, H.W.; Sun, P.; Wang, Y.R.; Zhang, Z.R.; Yang, J.; Suo, Y.J.; Han, W.J.; Diao, S.F.; Li, F.D.; Fu, J.M. Allele-aware chromosome-level genome assembly of the autohexaploid Diospyros kaki Thunb. Sci. Data 2023, 10, 270. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.F.; Jing, C.J.; Zhao, X.P.; Wu, X.H. Advances in Application of Plant Leaf Tissue Structure in the Research of Stress Tolerance. Hebei Agric. Sci. 2018, 22, 50–53. [Google Scholar]
- Li, Y. Master of Forestry, Study on Triploid Induction and Variation of Traits in Eucommia ulmoides Oliver. Master’s Thesis, Beijing Forestry University, Beijing, China, 2017. [Google Scholar]
- Perkins-Veazie, P.; Collins, J.K.; Davis, A.R.; Roberts, W. Carotenoid Content of 50 Watermelon Cultivars. J. Agric. Food Chem. 2006, 54, 2593–2597. [Google Scholar] [CrossRef]
- Xu, W.; Yan, S.C. Role of jasmonic acid in plant induced defense. Acta Ecol. Sin. 2005, 25, 2074–2082. [Google Scholar]
- Zhang, G.H.; Zhang, Y.J.; Cong, R.C.; Zhao, Q.; Dong, K.Q.; Gu, R.Z. Advances on Gibberellins Mechanism. Acta Bot. Sin. 2009, 29, 412–419. [Google Scholar]
- Chen, K.L.; Meng, M.; Zhang, P.; Wei, F.R.; Wang, G.L.; Ma, Y.P. Effects of Rainfall Gradients on the Distribution Pattern and Growth of Endogenous Hormones in Different Organs of Robinia pseudoacacia on the Loess Plateau. Soil Water Conserv. Res. 2020, 1, 298–304. [Google Scholar]
- Yin, L.L.; Hou, X.J. The Recent Advances of Salicylic Acid as Signal Molecules of Resistance in Plant. Chin. Agric. Sci. Bull. 2007, 12, 338–342. [Google Scholar]
- Ding, Y.F.; Liu, P. Research progress on stress resistance induced by salicylic acid in plants. Biol. Teach. 2011, 36, 2–4. [Google Scholar]
- Wang, W.Y.; Lin, J.B.; Zou, H.; Wu, L.J.; Huang, W.Q.; Ju, Y.D. Effects of Salicylicacid on the Ideotype and Activities of Antioxidant Enzymes of Narcissus ttazetta L. Var. Chinensis Roem. Chin. Agric. Sci. Bull. 2009, 25, 157–160. [Google Scholar]
- Wang, T.; Chen, M.L.; Liu, L.; Ning, C.L.; Cai, B.H.; Zhang, Z.; Qiao, Y.S. Changes in Genome and Gene Expression During Plant Polyploidization. Acta Bot. 2015, 50, 504–515. [Google Scholar]
- Wang, Q. Master of Forestry, Analysis The Difference of Morphology, Gene Expression Profile and DNA Methylation on Diploid and Tetraploid Cowpea. Master’s Thesis, Jiangxi Agricultural University, Jiangxi, China, 2020. [Google Scholar]
- Huang, H. Recent Progresses from Studies of Leaf Development. Acta Bot. 2003, 20, 416–422. [Google Scholar]
- Liao, T. Master of Forestry, Molecular Mechanism of Vegetative Growth Advantage in Allotriploid Populus spp. (Section Tacamahaca). Master’s Thesis, Beijing Forestry University, Beijing, China, 2017. [Google Scholar]
Leaf Length /mm | Leaf Width /mm | Leaf Area /mm | Leaf Circumference /mm | Plant Height /mm | |
---|---|---|---|---|---|
Hexaploid | 49.00 ± 3.66 * | 31.09 ± 2.41 | 1002.36 ± 159.24 * | 129.23 ± 10.66 | 154.60 ± 4.77 ** |
Nonuploid | 67.70 ± 9.89 * | 33.94 ± 2.81 | 1391.61 ± 277.88 * | 191.74 ± 71.04 | 92.00 ± 2.91 ** |
Upper Epidermal Cells Length/μm | Pachyhorny Tissue Length/μm | Parenchyma Length/μm | Xylem Cell Area/μm2 | Xylem Cell Diameter/μm | Lower Epidermal Cells Length/μm | |
---|---|---|---|---|---|---|
Hexaploid | 20.59 ± 2.47 | 23.50 ± 3.90 | 25.55 ± 2.59 * | 12,400.56 ± 575.74 ** | 12.56 ± 2.45 | 17.42 ± 2.51 |
Nonuploid | 27.05 ± 6.76 | 27.85 ± 6.17 | 29.81 ± 4.71 * | 5088.78 ± 257.32 ** | 13.62 ± 2.21 | 18.40 ± 1.27 |
Upper Epidermal Cells Length/μm | Palisade Tissue Length/μm | Palisade Tissue Width/μm | Spongy Tissue Length/μm | Lower Epidermal Cells Length/μm | |
---|---|---|---|---|---|
Hexaploid | 50.07 ± 9.33 ** | 26.14 ± 3.14 | 11.53 ± 3.51 ** | 17.12 ± 2.94 ** | 33.21 ± 10.49 * |
Nonuploid | 68.22 ± 7.11 ** | 30.02 ± 3.97 | 22.22 ± 3.55 ** | 31.24 ± 7.05 ** | 48.55 ± 18.11 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, T.; Wang, Y.; Han, W.; Li, H.; Sun, P.; Suo, Y.; Fu, J. Physiological Characteristics and Transcriptional Differences of Growth Traits of Persimmon with Different Ploidy. Horticulturae 2024, 10, 207. https://doi.org/10.3390/horticulturae10030207
Pu T, Wang Y, Han W, Li H, Sun P, Suo Y, Fu J. Physiological Characteristics and Transcriptional Differences of Growth Traits of Persimmon with Different Ploidy. Horticulturae. 2024; 10(3):207. https://doi.org/10.3390/horticulturae10030207
Chicago/Turabian StylePu, Tingting, Yiru Wang, Weijuan Han, Huawei Li, Peng Sun, Yujing Suo, and Jianmin Fu. 2024. "Physiological Characteristics and Transcriptional Differences of Growth Traits of Persimmon with Different Ploidy" Horticulturae 10, no. 3: 207. https://doi.org/10.3390/horticulturae10030207
APA StylePu, T., Wang, Y., Han, W., Li, H., Sun, P., Suo, Y., & Fu, J. (2024). Physiological Characteristics and Transcriptional Differences of Growth Traits of Persimmon with Different Ploidy. Horticulturae, 10(3), 207. https://doi.org/10.3390/horticulturae10030207