Can LED Lighting Be a Sustainable Solution for Producing Nutritionally Valuable Microgreens?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Total Dry Matter Content and Chromaticity Parameters Analysis
2.3. Specialized Metabolites Analysis
2.4. Analysis of Individual Phenols
2.5. Antioxidant Capacity Analysis
2.6. Statistical Analysis
3. Results
3.1. Physico-Chemical Properties of Microgreens
3.2. Specialized Metabolites Content
3.3. Individual Phenolic Content
3.4. Microgreens Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shamshiri, R.R.; Kalantari, F.; Ting, K.C.; Thorp, K.R.; Hameed, I.A.; Weltzien, C.; Ahmad, Z.; Mojgan Shad, D. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban farming. Int. J. Agric. Biol. Eng. 2018, 11, 1–22. [Google Scholar] [CrossRef]
- Mitchell, C.A.; Both, A.J.; Bourget, C.M.; Burr, J.F.; Kubota, C.; Lopez, R.G.; Morrow, R.C.; Runkle, E.S. LEDs: The future of greenhouse lighting! Chron. Hortic. 2012, 52, 6–12. [Google Scholar]
- Kaiser, E.; Ouzounis, T.; Giday, H.; Schipper, R.; Heuvelink, E.; Marcelis, L.F.M. Adding blue to red supplemental light increases biomass and yield of greenhouse-grown tomatoes but only to an optimum. Front. Plant Sci. 2019, 9, 2002. [Google Scholar] [CrossRef]
- Jones-Baumgardt, C.; Llewellyn, D.; Zheng, Y. Different microgreen genotypes have unique growth and yield responses to intensity of supplemental PAR from light-emitting diodes during winter greenhouse production in Southern Ontario, Canada. HortScience 2020, 55, 156–163. [Google Scholar] [CrossRef]
- Zhang, M.; Whitman, M.K.; Runkle, E.S. Manipualting growth, color and taste attributes of fresh cut lettuce by greenhouse suplemental lighting. Sci. Hortic. 2019, 252, 274–282. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, A.; Cheng, Z.M. Effects of light emitting diode lights on plant growth, development and traits a meta-analysis. Hortic. Plant J. 2021, 7, 552–564. [Google Scholar] [CrossRef]
- Olle, M.; Viršile, A. The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agric. Food Sci. 2013, 22, 223–234. [Google Scholar] [CrossRef]
- Turner, E.R.; Luo, Y.; Buchanan, R.L. Microgreen nutrition, food safety, and shelf life: A review. J. Food Sci. 2020, 85, 870–882. [Google Scholar] [CrossRef]
- Negri, M.; Bulgari, R.; Santoro, P.; Ferrante, A. Evaluation of different growing substrates for microgreens production. Acta Hortic. 2021, 1305, 109–114. [Google Scholar] [CrossRef]
- Hasan, M.; Bashir, T.; Ghosh, R.; Lee, S.K.; Bae, H. An Overview of LEDs’ effects on the production of bioactive compounds and crop quality. Molecules 2017, 22, 1420. [Google Scholar] [CrossRef]
- Zhang, X.; Bian, Z.; Yuan, X.; Chen, X.; Lu, C. A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends Food Sci. Technol. 2020, 99, 203–216. [Google Scholar] [CrossRef]
- Lobiuc, A.; Vasilache, V.; Oroian, M.; Stoleru, T.; Burducea, M.; Pintilie, O.; Zamfirache, M.-M. Blue and red LED illumination improves growth and bioactive compounds contents in Acyanic and Cyanic Ocimum basilicum L. microgreens. Molecules 2017, 22, 2111. [Google Scholar] [CrossRef]
- Ying, Q.; Kong, Y.; Zheng, Y. Applying blue light alone, or in combination with far-red light, during nighttime increases elongation without compromising yield and quality of indoor-grown microgreens. HortScience 2020, 55, 876–881. [Google Scholar] [CrossRef]
- Brazaitytė, A.; Miliauskienė, J.; Vaštakaitė-Kairienė, V.; Sutulienė, R.; Laužikė, K.; Duchovskis, P.; Małek, S. Effect of different ratios of blue and red LED light on Brassicaceae microgreens under a controlled environment. Plants 2021, 10, 801. [Google Scholar] [CrossRef]
- Wang, J.; Lu, W.; Tong, Y.; Yang, Q. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front. Plant Sci. 2016, 7, 250. [Google Scholar] [CrossRef]
- Bartucca, M.L.; Guiducci, M.; Falcinelli, B.; Del Buono, D.; Benincasa, P. Blue:red LED light proportion affects vegetative parameters, pigment content, and oxidative status of einkorn (Triticum monococcum L. ssp. monococcum) wheatgrass. J. Agric. Food Chem. 2020, 68, 8757–8763. [Google Scholar] [CrossRef]
- Di Gioia, F.; Santamaria, P. Microgreens: Novel fresh and functional food to explore all the value of biodiversity. S. Afr. J. Bot. 2015, 106, 250. [Google Scholar] [CrossRef]
- Ebert, A. Sprouts, microgreens, and edible flowers: The potential for high value specialty produce in Asia. In Proceedings of the Regional Symposium on High Value Vegetables in Southeast Asia: Production, Supply and Demand, Chiang Mai, Thailand, 25–26 January 2012; pp. 216–227. [Google Scholar]
- Kyriacou, M.S.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Fabek Uher, S.; Radman, S.; Opačić, N.; Dujmović, M.; Benko, B.; Lagundžija, D.; Mijić, V.; Prša, L.; Babac, S.; Šic Žlabur, J. Alfalfa, cabbage, beet and fennel microgreens in floating hydroponics—Perspective nutritious food? Plants 2023, 12, 2098. [Google Scholar] [CrossRef]
- Ebert, A.; Wu, D.; Ray-Yu, Y. Amaranth sprouts and microgreens—A homestead vegetable production option to enhance food and nutrition security in the rural-urban continuum. In Proceedings of the Regional Symposium on Sustaining Small-Scale Vegetable Production and Marketing Systems for Food and Nutrition Security, Bangkok, Thailand, 25–27 February 2014; pp. 233–244. [Google Scholar] [CrossRef]
- Aires, A. Brassica composition and food processing. In Processing and Impact on Active Components in Food, 1st ed.; Preedy, V., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 17–25. [Google Scholar]
- Samuolienė, G.; Brazaitytė, A.; Viršilė, A.; Miliauskienė, J.; Vaštakaitė-Kairienė, V.; Duchovskis, P. Nutrient levels in Brassicaceae microgreens increase under tailored light-emitting diode spectra. Front. Plant Sci. 2019, 10, 1475. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Hunterlab. Available online: https://support.hunterlab.com/hc/en-us/article_attachments/201450469 (accessed on 7 December 2023).
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2002. [Google Scholar]
- Ough, C.S.; Amerine, M.A. Methods for Analysis of Musts and Wines, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1988. [Google Scholar]
- Holm, G. Chlorophyll mutations in barley. Acta Agric. Scand. 1954, 4, 457–471. [Google Scholar] [CrossRef]
- von Wettstein, D. Chlorophyll-letale und der submikroskopische formwechsel der plastiden. Exp. Cell Res. 1957, 12, 427–434. [Google Scholar] [CrossRef]
- Otles, S.; Yalcin, B. Phenolic compounds analysis of root, stalk, and leaves of nettle. Sci. World J. 2012, 2012, 564367. [Google Scholar] [CrossRef]
- Repajić, M.; Cegledi, E.; Kruk, V.; Pedisić, S.; Çınar, F.; Bursać Kovačević, D.; Žutić, I.; Dragović-Uzelac, V. Accelerated solvent extraction as a green tool for the recovery of polyphenols and pigments from wild nettle leaves. Processes 2020, 8, 803. [Google Scholar] [CrossRef]
- Miller, N.J.; Diplock, A.T.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- SAS®/STAT, version 9.3; SAS Institute Inc.: Cary, NC, USA. 2010. Available online: http://documentation.sas.com/?docsetId=statug&docsetTarget=titlepage.htm&docsetVersion=14.3&locale=en (accessed on 10 January 2023).
- Rybarczyk-Plonska, A.; Kare Hansen, M.; Wold, A.B.; Fiskaa Hagen, S.; Borge, G.I.A.; Bengtsson, G.B. Vitamin C in broccoli (Brassica oleracea L. var. italica) flower buds as affected by postharvest light, UV-B irradiation and temperature. Postharvest Biol. Technol. 2014, 98, 82–89. [Google Scholar] [CrossRef]
- Marchioni, I.; Martinelli, M.; Ascrizzi, R.; Gabbrielli, C.; Flamini, G.; Pistelli, L.; Pistelli, L. Small functional foods: Comparative phytochemical and nutritional analyses of five microgreens of the Brassicaceae family. Foods 2021, 10, 427. [Google Scholar] [CrossRef]
- Lanoue, J.; St Louis, S.; Little, C.; Hao, X. Continuous lighting can improve yield and reduce energy costs while increasing or maintaining nutritional contents of microgreens. Front. Plant Sci. 2022, 13, 983222. [Google Scholar] [CrossRef]
- Baroli, I.; Price, G.D.; Badger, M.R.; Caemmerer, S.V. The contribution of photosynthesis to the red light response of stomatal conductance. Plant Physiol. 2008, 146, 737–747. [Google Scholar] [CrossRef]
- Paciolla, C.; Fortunato, S.; Dipierro, N.; Paradiso, A.; De Leonardis, S.; Mastropasqua, L.; de Pinto, M.C. Vitamin C in plants: From functions to biofortification. Antioxidants 2019, 8, 519. [Google Scholar] [CrossRef]
- Zushi, K.; Suehara, C.; Shirai, M. Effect of light intensity and wavelengths on ascorbic acid content and the antioxidant system in tomato fruit grown in vitro. Sci. Hortic. 2020, 274, 09673. [Google Scholar] [CrossRef]
- Alrajhi, A.A.; Alsahli, A.S.; Alhelal, I.M.; Rihan, H.Z.; Fuller, M.P.; Alsadon, A.A.; Ibrahim, A.A. The Effect of LED light spectra on the growth, yield and nutritional value of red and green lettuce (Lactuca sativa). Plants 2023, 12, 463. [Google Scholar] [CrossRef]
- Francenia Santos-Sánchez, N.; Salas-Coronado, R.; Hernández-Carlos, B.; Villanueva-Cañongo, C. Shikimic acid pathway in biosynthesis of phenolic compounds. In Plant Physiological Aspects of Phenolic Compounds; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Pérez-Gálvez, A.; Viera, I.; Roca, M. Carotenoids and chlorophylls as antioxidants. Antioxidants 2020, 9, 505. [Google Scholar] [CrossRef]
- Samuolienė, G.; Viršilė, A.; Brazaitytė, A.; Jankauskienė, J.; Sakalauskienė, S.; Vaštakaitė, V.; Novičkovas, A.; Viškelienė, A.; Sasnauskas, A.; Duchovskis, P. Blue light dosage affects carotenoids and tocopherols in microgreens. Food Chem. 2017, 228, 50–56. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Y.; Gu, Q.; Chen, W.; Guo, X. Effects of naringin on postharvest storage quality of bean sprouts. Foods 2022, 11, 2294. [Google Scholar] [CrossRef]
- Boz, H. p-Coumaric acid in cereals: Presence, antioxidant and antimicrobial effects. Int. J. Food Sci. Technol. 2015, 50, 2323–2328. [Google Scholar] [CrossRef]
- Ghoora, M.D.; Haldipur, A.C.; Srividya, N. Comparative evaluation of phytochemical content, antioxidant capacities and overall antioxidant potential of select culinary microgreens. J. Agric. Food Res. 2020, 2, 100046. [Google Scholar] [CrossRef]
- Xiao, Z.; Rausch, S.R.; Luo, Y.; Sun, J.; Yu, L.; Wang, Q.; Chen, P.; Yu, L.; Stommel, J.R. Microgreens of Brassicaceae: Genetic diversity of phytochemical concentrations and antioxidant capacity. LWT Food Sci. Technol. 2019, 101, 731–737. [Google Scholar] [CrossRef]
- Kowitcharoen, L.; Phornvillay, S.; Lekkham, P.; Pongprasert, N.; Srilaong, V. Bioactive composition and nutritional profile of microgreens cultivated in Thailand. Appl. Sci. 2021, 11, 7981. [Google Scholar] [CrossRef]
- Loi, M.; Villani, A.; Paciolla, F.; Mulè, G.; Paciolla, C. Challenges and opportunities of light-emitting diode (LED) as key to modulate antioxidant compounds in plants. A Review. Antioxidants 2021, 10, 42. [Google Scholar] [CrossRef] [PubMed]
Standard | Calibration Curve Equation | R2 Value |
---|---|---|
Caffeic acid | y = 13,159.9x + 12,112.7 | 0.9998 |
Coumaric acid | y = 2551.11x + 2349.01 | 0.9999 |
Ellagic acid | y = 33,829.1x − 6862.97 | 1.0000 |
Ferulic acid | y = 27,461.5x − 90,059.3 | 0.9870 |
Naringin | y = 3941.28x − 30,329.7 | 0.9914 |
Treatment | L* | a* | b* | C* | h° |
---|---|---|---|---|---|
Broccoli | |||||
R | 36.43 ± 3.87 abc | −9.91 ± 0.26 | 18.79 ± 1.88 | 21.25 ± 1.64 | 117.92 ± 2.55 |
B | 41.25 ± 3.04 a | −10.13 ± 0.54 | 21.73 ± 1.05 | 23.97 ± 1.15 | 115.00 ± 0.69 |
RB | 37.64 ± 2.54 ab | −9.17 ± 0.96 | 20.80 ± 1.40 | 22.73 ± 1.66 | 113.76 ± 0.99 |
Mustard | |||||
R | 32.14 ± 3.13 bc | −10.44 ± 2.50 | 17.94 ± 2.29 | 20.78 ± 3.22 | 119.89 ± 3.00 |
B | 33.80 ± 2.54 abc | −8.43 ± 1.83 | 17.34 ± 1.07 | 19.36 ± 0.19 | 115.95 ± 6.26 |
RB | 34.83 ± 4.59 abc | −8.92 ± 3.99 | 17.65 ± 3.49 | 19.85 ± 4.85 | 115.72 ± 6.69 |
Garden cress | |||||
R | 28.50 ± 2.11 c | −11.33 ± 1.36 | 19.64 ± 0.57 | 22.69 ± 1.17 | 119.91 ± 2.29 |
B | 41.33 ± 3.62 a | −9.13 ± 1.95 | 20.90 ± 3.66 | 22.81 ± 4.13 | 113.51 ± 0.86 |
RB | 38.90 ± 4.09 ab | −9.62 ± 1.07 | 21.31 ± 1.06 | 23.39 ± 1.20 | 114.27 ± 2.22 |
ANOVA | p ≤ 0.0076 | p ≤ 0.4021 | p ≤ 0.1028 | p ≤ 0.2529 | p ≤ 0.0919 |
LSD | p ≤ 8.1105 | p ≤ 4.2374 | p ≤ 4.8391 | p ≤ 5.8793 | p ≤ 7.5663 |
Interactions | |||||
PS | p ≤ 0.0246 | p ≤ 0.6895 | p ≤ 0.0161 | p ≤ 0.0571 | p ≤ 0.5254 |
L | p ≤ 0.0024 | p ≤ 0.2501 | p ≤ 0.4391 | p ≤ 0.9186 | p ≤ 0.0094 |
PSxL | p ≤ 0.0612 | p ≤ 0.8081 | p ≤ 0.6967 | p ≤ 0.7408 | p ≤ 0.9072 |
Treatment | AsA (mg·100 g−1 fw) | TPC (mg GAE·100 g−1 fw) | TNFC (mg GAE·100 g−1 fw) | TFC (mg GAE·100 g−1 fw) |
---|---|---|---|---|
Broccoli | ||||
R | 101.43 ± 6.33 ab | 128.64 ± 2.98 h | 62.41 ± 1.33 g | 66.23 ± 3.24 e |
B | 112.70 ± 2.50 a | 149.51 ± 0.89 f | 69.17 ± 0.24 f | 80.34 ± 1.03 d |
RB | 96.93 ± 2.82 b | 135.84 ± 2.54 g | 61.88 ± 0.35 g | 73.96 ± 2.77 d |
Mustard | ||||
R | 63.75 ± 6.25 d | 296.06 ± 0.64 c | 171.04 ± 2.61 c | 125.03 ± 2.26 c |
B | 71.01 ± 4.10 cd | 412.39 ± 3.14 a | 196.99 ± 1.01 a | 215.40 ± 2.69 a |
RB | 76.37 ± 4.93 c | 328.43 ± 0.65 b | 180.53 ± 1.68 b | 147.90 ± 1.84 b |
Garden cress | ||||
R | 69.55 ± 6.57 cd | 266.72 ± 5.16 d | 123.44 ± 0.39 d | 143.28 ± 5.50 b |
B | 79.31 ± 3.83 c | 267.32 ± 1.12 d | 121.86 ± 1.99 d | 145.46 ± 2.22 b |
RB | 70.41 ± 4.83 cd | 247.97 ± 1.11 e | 117.51 ± 0.71 e | 130.46 ± 1.68 c |
ANOVA | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 |
LSD | 11.483 | 4.2131 | 3.0649 | 6.3843 |
Interactions | ||||
PS | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 |
L | p ≤ 0.0030 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 |
PSxL | p ≤ 0.0196 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 |
Treatment | Chl_a (mg·g−1) | Chl_b (mg·g−1) | TCh (mg·g−1) | TCa (mg·g−1) |
---|---|---|---|---|
Broccoli | ||||
R | 0.40 ± 0.01 g | 0.16 ± 0.01 f | 0.56 ± 0.01 h | 0.14 ± 0.01 e |
B | 0.44 ± 0.01 f | 0.17 e ± 0.01 | 0.61 ± 0.01 f | 0.15 d ± 0.01 |
RB | 0.45 ± 0.01 e | 0.20 d ± 0.01 | 0.65 e ± 0.01 | 0.15 d ± 0.01 |
Mustard | ||||
R | 0.85 ± 0.01 a | 0.34 ± 0.01 a | 1.18 ± 0.01 a | 0.19 ± 0.01 a |
B | 0.55 c ± 0.01 | 0.22 c ± 0.01 | 0.77 ± 0.01 c | 0.18 b ± 0.01 |
RB | 0.60 b ± 0.01 | 0.28 b ± 0.01 | 0.87 b ± 0.01 | 0.18 b ± 0.01 |
Garden cress | ||||
R | 0.51 ± 0.01 d | 0.22 ± 0.01 c | 0.73 ± 0.01 d | 0.18 ± 0.01 b |
B | 0.51 d ± 0.01 | 0.23 c ± 0.01 | 0.74 ± 0.01 d | 0.16 c ± 0.01 |
RB | 0.41 g ± 0.01 | 0.17 e ± 0.01 | 0.58 g ± 0.01 | 0.14 e ± 0.01 |
ANOVA | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 |
LSD | 0.0047 | 0.004 | 0.0087 | 0.003 |
Interactions | ||||
PS | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 |
L | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 |
PSxL | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 |
Treatment | Caffeic Acid (mg·L−1) | Coumaric Acid (mg·L−1) | Ellagic Acid (mg·L−1) | Ferulic Acid (mg·L−1) | Naringin (mg·L−1) |
---|---|---|---|---|---|
Broccoli | |||||
R | 8.44 ± 0.36 d | 0.47 ± 0.02 f | 0.22 ± 0.01 f | 4.00 ± 0.02 b | 315.40 ± 16.55 c |
B | 8.31 ± 0.19 d | 0.39 ± 0.06 f | 0.22 f ± 0.01 | 3.83 ± 0.28 bc | 358.58 ± 7.10 c |
RB | 13.71 ± 1.65 c | 0.96 ± 0.03 f | 0.22 f ± 0.01 | 4.37 ± 0.15 a | 474.27 ± 8.33 b |
Mustard | |||||
R | 13.22 ± 0.90 c | 9.23 ± 0.78 d | 15.86 ± 0.22 e | 3.69 ± 0.08 c | 9.01 ± 0.16 d |
B | 21.89 ± 0.76 a | 4.42 ± 0.15 e | 36.46 ± 0.46 a | 3.66 ± 0.01 c | 9.98 ± 0.12 d |
RB | 18.46 ± 0.37 b | 8.13 ± 0.01 d | 24.18 ± 0.51 d | 3.72 ± 0.03 bc | 9.75 ± 0.02 d |
Garden cress | |||||
R | 1.25 ± 0.31 e | 32.69 ± 0.83 b | 28.70 ± 0.95 c | 3.31 ± 0.01 d | 636.06 ± 66.90 a |
B | 0.28 ± 0.28 e | 27.01 ± 0.89 c | 23.28 ± 3.40 d | 3.30 d ± 0.01 | 500.92 ± 39.34 b |
RB | 1.04 ± 0.10 e | 37.67 ± 0.24 a | 32.49 ± 0.12 b | 3.30 ± 0.01 d | 636.95 ± 0.56 a |
ANOVA | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 |
LSD | 1.7476 | 1.1919 | 2.9164 | 0.279 | 64.309 |
Interactions | |||||
PS | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 |
L | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0050 | p ≤ 0.0001 |
PSxL | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0061 | p ≤ 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrkić, R.; Šic Žlabur, J.; Dujmović, M.; Benko, B. Can LED Lighting Be a Sustainable Solution for Producing Nutritionally Valuable Microgreens? Horticulturae 2024, 10, 249. https://doi.org/10.3390/horticulturae10030249
Vrkić R, Šic Žlabur J, Dujmović M, Benko B. Can LED Lighting Be a Sustainable Solution for Producing Nutritionally Valuable Microgreens? Horticulturae. 2024; 10(3):249. https://doi.org/10.3390/horticulturae10030249
Chicago/Turabian StyleVrkić, Roberta, Jana Šic Žlabur, Mia Dujmović, and Božidar Benko. 2024. "Can LED Lighting Be a Sustainable Solution for Producing Nutritionally Valuable Microgreens?" Horticulturae 10, no. 3: 249. https://doi.org/10.3390/horticulturae10030249
APA StyleVrkić, R., Šic Žlabur, J., Dujmović, M., & Benko, B. (2024). Can LED Lighting Be a Sustainable Solution for Producing Nutritionally Valuable Microgreens? Horticulturae, 10(3), 249. https://doi.org/10.3390/horticulturae10030249