Effects of Different Biostimulants on Growth and Development of Grapevine Seedlings under High-Temperature Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Treatments
2.2. Temperature Measurement Tested
2.3. Plant, Leaf and Root Observation and Tested
2.4. Measurement of Polyphasic Chl Fluorescence Transient OJIP
2.5. Data Analysis
3. Results
3.1. Temperature Dynamics in the Field
3.2. Plants and Roots Distribution
3.3. Growth of Grapevine Seedling
3.4. Leaves and Chl Content
3.5. Polyphasic Chl Fluorescence Transient OJIP
3.6. Chl a Fluorescence Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayes, S.; Schachtschabel, J.; Mishkind, M.; Munnik, T.; Arisz, S.A. Hot topic: Thermosensing in plants. Plant Cell Environ. 2021, 44, 2018–2033. [Google Scholar] [CrossRef]
- Kim, J.S.; Jeon, B.W.; Kim, J. Signaling peptides regulating abiotic stress responses in plants. Front. Plant Sci. 2021, 12, 704490. [Google Scholar] [CrossRef]
- Upadhyay, A.; Upadhyay, A.K. Global transcriptome analysis of heat stress response of grape variety ‘Fantasy Seedless’ under different irrigation regimens. Vitis 2021, 60, 143–151. [Google Scholar] [CrossRef]
- Wu, J.Y.; Lian, W.J.; Zeng, X.Y.; Liu, Z.G.; Mao, L.; Liu, Y.X.; Jiang, J.F. Physiological response to high temperature and heat tolerance evaluation of different grape cultivars. Acta Bot. Boreali-Occident. Sin. 2019, 39, 1075–1084. [Google Scholar] [CrossRef]
- Zha, Q.; Yin, X.; Xi, X.; Jiang, A. Colored shade nets can relieve abnormal fruit softening and premature leaf senescence of ‘Jumeigui’ grapes during ripening under greenhouse conditions. Plants 2022, 11, 1227. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, J.; Fan, X.; Zhang, Y.; Wu, J.; Wang, L.; Liu, C. Identification of heat tolerance in chinese wildgrape germplasm resources. Horticulturae 2020, 6, 68. [Google Scholar] [CrossRef]
- García-Sánchez, F.; Simón-Grao, S.; Navarro-Pérez, V.; Alfosea-Simón, M. Scientific Advances in Biostimulation Reported in the 5th Biostimulant World Congress. Horticulturae 2022, 8, 665. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Tariq, M.; Khan, A.; Asif, M.; Khan, F.; Ansari, T.; Shariq, M.; Siddiqui, M.A. Biological control: A sustainable and practical approach for plant disease management. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2020, 70, 507–524. [Google Scholar] [CrossRef]
- Islam, M.T.; Ckurshumova, W.; Fefer, M.; Liu, J.; Uddin, W.; Rosa, C. A plant based modified biostimulant (Copper Chlorophyllin), mediates defense response in Arabidopsis thaliana under salinity stress. Plants 2021, 10, 625. [Google Scholar] [CrossRef] [PubMed]
- Jacomassi, L.M.; Viveiros, J.O.; Oliveira, M.P.; Momesso, L.; de Siqueira, G.F.; Crusciol, C.A.C. A seaweed extract-based biostimulant mitigates drought stress in sugarcane. Front. Plant Sci. 2022, 13, 865291. [Google Scholar] [CrossRef]
- Wu, J.; Abudureheman, R.; Zhong, H.; Yadav, V.; Zhang, C.; Ma, Y.; Liu, X.; Zhang, F.; Zha, Q.; Wang, X. The impact of high temperatures in the field on leaf tissue structure in different grape cultivars. Horticulturae 2023, 9, 731. [Google Scholar] [CrossRef]
- Zha, Q.; Xi, X.J.; He, Y.N.; Jiang, A.L. Comprehensive evaluation of heat resistance in 68 Vitis germplasm resources. Vitis 2018, 57, 75–81. [Google Scholar] [CrossRef]
- Asproudi, A.; Petrozziello, M.; Cavalletto, S.; Guidoni, S. Grape aroma precursors in cv. Nebbiolo as affected by vine microclimate. Food Chem. 2016, 211, 947–956. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed Extracts as Biostimulants of Plant Growth and Development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Q.; Tang, X.N.; Han, X.M.; Zhang, J.K. Combined effect of organic fertilizer and biological agent on grape production. China Fruit Veg. 2020, 40, 101–104. [Google Scholar] [CrossRef]
- Zheng, L.; Huang, S.; Huang, J.; Deng, Y.; Wu, Z.; Jiang, Z.; Yu, G. Biological control agents colonize litchi fruit during storage and stimulate physiological responses to delay pericarp browning. Front. Microbiol. 2023, 13, 1093699. [Google Scholar] [CrossRef] [PubMed]
- Leneveu-Jenvrin, C.; Charles, F.; Barba, F.J.; Remize, F. Role of biological control agents and physical treatments in maintaining the quality of fresh and minimally-processed fruit and vegetables. Crit. Rev. Food Sci. Nutr. 2019, 60, 2837–2855. [Google Scholar] [CrossRef]
- Candido, V.; Campanelli, G.; Addabbo, T.D.; Castronuovo, D.; Renco, M.; Camele, I. Growth and yield promoting effect of articificial mycorrhizationcombined with different fertiliser rates on field-grown tomato. Ital. J. Agron. 2013, 8, 168–174. [Google Scholar]
- He, Y.; Yadav, V.; Bai, S.; Wu, J.; Zhou, X.; Zhang, W.; Han, S.; Wang, M.; Zeng, B.; Wu, X.; et al. Performance evaluation of new table grape varieties under high light intensity conditions based on the photosynthetic and chlorophyll fluorescence characteristics. Horticulturae 2023, 9, 1035. [Google Scholar] [CrossRef]
- Venios, X.; Korkas, E.; Nisiotou, A.; Banilas, G. Grapevine responses to heat stress and global warming. Plants 2020, 9, 1754. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Zha, Q.; Xi, X.J.; He, Y.N.; Jiang, A.L. High temperature in field: Effect on the leaf tissue structure of grape varieties. Chin. Agric. Sci. Bull. 2019, 35, 74–77. [Google Scholar] [CrossRef]
- Chen, H.Y.; Liu, X.N.; Li, S.C.; Yuan, L.; Mu, H.Y.; Wang, Y.; Li, Y.; Duan, W.; Fan, P.G.; Liang, Z.C.; et al. The class B Heat Shock Factor HSFB1 regulates heat tolerance in grapevine. Hortic Res. 2023, 10, uhac001. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Gong, Z.; Zhu, J.-K. Abiotic stress responses in plants. Nat. Rev. Genet. 2021, 23, 104–119. [Google Scholar] [CrossRef]
- Zha, Q.; Xi, X.; He, Y.; Yin, X.; Jiang, A. Effect of short-time high-temperature treatment on the photosynthetic performance of different heat-tolerant grapevine cultivars. Photochem. Photobiol. 2021, 97, 763–769. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, F.; Liu, G.; Abudureheman, R.; Bai, S.; Wu, X.; Zhang, C.; Ma, Y.; Wang, X.; Zha, Q.; et al. Transcriptomeand coexpression network analysis reveals properties properties and candidate genes associated with grape (Vitis vinifera L.) heat tolerance. Front. Plant Sci. 2023, 14, 1270933. [Google Scholar] [CrossRef]
- Hu, J.G.; Bai, S.J. Study on the Fruit Quality and Raisins Character of ‘Thompson Seedless’ and Its Lines. Xinjiang Agric. Sci. 2023, 2751–2763. Available online: http://kns.cnki.net/kcms/detail/65.1097.S.20231114.1625.036.html (accessed on 28 November 2023).
- Zhang, L.; Song, Y.; Li, J.; Liu, J.; Zhang, Z.; Xu, Y.; Fan, D.; Liu, M.; Ren, Y.; Xi, X.; et al. Development, identification and validation of a novel SSR molecular marker for heat resistance of grapes based on miRNA. Horticulturae 2023, 9, 931. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Xia, X.R.; Deng, T.; Li, X.C.; Zhou, Y.S.; Wu, S.J.; Yang, F.; Yu, S.S. Effects of three biological agents on disease control and quality improvement in the southern Xuanwei area. Hunan Agric. Sci. 2023, 2, 57–62. [Google Scholar] [CrossRef]
- Yang, Y.Q. Effects of Exogenous Spermidine on Physiological and Biochemical Characteristics of Grape Seedlings under High Temperature Stress. Master’s Thesis, Shandong Agricultural University, Taian, China, 21 July 2020. [Google Scholar]
- Divi, U.K.; Rahman, T.; Krishna, P. Gene expression and functional analyses in brassinosteroid-mediated stress tolerance. Plant Biotechnol. J. 2015, 14, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.M.; Wang, W.; Hu, X.; Sun, M.M.; Ni, J.Z. Realationship between leaf anatomical structure and heat resistance of Rhododendron simsii. For. Environ. Sci. 2021, 37, 69–81. [Google Scholar] [CrossRef]
- Bueno, A.; Alfarhan, A.; Arand, K.; Burghardt, M.; Deininger, A.-C.; Hedrich, R.; Leide, J.; Seufert, P.; Staiger, S.; Riederer, M. Effects of temperature on the cuticular transpiration barrier of two desert plants with water-spender and water-saver strategies. J. Exp. Bot. 2019, 70, 1613–1625. [Google Scholar] [CrossRef]
- Yadav, V.; Zhong, H.; Patel, M.K.; Zhang, S.; Zhou, X.; Zhang, C.; Zhang, J.; Su, J.; Zhang, F.; Wu, X. Integrated omics-based exploration for temperature stress resilience: An approach to smart grape breeding strategies. Plant Stress 2024, 11, 100356. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, Y.; Wang, H.; Yang, X.; Zhai, H.; Du, Y. Stimulation of cyclic electron flow around PSI as a response to the combined stress of high light and high temperature in grape leaves. Funct. Plant Biol. 2018, 45, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.; Sang, Y.S.; Chen, T.; Feng, Y.; Li, Q.; Zhang, Q.P. Effects of Seed-tuber dressing by VDAL and Harpin on potato growth and development. Chin. Agric. Sci. Bull. 2022, 38, 6–12. [Google Scholar]
- Zhou, J.; Xiao, W.; Chen, X.D.; Gao, D.S.; Li, L. Effect of spraying amino acid-ca on photosynthetic characteristics, calcium content and quality of ‘Whangkeumbae’ Pear. J. Shandong Agric. Univ. (Nat. Sci. Ed.) 2018, 49, 551–555. [Google Scholar] [CrossRef]
- Jin, R.; Li, J.; Liang, J.; Zhou, X.Y.; Zhang, X.Y.; Zeng, X.F.; Li, S.S. Effects of four plant growth regulators on growth and development, photosynthetic characteristics and yield of cotton. Xinjiang Agric. Sci. 2021, 58, 2035–2042. [Google Scholar] [CrossRef]
- Wu, Q.; Ding, K.X.; Yu, M.L.; Huang, W.T.; Zuo, G.Q.; Feng, N.J.; Zheng, D.F. Effects of a new plant growth regulator B2 on photosynthetic fluorescence characteristics and yield of maize. Crop Sci. 2020, 36, 174–181. [Google Scholar]
- Chen, K.; Li, G.J.; Bressan, R.A.; Song, C.P.; Zhu, J.K.; Zhao, Y. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 2020, 62, 25–54. [Google Scholar] [CrossRef]
- Raza, A.; Charagh, S.; Zahid, Z.; Mubarik, M.S.; Javed, R.; Siddiqui, M.H.; Hasanuzzaman, M. Jasmonic acid: A key frontier in conferring abiotic stress tolerance in plants. Plant Cell Rep. 2021, 40, 1513–1541. [Google Scholar] [CrossRef] [PubMed]
- Ahammed, G.J.; Li, X.; Liu, A.; Chen, S. Brassinosteroids in plant tolerance to abiotic stress. J. Plant Growth Regul. 2020, 39, 1451–1464. [Google Scholar] [CrossRef]
- Kim, S.; Hwang, G.; Kim, S.; Thi, T.N.; Kim, H.; Jeong, J.; Kim, J.; Kim, J.; Choi, G.; Oh, E. The epidermis coordinates thermoresponsive growth through the phyB-PIF4-auxin pathway. Nat. Commun. 2020, 11, 1053. [Google Scholar] [CrossRef] [PubMed]
- Zha, Q.; Yin, X.; Xi, X.; Jiang, A. Heterologous VvDREB2c expression improves heat tolerance in Arabidopsis by inducing photoprotective responses. Int. J. Mol. Sci. 2023, 24, 5989. [Google Scholar] [CrossRef] [PubMed]
Air Temperature | May | June | July | August |
---|---|---|---|---|
Maximum Temperature/°C | 42.65 | 44.29 | 44.28 | 45.67 |
Minimum Temperature/°C | 16.82 | 22.27 | 22.10 | 18.90 |
Average Temperature/°C | 30.52 | 32.92 | 33.62 | 31.49 |
≥35.00 °C/Day | 27.00 | 26.00 | 30.00 | 26.00 |
≥40.00 °C/Day | 9.00 | 12.00 | 14.00 | 18.00 |
Group | T1 | T2 | T3 | Control |
---|---|---|---|---|
30-May | 37.17 ± 37.59 aA | 36.83 ± 5.11 aA | 30.40 ± 33.19 aA | 38.83 ± 32.37 aA |
12-June | 63.83 ± 10.49 aA | 51.40 ± 12.61 abA | 42.17 ± 16.00 abA | 22.93 ± 21.03 bA |
29-June | 9.17 ± 4.37 aA | 7.43 ± 8.79 aA | 18.50 ± 22.15 aA | 7.23 ± 12.36 aA |
13-August | 1.33 ± 1.04 aA | 4.33 ± 4.01 aA | 12.83 ± 16.64 aA | 8.00 ± 7.76 aA |
23-August | 2.43 ± 2.53 aA | 3.00 ± 1.00 aA | 2.50 ± 2.00 aA | 4.50 ± 3.60 aA |
12-September | 1.93 ± 1.44 aA | 0.83 ± 0.58 bAB | 8.00 ± 4.82 bAB | 1.50 ± 0.87 bB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Zhong, H.; Ma, Y.; Bai, S.; Yadav, V.; Zhang, C.; Zhang, F.; Shi, W.; Abudureheman, R.; Wang, X. Effects of Different Biostimulants on Growth and Development of Grapevine Seedlings under High-Temperature Stress. Horticulturae 2024, 10, 269. https://doi.org/10.3390/horticulturae10030269
Wu J, Zhong H, Ma Y, Bai S, Yadav V, Zhang C, Zhang F, Shi W, Abudureheman R, Wang X. Effects of Different Biostimulants on Growth and Development of Grapevine Seedlings under High-Temperature Stress. Horticulturae. 2024; 10(3):269. https://doi.org/10.3390/horticulturae10030269
Chicago/Turabian StyleWu, Jiuyun, Haixia Zhong, Yaning Ma, Shijian Bai, Vivek Yadav, Chuan Zhang, Fuchun Zhang, Wei Shi, Riziwangguli Abudureheman, and Xiping Wang. 2024. "Effects of Different Biostimulants on Growth and Development of Grapevine Seedlings under High-Temperature Stress" Horticulturae 10, no. 3: 269. https://doi.org/10.3390/horticulturae10030269
APA StyleWu, J., Zhong, H., Ma, Y., Bai, S., Yadav, V., Zhang, C., Zhang, F., Shi, W., Abudureheman, R., & Wang, X. (2024). Effects of Different Biostimulants on Growth and Development of Grapevine Seedlings under High-Temperature Stress. Horticulturae, 10(3), 269. https://doi.org/10.3390/horticulturae10030269