Comparison of the Differences in Tolerance to Drought Stress across Five Clematis Species Based on Seed Germination and Seedling Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Experimental Site
2.2. Pretreatment and Drought Stress Experiment of Seed Germination
2.3. Estimation of Gemination Parameters
2.4. Pot Experiment for Drought Stress of Plant Growth
2.5. Estimation Biochemical Parameters of Seedling Response to Drought Stress
2.5.1. Measurement of Photosynthetic Pigments Content
2.5.2. Measurement of Lipid Peroxidation
2.5.3. Measurement of Proline
2.5.4. Measurement of Soluble Sugar Content
2.5.5. Measurement of Soluble Protein Content
2.5.6. Antioxidant Enzyme Assays
2.6. Statistical Analysis
3. Results
3.1. Seed Germination
3.2. Photosynthetic Pigment Content
3.3. Membrane Lipid Peroxidation (MDA)
3.4. Osmoregulatory Substances
3.4.1. Proline
3.4.2. Soluble Sugar
3.4.3. Soluble Protein
3.5. Antioxidant Enzyme Activity
3.6. Correlation Analysis of Biochemical Parameters
3.7. Principal Component Analysis of Drought Stress on Biochemical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, T.; Lou, I.; Yang, Z.; Li, Y. A system dynamics urban water management model for Macau, China. J. Environ. Sci. 2016, 50, 117–126. [Google Scholar] [CrossRef]
- An IPCC Special Report on the Global Warming of 1.5 °C. Available online: https://climate.copernicus.eu/ipcc-special-report-global-warming-15oc (accessed on 23 August 2023).
- Immerzeel, W.W.; van Beek, L.P.; Bierkens, M.F. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Ho, H.C.; Knudby, A.; Walker, B.B.; Henderson, S.B. Delineation of Spatial Variability in the Temperature-Mortality Relationship on Extremely Hot Days in Greater Vancouver, Canada. Environ. Health Perspect. 2017, 125, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Jay, O.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A.; et al. Reducing the health effects of hot weather and heat extremes: From personal cooling strategies to green cities. Lancet 2021, 398, 709–724. [Google Scholar] [CrossRef]
- Wang, D.; Lau, K.K.; Ren, C.; Goggins, W.B.I.; Shi, Y.; Ho, H.C.; Lee, T.C.; Lee, L.S.; Woo, J.; Ng, E. The impact of extremely hot weather events on all-cause mortality in a highly urbanized and densely populated subtropical city: A 10-year time-series study (2006–2015). Sci. Total Environ. 2019, 690, 923–931. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, N.; Sheng, H.; Ip, C.; Yang, L.; Chen, Y.; Sang, Z.; Tadesse, T.; Lim, T.P.Y.; Rajabifard, A.; et al. Urban drought challenge to 2030 sustainable development goals. Sci. Total Environ. 2019, 693, 133536. [Google Scholar] [CrossRef]
- Wang, P.; Sun, X.; Li, C.; Wei, Z.Z.; Liang, D. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J. Pineal Res. 2012, 54, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Harrison, M.T.; Tardieu, F.; Dong, Z.; Messina, C.D.; Hammer, G.L. Characterizing drought stress and trait influence on maize yield under current and future conditions. Glob. Chang. Biol. 2014, 20, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Gillner, S.; Vogt, J.; Tharang, A.; Dettmann, S.; Roloff, A. Role of street trees in mitigating effects of heat and drought at highly sealed urban sites. Landscape Urban Plan. 2015, 143, 33–42. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Rötzer, T.; Pauleit, S. Within canopy temperature differences and cooling ability of Tilia cordata trees grown in urban conditions. Build. Environ. 2017, 114, 118–128. [Google Scholar] [CrossRef]
- Mitrofanova, I.; Ivanova, N.; Kuzmina, T.; Mitrofanova, O.; Zubkova, N. In vitro regeneration of Clematis plants in the Nikita botanical garden via somatic embryogenesis and organogenesis. Front. Plant Sci. 2021, 12, 541171. [Google Scholar] [CrossRef]
- Jiang, N.; Guan, K.Y.; Wang, Z.L. Species diversity and geographical distribution of Clematis (Ranunculaceae) in Yunnan. Acta Bot. Yunnanica 2007, 29, 145–154. (In Chinese) [Google Scholar]
- Liu, Z.; Shao, W.; Shen, Y.; Ji, M.; Chen, W.; Ye, Y.; Shen, Y. Characterization of new microsatellite markers based on the transcriptome sequencing of Clematis finetiana. Hereditas 2018, 155, 23. [Google Scholar] [CrossRef]
- Ma, X.; Qian, R.; Zhang, X.; Hu, Q.; Liu, H.; Zheng, J. Contrasting growth, physiological and gene expression responses of Clematis crassifolia and Clematis cadmia to different irradiance conditions. Sci. Rep. 2019, 9, 17842. [Google Scholar] [CrossRef]
- Beutler, L. The Rogerson Clematis Collection: Where Every Garden Tells a Story; Pacific Horticulture Society: Berkeley, CA, USA, 2014. [Google Scholar]
- Qian, R.; Hu, Q.; Ma, X.; Zhang, X.; Ye, Y.; Liu, H.; Gao, H.; Zheng, J. Comparative transcriptome analysis of heat stress responses of Clematis lanuginosa and Clematis crassifolia. BMC Plant Biol. 2022, 22, 138. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Chen, T.; Wang, S.; Shen, C.; Song, Z.; Li, A.; Li, H.; Li, Y. Integrated strategy for the screening of cyclooxygenase-2 inhibitors from triterpenoid saponins in Clematis tangutica. Phytochem. Anal. 2023, 34, 692–704. [Google Scholar] [CrossRef]
- Wang, R.; Mao, C.; Jiang, C.; Zhang, L.; Peng, S.; Zhang, Y.; Feng, S.; Ming, F. One Heat Shock Transcription Factor Confers High Thermal Tolerance in Clematis Plants. Int. J. Mol. Sci. 2021, 22, 2900. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Qian, R.; Zhang, Y.; Zhang, X.; Ma, X.; Zheng, J. Physiological and Gene Expression Changes of Clematis crassifolia and Clematis cadmia in Response to Heat Stress. Front. Plant Sci. 2021, 12, 624875. [Google Scholar] [CrossRef]
- Wang, W.T. A revision of Clematis sect. Meclatis (Ranunculaceae). Acta Phytotaxon. Sin. 2006, 44, 401–436. [Google Scholar] [CrossRef]
- Wang, W.T.; Li, L.Q. A revision of Clematis sect. Fruticella (Ranunculaceae). Acta Phytotaxon. Sin. 2005, 43, 193–209. [Google Scholar]
- Li, M.; He, J.; Zhao, Z.; Lyu, R.; Yao, M.; Cheng, J.; Xie, L. Predictive modelling of the distribution of Clematis sect. Fruticella s. str. under climate change reveals a range expansion during the Last Glacial Maximum. PeerJ 2020, 8, e8729. [Google Scholar] [CrossRef]
- Begum, N.; Ahanger, M.A.; Zhang, L. AMF inoculation and phosphorus supplementation alleviates drought induced growth and photosynthetic decline in Nicotiana tabacum by up-regulating antioxidant metabolism and osmolyte accumulation. Environ. Exp. Bot. 2020, 176, 104088. [Google Scholar] [CrossRef]
- Yan, A.; Chen, Z. The control of seed dormancy and germination by temperature, light and nitrate. Bot. Rev. 2020, 86, 39–75. [Google Scholar] [CrossRef]
- Norsworthy, J.K.; Oliveira, M.J. Sicklepod (Senna obtusifolia) germination and emergence as affected by environmental factors and seeding depth. Weed Sci. 2006, 54, 903–909. [Google Scholar] [CrossRef]
- Saima, S.; Li, G.; Wu, G. Effects of drought stress on hybrids of Vigna radiata at germination stage. Acta Biol. Hung. 2018, 69, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Liu, L.; Wang, H.; Li, D.; Bai, Z.; Zhang, Y.; Sun, H.; Zhang, K.; Li, C. Exogenous melatonin accelerates seed germination in cotton (Gossypium hirsutum L.). PLoS ONE 2019, 14, e0216575. [Google Scholar] [CrossRef] [PubMed]
- Meeks, M.; Murray, S.C.; Hague, S.; Hays, D. Measuring maize seedling drought response in search of tolerant germplasm. Agronomy 2013, 3, 135–147. [Google Scholar] [CrossRef]
- Richards, R.A. Variation between and within species of rapeseed (Brassica campestris and B. napus) in response to drought stress: Physiological and physicochemical characters. Aust. J. Agr. Res. 1978, 29, 491–501. [Google Scholar] [CrossRef]
- Begum, N.; Hasanuzzaman, M.; Li, Y.; Akhtar, K.; Zhang, C.; Zhao, T. Seed Germination Behavior, Growth, Physiology and Antioxidant Metabolism of Four Contrasting Cultivars under Combined Drought and Salinity in Soybean. Antioxidants 2022, 11, 498. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.L.; Li, J.; Wang, H.C.; Zhang, C.L.; Naeem, M.S. Fullerol improves seed germination, biomass accumulation, photosynthesis and antioxidant system in Brassica napus L. under water stress. Plant Physiol. Biochem. 2018, 129, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.H.; Yan, X.H.; Xiao, Y.; Zeng, J.; Qi, H.; Ogweno, J.O. 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Sci. Hortic. 2013, 150, 232–237. [Google Scholar] [CrossRef]
- Fu, J.; Huang, B. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ. Exp. Bot. 2001, 45, 105–114. [Google Scholar] [CrossRef]
- Cui, G.; Zhao, X.; Liu, S.; Sun, F.; Zhang, C.; Xi, Y. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiol. Bioch. 2017, 118, 138–149. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Fedorowicz-Strońska, O.; Głowacka, K.; Waśkiewicz, A.; Sadowski, J. CaCl2 treatment improves drought stress tolerance in barley (Hordeum vulgare L.). Acta Physiol. Plant. 2017, 39, 41. [Google Scholar] [CrossRef]
- Du, J.; Chen, X.; Li, W.; Qiong, G. Osmoregulation mechanism of drought stress and genetic engineering strategies for improving drought resistance in plants. For. Stud. China 2004, 6, 56–62. [Google Scholar] [CrossRef]
- Basu, S.; Roychoudhury, A.; Saha, P.P.; Sengupta, D.N. Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regul. 2010, 60, 51–59. [Google Scholar] [CrossRef]
- Deng, B.; Du, W.; Liu, C.; Sun, W.; Tian, S.; Dong, H. Antioxidant response to drought, cold and nutrient stress in two ploidy levels of tobacco plants: Low resource requirement confers polytolerance in polyploids? Plant Growth Regul. 2012, 66, 37–47. [Google Scholar] [CrossRef]
- Ahammad, G.J.; Li, X.; Yang, Y.X.; Liu, C.C.; Zhou, G.Z.; Wan, H.J.; Cheng, Y. Tomato WRKY81 acts as a negative regulator for drought tolerance by modulating guard cell H2O2–mediated stomatal closure. Environ. Exp. Bot. 2019, 171, 103960. [Google Scholar] [CrossRef]
- Huang, B.; Chen, Y.E.; Zhao, Y.Q.; Ding, C.B.; Liao, J.Q.; Hu, C.; Zhou, L.J.; Zhang, Z.W.; Yuan, S.; Yuan, M. Exogenous Melatonin Alleviates Oxidative Damages and Protects Photosystem II in Maize Seedlings Under Drought Stress. Front. Plant Sci. 2019, 10, 677. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Feng, Z.; Bai, Q.; He, J.; Wang, Y. Effects of Melatonin on Antioxidant Capacity in Naked Oat Seedlings under Drought Stress. Molecules 2018, 23, 1580. [Google Scholar] [CrossRef] [PubMed]
- Posmyk, M.M.; Bałabusta, M.; Wieczorek, M.; Sliwinska, E.; Janas, K.M. Melatonin applied to cucumber (Cucumis sativus L.) seeds improves germination during chilling stress. J. Pineal Res. 2009, 46, 214–223. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Cooper, M.; Gho, C.; Leafgren, R.; Tang, T.; Messina, C. Breeding drought-tolerant maize hybrids for the US corn-belt: Discovery to product. J. Exp. Bot. 2014, 65, 6191–6204. [Google Scholar] [CrossRef] [PubMed]
- Badiane, F.A.; Diouf, D.; Sane, D.; Diouf, O.; Goudiaby, V.; Diallo, N. Screening cowpea [Vigna unguiculata (L.) Walp.] varieties by inducing water deficit and RAPD analyses. Afr. J. Biotechnol. 2004, 3, 174–178. [Google Scholar] [CrossRef]
- Verslues, P.E.; Agarwal, M.; Katiyar-Agarwal, S.; Zhu, J.; Zhu, J.K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006, 45, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Hohl, M.; Schopfer, P. Water Relations of Growing Maize Coleoptiles: Comparison between Mannitol and Polyethylene Glycol 6000 as External Osmotica for Adjusting Turgor Pressure. Plant Physiol. 1991, 95, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Michel, B.E.; Kaufmann, M.R. The Osmotic Potential of Polyethylene Glycol 6000. Plant Physiol. 1973, 51, 914–916. [Google Scholar] [CrossRef] [PubMed]
- Chapter 1: Certificates. In ISTA Certificates. International Rules for Seed Testing; The International Seed Testing Association (ISTA): Wallisellen, Switzerland, 2023; pp. 1–10.
- Wang, A.-H.; Yu, X.-L.; Liu, Y.-Y.; Chen, S.-G.; Wang, F.-G. Seed Germination and Storage of the Endangered Species Manglietia crassipes Y. W. Law (Magnoliaceae). Horticulturae 2021, 7, 42. [Google Scholar] [CrossRef]
- Bai, Y.; Xiao, S.; Zhang, Z.; Zhang, Y.; Sun, H.; Zhang, K.; Wang, X.; Bai, Z.; Li, C.; Liu, L. Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat. PeerJ 2020, 8, e9450. [Google Scholar] [CrossRef]
- Badr, A.; El-Shazly, H.H.; Tarawneh, R.A.; Börner, A. Screening for Drought Tolerance in Maize (Zea mays L.) Germplasm Using Germination and Seedling Traits under Simulated Drought Conditions. Plants 2020, 9, 565. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Method Enzymol. 1987, 148, 350–356. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Dhindsa, R.S.; Plumb-Dhindsa, R.; Thorpe, T.A. Leaf senescence correlated with increased level of membrane permeability, lipid peroxidation and decreased level of superoxide dismutase and catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Yemm, E.W.; Willis, A. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.K. Experimental Principle and Technology of Plant Physiology and Biochemistry, 3rd ed.; Higher Education Press: Beijing, China, 2015. [Google Scholar]
- Bradford, K.J. A water relations analysis of seed germination rates. Plant Physiol. 1990, 94, 840–849. [Google Scholar] [CrossRef]
- Maehly, A.C. The assay of catalases and peroxidases. In Methods of Biochemical Analysis; Glick, D., Ed.; John Wiley & Sons, Inc: Hoboken, NJ, USA, 1954; Volume 1, pp. 357–424. [Google Scholar]
- Harper, J.L.; Lovell, P.H.; Moore, K.G. The shapes and sizes of seeds. Annu. Rev. Ecol. Syst. 1970, 1, 327–356. [Google Scholar] [CrossRef]
- Kong, H.; Meng, X.; Akram, N.A.; Zhu, F.; Hu, J.; Zhang, Z. Seed Priming with Fullerol Improves Seed Germination, Seedling Growth and Antioxidant Enzyme System of Two Winter Wheat Cultivars under Drought Stress. Plants 2023, 12, 1417. [Google Scholar] [CrossRef]
- Dissanayake, I.; Ranwala, S.M.W.; Perera, S.S.N. Germination and Seedling Growth Responses of Sri Lankan Grown Sesame/Thala (Sesamum indicum L.) for Simulated Drought Conditions. J. Natl. Sci. Found. Sri Lanka 2019, 47, 479–490. [Google Scholar] [CrossRef]
- Liu, J.; Hasanuzzaman, M.; Wen, H.; Zhang, J.; Peng, T.; Sun, H.; Zhao, Q. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma 2019, 256, 1217–1227. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.; Xu, Z.; Shi, Z.; Chen, S.; Huang, X.T.; Chen, J.; Wang, X. Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination. J. Exp. Bot. 2014, 65, 3189–3200. [Google Scholar] [CrossRef]
- Donohue, K.; Rubio de Casas, R.; Burghardt, L.; Kovach, K.; Willis, C.G. Germination, postgermination adaptation, and species ecological ranges. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 293–319. [Google Scholar] [CrossRef]
- Wagmann, K.; Hautekèete, N.C.; Piquot, Y.; Meunier, C.; Schmitt, S.E.; Van Dijk, H. Seed dormancy distribution: Explanatory ecological factors. Ann. Bot. 2012, 110, 1205–1219. [Google Scholar] [CrossRef] [PubMed]
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef] [PubMed]
- Dhanda, S.S.; Sethi, G.S.; Behl, R.K. Indices of Drought Tolerance in Wheat Genotypes at Early Stages of Plant Growth. J. Agron. Crop. Sci. 2004, 190, 6–12. [Google Scholar] [CrossRef]
- Kouighat, M.; Hanine, H.; El Fechtali, M.; Nabloussi, A. First Report of Sesame Mutants Tolerant to Severe Drought Stress during Germination and Early Seedling Growth Stages. Plants 2021, 10, 1166. [Google Scholar] [CrossRef] [PubMed]
- Spielmeyer, W.; Hyles, J.; Joaquim, P.; Azanza, F.; Bonnett, D.; Ellis, M.E.; Moore, C.; Richards, R.A. A QTL on Chromosome 6A in Bread Wheat (Triticum aestivum) is Associated with Longer Coleoptiles, Greater Seedling Vigour and Final Plant Height. Theor. Appl. Genet. 2007, 115, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Koskosidis, A.; Khah, E.; Mavromatis, A.; Pavli, O.; Vlachostergios, D.N. Effect of PEG-Induced Drought Stress on Germination of Ten Chickpea (Cicer arietinum L.) Genotypes. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 294–304. [Google Scholar] [CrossRef]
- Liu, X.; Hu, P.; Huang, M.; Tang, Y.; Li, Y.; Li, L.; Hou, X. The NF-YC–RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis. Nat. Commun. 2016, 7, 12768. [Google Scholar] [CrossRef]
- Buttery, B.R.; Buzzell, R.I. The relationship between chlorophyll content and rate of photosynthesis in soybeans. Can. J. Plant Sci. 1977, 57, 1–5. [Google Scholar] [CrossRef]
- Cao, L.; Jin, X.J.; Zhang, Y.X. Melatonin confers drought stress tolerance in soybean (Glycine max L.) by modulating photosynthesis, osmolytes, and reactive oxygen metabolism. Photosynthetica 2019, 57, 812–819. [Google Scholar] [CrossRef]
- Altaf, M.A.; Shahid, R.; Ren, M.X.; Naz, S.; Altaf, M.M.; Khan, L.U.; Tiwari, R.K.; Lal, M.K.; Shahid, M.A.; Kumar, R.; et al. Melatonin Improves Drought Stress Tolerance of Tomato by Modulating Plant Growth, Root Architecture, Photosynthesis, and Antioxidant Defense System. Antioxidants 2022, 11, 309. [Google Scholar] [CrossRef]
- Yue, H.; He, S.; Geng, J.; Tiang, L.; Ni, S.; He, X. Effect of Arbuscular Mycorrhizal Fungi Inoculation on the Drought Tolerance of Macadamia ternifolia Seedling. J. West China For. Sci. 2020, 49, 30–35+42. [Google Scholar] [CrossRef]
- Tokarz, B.; Wójtowicz, T.; Makowski, W.; Jędrzejczyk, R.J.; Tokarz, K.M. What is the Difference between the Response of Grass Pea (Lathyrus sativus L.) to Salinity and Drought Stress?—A Physiological Study. Agronomy 2020, 10, 833. [Google Scholar] [CrossRef]
- Phung, T.H.; Jung, H.I.; Park, J.H.; Kim, J.G.; Back, K.; Jung, S. Porphyrin biosynthesis control under water stress: Sustained porphyrin status correlates with drought tolerance in transgenic rice. Plant Physiol. 2011, 157, 1746–1764. [Google Scholar] [CrossRef] [PubMed]
- Dalal, V.K.; Tripathy, B.C. Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant Cell Environ. 2012, 35, 1685–1703. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic. 2004, 103, 93–99. [Google Scholar] [CrossRef]
- Cruz de Carvalho, M.H. Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signal. Behav. 2008, 3, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Gupta, A.K.; Kaur, N. Differential responses of antioxidative defence system to long-term field drought in wheat (Triticum aestivum L.) genotypes differing in drought tolerance. J. Agron. Crop Sci. 2012, 198, 185–195. [Google Scholar] [CrossRef]
- Imran, M.; Latif Khan, A.; Shahzad, R.; Aaqil Khan, M.; Bilal, S.; Khan, A.; Kang, S.M.; Lee, I.J. Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defence system of soybean plants. AoB Plants 2021, 13, plab026. [Google Scholar] [CrossRef]
- Guo, Y.; Li, D.; Liu, L.; Sun, H.; Zhu, L.; Zhang, K.; Zhao, H.; Zhang, Y.; Li, A.; Bai, Z.; et al. Seed Priming With Melatonin Promotes Seed Germination and Seedling Growth of Triticale hexaploide L. Under PEG-6000 Induced Drought Stress. Front. Plant Sci. 2022, 13, 932912. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.Y.; Yu, H.Y.; Yang, M.M.; Kong, D.; Zhang, Y. Effect of Drought Stress on Lipid Peroxidation, Osmotic Adjustment and Antioxidant Enzyme Activity of Leaves and Roots of Lycium ruthenicum Murr. Seedling. Russ. J. Plant Physiol. 2018, 65, 244–250. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.; Sun, K.; Chen, Y.; Chen, X.; Li, X. Exogenous Melatonin Enhances Cold, Salt and Drought Stress Tolerance by Improving Antioxidant Defense in Tea Plant (Camellia sinensis (L.) O. Kuntze). Molecules 2019, 24, 1826. [Google Scholar] [CrossRef]
- Kishor, P.B.K.; Sreenivasulu, N. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ. 2014, 37, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Shah, T.; Latif, S.; Saeed, F.; Ali, I.; Ullah, S.; Alsahli, A.A.; Jan, S.; Ahmad, P. Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. J. King Saud Univ. Sci. 2021, 33, 101207. [Google Scholar] [CrossRef]
- Parida, A.K.; Dagaonkar, V.S.; Phalak, M.S.; Aurangabadkar, L.P. Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiol. Plant. 2008, 30, 619–726. [Google Scholar] [CrossRef]
- Cui, T.; Yu, H.; Li, H.; Bian, X.; Wang, L. Effect of drought stress and rewatering on physiological characteristics of Pennisetum alopecuroides seedlings. Pratacultural Sci. 2017, 11, 788–793. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, J.; Wang, M.; Cao, X.; Liu, L.; Xu, H.; Li, W. Effect of drought stress on the growth and physiological characteristics of nine species of wild ornamental plants in. Pratacultural Sci. 2018, 35, 2865–2871. [Google Scholar] [CrossRef]
- Pereira, M.D.; Días, D.C.F.S.; Días, L.A.S.; Araujo, E.F. Germinação e vigor de sementes de cenoura osmocondicionadas em papel umedecido e solução aerada. Rev. Bras. Sementes 2008, 30, 137–145. [Google Scholar] [CrossRef]
- Viera, W.; Shinohara, T.; Sanada, A.; Terada, N.; Ron, L.; Koshio, K. Seed Germination and Seedling Growth of Yellow and Purple Passion Fruit Genotypes Cultivated in Ecuador. Horticulturae 2022, 8, 754. [Google Scholar] [CrossRef]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [PubMed]
- Rathinasabapathi, B. Metabolic engineering for stress tolerance: Installing osmoprotectant synthesis pathways. Ann. Bot. 2000, 4, 709–716. [Google Scholar] [CrossRef]
- Wang, W.; Vinocur, B.; Shoseyov, O.; Altman, A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004, 9, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Sarabi, B.; Bolandnazar, S.; Ghaderi, N.; Ghashghaie, J. Genotypic differences in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: Prospects for selection of salt tolerant landraces. Plant Physiol. Biochem. 2017, 119, 294–311. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Cuin, T.A.; Zhou, M.; Twomey, A.; Naidu, B.P.; Shabala, S. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J. Exp. Bot. 2007, 58, 4245–4255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Mason, A.S.; Wu, J.; Liu, S.; Zhang, X.; Luo, T.; Redden, R.; Batley, J.; Hu, L.; Yan, G. Identification of putative candidate genes for water stress tolerance in canola (Brassica napus L.). Front. Plant Sci. 2015, 6, 1–13. [Google Scholar] [CrossRef]
- Lu, S.; Su, W.; Li, H.; Guo, Z. Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2-and NO-induced antioxidant enzyme activities. Plant Physiol. Biochem. 2009, 47, 132–138. [Google Scholar] [CrossRef]
- Del Río, L.A. ROS and RNS in plant physiology: An overview. J. Exp. Bot. 2015, 66, 2827–2837. [Google Scholar] [CrossRef]
- Khan, M.N.; Zhang, J.; Luo, T.; Liu, J.; Rizwan, M.; Fahad, S.; Xu, Z. Seed priming with melatonin coping drought stress in rapeseed by regulating reactive oxygen species detoxification: Antioxidant defense system, osmotic adjustment, stomatal traits and chloroplast ultrastructure perseveration. Ind. Crop. Prod. 2019, 140, 111597. [Google Scholar] [CrossRef]
- Batool, A.; Akram, N.A.; Cheng, Z.G.; Lv, G.C.; Ashraf, M.; Afzal, M.; Xiong, J.L.; Wang, J.Y.; Xiong, Y.C. Physiological and biochemical responses of two spring wheat genotypes to non-hydraulic root-to-shoot signalling of partial and full root-zone drought stress. Plant Physiol. Biochem. 2019, 139, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signaling transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed]
Species (S) | PEG Concentration (P) | Germination Percentage (TG, %) | Germination Potential (GP, %) | Germination Index (GI) | Vigor Index (VI) |
---|---|---|---|---|---|
C. tangutica | 0% | 95.55 ± 2.22 Aa | 33.33 ± 3.33 ABCa | 4.85 ± 0.13 Ab | 73.08 ± 22.37 ABb |
5% | 93.33 ± 1.93 Aa | 20.00 ± 1.92 Bb | 5.62 ± 0.20 Aa | 249.07 ± 39.35 Aa | |
10% | 96.67 ± 1.93 Aa | 22.22 ± 1.11 Ab | 5.54 ± 0.18 Aab | 192.77 ± 20.32 Aa | |
15% | 62.22 ± 2.22 Bb | 18.89 ± 1.11 Ab | 4.09 ± 0.10 Ac | 66.64 ± 14.49 Ab | |
C. glauca | 0% | 97.78 ± 2.22 Aa | 27.78 ± 1.11 ABa | 3.65 ± 0.05 Ba | 83.90 ± 15.33 Aa |
5% | 91.11 ± 1.11 Aab | 26.67 ± 1.92 Aa | 3.21 ± 0.05 Bb | 96.91 ± 12.58 Ba | |
10% | 83.33 ± 5.09 ABbc | 20.00 ± 0.00 Ab | 2.84 ± 0.16 Babc | 21.90 ± 3.19 BCb | |
15% | 77.78 ± 1.11 Ac | 11.11 ± 1.11 Cc | 2.25 ± 0.02 Bc | 3.32 ± 0.39 Bb | |
C. intricata | 0% | 82.22 ± 1.11 Aa | 17.78 ± 1.11 Ca | 1.71 ± 0.01 Cab | 72.99 ± 6.18 ABa |
5% | 85.55 ± 6.19 Aa | 15.56 ± 1.11 BCa | 1.69 ± 0.11 Cab | 84.18 ± 16.23 Ba | |
10% | 66.67 ± 3.33 ABb | 16.67 ± 0.00 Ba | 1.29 ± 0.08 Cbc | 60.35 ± 14.33 BCa | |
15% | 13.33 ± 0.00 Cc | 3.33 ± 0.00 Cb | 0.23 ± 0.00 CcD | 1.92 ± 0.07 Bb | |
C. nannophylla | 0% | 93.33 ± 5.09 Aa | 17.78 ± 4.00 BCa | 1.03 ± 0.05 Db | 20.48 ± 0.87 BCa |
5% | 96.67 ± 1.93 Aa | 13.33 ± 0.00 Ca | 1.45 ± 0.02 Ca | 13.55 ± 3.30 Babcd | |
10% | 75.56 ± 1.11 ABb | 13.33 ± 0.00 Ca | 0.78 ± 0.01 CDbc | 1.12 ± 0.04 Cbc | |
15% | 3.33 ± 0.00 Dc | 3.33 ± 0.00 Cb | 0.06 ± 0.00 Dd | 0.16 ± 0.03 Bd | |
C. fruticosa | 0% | 91.56 ± 1.67 Ab | 10.00 ± 0.00 Ca | 0.87 ± 0.08 Da | 14.22 ± 2.48 Cab |
5% | 98.34 ± 1.67 Aa | 12.22 ± 1.11 Ca | 0.78 ± 0.13 Da | 9.51 ± 0.84 Ba | |
10% | 73.34 ± 3.34 Bc | 8.89 ± 1.11 Da | 0.52 ± 0.12 Db | 0.74 ± 0.13 Cb | |
15% | 0 ± 0 Dd | - - | - - | - - | |
Species (S) | *** | *** | *** | *** | |
PEG (P) | *** | *** | *** | *** | |
S × P | *** | *** | *** | *** |
Kaiser–Meyer–Olkin Measure of Sampling Adequacy | Bartlett’s Test of Sphericity | ||
---|---|---|---|
Approx. Chi-Square | df | Sig. | |
0.601 | 377.283 | 45 | 0.000 |
Traits | Principal Component Matrix | Loading Value in PCA coordinate | ||||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
Chl a + b | 0.898166 | −0.29269 | −0.10972 | 0.462879 | −0.20774 | −0.09285 |
Chl b | 0.84265 | −0.25805 | −0.08406 | 0.434269 | −0.18316 | −0.07113 |
Chl a | 0.756713 | 0.052037 | −0.13174 | 0.38998 | 0.036935 | −0.11148 |
Car | 0.706306 | −0.29639 | −0.17745 | 0.364002 | −0.21038 | −0.15017 |
POD | 0.704028 | 0.06238 | 0.598842 | 0.362829 | 0.044277 | 0.506769 |
MDA | −0.1996 | 0.799024 | −0.0162 | −0.10287 | 0.567137 | −0.01371 |
Soluble sugar | 0.463494 | 0.784394 | 0.131438 | 0.238867 | 0.556752 | 0.111229 |
Proline | 0.546876 | 0.54841 | 0.302547 | 0.281838 | 0.389254 | 0.25603 |
Soluble protein | 0.03891 | 0.34796 | −0.66086 | 0.020053 | 0.246978 | −0.55925 |
SOD | −0.3549 | −0.25036 | 0.651161 | −0.1829 | −0.1777 | 0.551044 |
Eigenvalue | 3.76 | 1.98 | 1.4 | |||
% of Variance | 37.65 | 19.85 | 13.96 |
Species | PEG Concentration | Scores of PC1 | Scores of PC2 | Scores of PC3 | Total Scores | Ranking |
---|---|---|---|---|---|---|
C. tangutica | 0% | 0.82233 | −1.59249 | 0.06814 | 0.003033 | 11 |
10% | 2.132707 | −0.58158 | 1.617117 | 0.913358 | 3 | |
20% | −0.33127 | 0.409037 | 0.760033 | 0.062595 | 10 | |
30% | −0.70153 | −0.33696 | −0.5928 | −0.4138 | 13 | |
C. glauca | 0% | −1.11258 | −1.05352 | −1.4059 | −0.82433 | 17 |
10% | 0.663363 | 0.50142 | 0.06143 | 0.357869 | 7 | |
20% | 0.592513 | 1.18162 | 0.695933 | 0.554809 | 5 | |
30% | 0.28381 | 0.615393 | 0.171397 | 0.252942 | 8 | |
C. intricata | 0% | 3.27888 | −1.89698 | −0.20546 | 0.829306 | 4 |
10% | 2.32559 | 1.024493 | 1.266317 | 1.25579 | 2 | |
20% | 3.524363 | 0.876787 | 0.59474 | 1.584044 | 1 | |
30% | −1.46396 | 3.74688 | −0.2289 | 0.160569 | 9 | |
C. nannophylla | 0% | −1.86384 | −1.63484 | 0.74267 | −0.92255 | 18 |
10% | −3.59216 | −0.40989 | 1.556307 | −1.21653 | 19 | |
20% | −0.79952 | −1.55056 | 0.88603 | −0.48508 | 14 | |
30% | −2.95242 | −1.43539 | 0.349647 | −1.34771 | 20 | |
C. fruticosa | 0% | −0.42474 | −0.9187 | −2.33459 | −0.66827 | 16 |
10% | 1.865667 | 0.104093 | −2.24638 | 0.409426 | 6 | |
20% | −1.16183 | 1.889727 | 0.351997 | −0.01319 | 12 | |
30% | −1.08537 | 1.06146 | −2.10772 | −0.49228 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Li, Y.; Liu, T.; Shi, R.; Xu, X.; Song, Z.; Wang, Y. Comparison of the Differences in Tolerance to Drought Stress across Five Clematis Species Based on Seed Germination and Seedling Growth. Horticulturae 2024, 10, 288. https://doi.org/10.3390/horticulturae10030288
Zhu Z, Li Y, Liu T, Shi R, Xu X, Song Z, Wang Y. Comparison of the Differences in Tolerance to Drought Stress across Five Clematis Species Based on Seed Germination and Seedling Growth. Horticulturae. 2024; 10(3):288. https://doi.org/10.3390/horticulturae10030288
Chicago/Turabian StyleZhu, Zhu, Yongmei Li, Ting Liu, Rongrong Shi, Xiangyun Xu, Zhanbang Song, and Yanli Wang. 2024. "Comparison of the Differences in Tolerance to Drought Stress across Five Clematis Species Based on Seed Germination and Seedling Growth" Horticulturae 10, no. 3: 288. https://doi.org/10.3390/horticulturae10030288
APA StyleZhu, Z., Li, Y., Liu, T., Shi, R., Xu, X., Song, Z., & Wang, Y. (2024). Comparison of the Differences in Tolerance to Drought Stress across Five Clematis Species Based on Seed Germination and Seedling Growth. Horticulturae, 10(3), 288. https://doi.org/10.3390/horticulturae10030288