Assessing the Effect of Plant Biostimulants and Nutrient-Rich Foliar Sprays on Walnut Nucleolar Activity and Protein Content (Juglans regia L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Nutritional Status of the Analysed Walnut Trees
2.2. Fertilising Materials and Treatments
2.3. Leaf and Walnut Sampling
2.4. Nucleolar Activity Evaluation
2.5. Concentration of Total Soluble Protein
2.6. Statistical Analyses of the Data
3. Results
3.1. Nucleolar Activity
3.2. Biochemical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernik, R.; Stajnko, D.; Demšar, I. Comparison of the kernel quality of different walnuts (Juglans regia L.) varieties shelled with modified centrifugal sheller. Erwerbs-Obstbau 2020, 62, 213–220. [Google Scholar] [CrossRef]
- Christopoulos, M.V.; Kafkaletou, M.; Karantzi, A.D.; Tsantili, E. Girdling effects on fruit maturity, kernel quality, and nutritional value of walnuts (Juglans regia L.) alongside the effects on leaf physiological characteristics. Agronomy 2021, 11, 200. [Google Scholar] [CrossRef]
- de Souza, R.G.M.; Schincaglia, R.M.; Pimentel, G.D.; Mota, J.F. Nuts and human health outcomes: A systematic review. Nutrients 2017, 9, 1311. [Google Scholar] [CrossRef] [PubMed]
- Taş, N.G.; Gökmen, V. Phenolic compounds in natural and roasted nuts and their skins: A brief review. Curr. Opin. Food Sci. 2017, 14, 103–109. [Google Scholar] [CrossRef]
- Almeida, C.M. A produção e comercialização de noz em Portugal e no contexto mundial. Rev. Ciências Agrárias 2020, 43, 010–016. (In Portuguese) [Google Scholar] [CrossRef]
- Martínez-Lorente, S.E.; Martí-Guillén, J.M.; Pedreño, M.Á.; Almagro, L.; Sabater-Jara, A.B. Higher Plant-Derived Biostimulants: Mechanisms of Action and Their Role in Mitigating Plant Abiotic Stress. Antioxidants 2024, 13, 318. [Google Scholar] [CrossRef]
- Afonso, S.; Oliveira, I.; Meyer, A.S.; Gonçalves, B. Biostimulants to improved tree physiology and fruit quality: A review with special focus on sweet cherry. Agronomy 2022, 12, 659. [Google Scholar] [CrossRef]
- Asadi, M.; Rasouli, F.; Amini, T.; Hassanpouraghdam, M.B.; Souri, S.; Skrovankova, S.; Mlcek, J.; Ercisli, S. Improvement of Photosynthetic pigment characteristics, mineral content, and antioxidant activity of lettuce (Lactuca sativa L.) by arbuscular mycorrhizal fungus and seaweed extract foliar application. Agronomy 2022, 12, 1943. [Google Scholar] [CrossRef]
- Sani, M.N.H.; Yong, J.W.H. Harnessing synergistic biostimulatory processes: A plausible approach for enhanced crop growth and resilience in organic farming. Biology 2021, 11, 41. [Google Scholar] [CrossRef]
- Shahid, M.A.; Liu, G. Application of biostimulants to improve tomato yield in Florida. Veg. Res. 2022, 2, 6. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, X.; Chen, B.; Zhang, M.; Ma, J. Seaweed extract improved yields, leaf photosynthesis, ripening time, and net returns of tomato (Solanum lycopersicum Mill.). ACS Omega 2020, 5, 4242–4249. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in Plant Science: A global perspective. Front. Plant Sci. 2017, 7, 238366. [Google Scholar] [CrossRef]
- du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Del Buono, D. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci. Total Environ. 2021, 751, 141763. [Google Scholar] [CrossRef]
- Mandal, S.; Anand, U.; López-Bucio, J.; Radha; Kumar, M.; Lal, M.K.; Tiwari, R.K.; Dey, A. Biostimulants and environmental stress mitigation in crops: A novel and emerging approach for agricultural sustainability under climate change. Environ. Res 2023, 233, 116357. [Google Scholar] [CrossRef] [PubMed]
- Klein, P.; Chauvey, L.; Kallerhoff, J.; Pinelli, E.; Morard, M.; Silvestre, J. A tool derived from the Vicia faba micronucleus assay, to assess genotoxicity, cytotoxicity or biostimulation of novel compounds used in Agriculture. Agronomy 2021, 11, 321. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Höfte, M.; Tzortzakis, N. Editorial: Micronutrients: The borderline between their beneficial role and toxicity in plants. Front. Plant Sci. 2022, 13, 840624. [Google Scholar] [CrossRef] [PubMed]
- Rios, J.J.; Yepes-Molina, L.; Martinez-Alonso, A.; Carvajal, M. Nanobiofertilization as a novel technology for highly efficient foliar application of Fe and B in almond trees. R. Soc. Open Sci. 2020, 7, 200905. [Google Scholar] [CrossRef] [PubMed]
- Brdar-Jokanovic, M. Boron toxicity and deficiency in agricultural plants. Int. J. Mol. Sci. 2020, 21, 1424. [Google Scholar] [CrossRef] [PubMed]
- Portela, E.A.C.; Ferreira-Cardoso, J.V.; Louzada, J.L. Boron application on a chestnut orchard: Effect on yield and quality of nuts. J. Plant Nutr. 2011, 34, 1245–1253. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Pavão, F.; Lopes, J.I.; Gomes, V.; Arrobas, M.; Moutinho-Pereira, J.; Ruivo, S.; Cabanas, J.E.; Correia, C.M. Olive yields and tree nutritional status during a four-year period without nitrogen and boron fertilization. Commun. Soil Sci. Plant Anal. 2011, 42, 803–814. [Google Scholar] [CrossRef]
- Keshavarz, K.; Vahdati, K.; Samar, M.; Azadegan, B.; Brown, P.H. Foliar Application of Zinc and Boron Improves Walnut Vegetative and Reproductive Growth. Hortechnology 2011, 21, 181–186. [Google Scholar] [CrossRef]
- Shireen, F.; Nawaz, M.A.; Chen, C.; Zhang, Q.; Zheng, Z.; Sohail, H.; Sun, J.; Cao, H.; Huang, Y.; Bie, Z. Boron: Functions and approaches to enhance its availability in plants for sustainable agriculture. Int. J. Mol. Sci. 2018, 19, 1856. [Google Scholar] [CrossRef]
- Esteves, A.; Carvalho, A.; Roque, J.; Rodrigues, M.; Correia, C.M.; Lima-Brito, J. Cytogenetic and molecular characterization of almond trees treated with plant biostimulants or boron-based fertilizers. Plant Growth Regul. 2022, 98, 179–187. [Google Scholar] [CrossRef]
- Carvalho, A.; Dinis, L.-T.; Luzio, A.; Roque, J.; Moutinho-Pereira, J.; Correia, C.; Lima-Brito, J. Cytogenomic effects of kaolin in ‘Touriga Nacional’ and ‘Touriga Franca’ under summer stress. In Book of Proceedings of the VII International Congress of Mountain and Steep Slopes Viticulture—Extreme Viticulture: From a Cultural Landscape to an Economic and Environmental Sustainability; Baptista, A., Cepêda, C., Eds.; UTAD: Vila Real, Portugal; p. 225. Available online: https://www.cervim.org/d/212/bookofproceedings_2022.pdf (accessed on 3 February 2024)ISBN 978-989-704-471-7.
- Castro, C.; Carvalho, A.; Pavia, I.; Bacelar, E.; Lima-Brito, J. Development of grapevine plants under hydroponic copper-enriched solutions induced morpho-histological, biochemical and cytogenetic changes. Plant Physiol. Biochem. 2021, 166, 887–901. [Google Scholar] [CrossRef]
- Castro, C.; Carvalho, A.; Pavia, I.; Bacelar, E.; Lima-Brito, J. Grapevine varieties with differential tolerance to Zinc analysed by morpho-histological and cytogenetic approaches. Sci. Hortic. 2021, 288, 110386. [Google Scholar] [CrossRef]
- Boulon, S.; Westman, B.J.; Hutten, S.; Boisvert, F.-M.; Lamond, A.I. The nucleolus under stress. Mol. Cell 2010, 40, 216–227. [Google Scholar] [CrossRef]
- Carvalho, A.; Reis, S.; Pavia, I.; Lima-Brito, J.E. Influence of seed priming with iron and/or zinc in the nucleolar activity and protein content of bread wheat. Protoplasma 2019, 256, 763–775. [Google Scholar] [CrossRef]
- Pekol, S.; Baloğlu, M.C.; Altunoğlu, Y.Ç. Evaluation of genotoxic and cytologic effects of environmental stress in wheat species with different ploidy levels. Turk. J. Biol. 2016, 40, 580–588. [Google Scholar] [CrossRef]
- Tsekrekou, M.; Stratigi, K.; Chatzinikolaou, G. The nucleolus: In Genome maintenance and repair. Int. J. Mol. Sci. 2017, 18, 1411. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, Z.; Qin, R.; Zhang, H.; Zou, J.; Jiang, W.; Liu, D. Accumulation and cellular toxicity of aluminum in seedling of Pinus massoniana. BMC Plant Biol. 2014, 14, 264. [Google Scholar] [CrossRef]
- Carvalho, A.; Leal, F.; Matos, M.; Lima-Brito, J. Effects of heat stress in the leaf mitotic cell cycle and chromosomes of four wine-producing grapevine varieties. Protoplasma 2018, 255, 1725–1740. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- IPMA. Normais Climatológicas. Instituto Nacional do Mar e da Atmosfera. 2024. Available online: https://www.ipma.pt/pt/oclima/normais.clima/ (accessed on 10 March 2024). (In Portuguese).
- Bryson, G.M.; Mills, H.A.; Sasseville, D.N.; Jones, J.B.; Barker, A.V. Plant Analysis Handbook III. A Guide to Sampling, Preparation, Analysis and Interpretation for Agronomic and Horticultural Crops; Micro-Macro Publishing, Inc.: Athens, GA, USA, 2014; 571p. [Google Scholar]
- Lima-Brito, J.; Guedes-Pinto, H.; Harrison, G.E.; Heslop-Harrison, J. Chromosome identification and nuclear architecture in triticale × tritordeum F1 hybrids. J. Exp. Bot. 1996, 47, 583–588. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Olaru, A.; Rosculete, E.; Bonciu, E.; Rosculete, C.A.; Sarac, I. Evaluation of the cytogenetic effects of Quantis biostimulant in Allium sativum cells. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 681–691. [Google Scholar] [CrossRef]
- Thomas, B.; Murphy, D.J.; Murray, B.G. Encyclopedia of Applied Plant Sciences, 2nd ed.; Breeding Genetics and Biotechnology; Elsevier, Ltd.: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2017; Volume 2, ISBN 978-0-12-394808-3. [Google Scholar]
- Reguera, M.; Espí, A.; Bolaños, L.; Bonilla, I.; Redondo-Nieto, M. Endoreduplication before cell differentiation fails in boron deficient legume nodules. Is boron involved in signaling during cell cycle regulation? New Phytol. 2009, 183, 8–12. [Google Scholar] [CrossRef]
- Ichihashi, Y.; Tsukaya, H. Behavior of leaf meristems and their modification. Front. Plant Sci. 2015, 6, 1060. [Google Scholar] [CrossRef]
- Kalaev, V.; Karpova, S.S.; Al-Hachami, F.R.H.; Ignatova, I.V.; Slavskiy, V.A. Cytogenetic polymorphism of seed progeny of walnut (Juglans regia L.) during introduction in the Central Chernozem Region. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 1519–1533. [Google Scholar] [CrossRef]
- Vadhati, K.; Lotfi, M.; Sadat-Hosseini, G.M. Karyotype analysis of haploid plants of walnut (Juglans regia L.). Acta Hortic. 2014, 1048, 225–228. [Google Scholar] [CrossRef]
- Luo, X.; Chen, J. Distinguishing sichuan walnut cultivars and examining their relationships with Juglans regia and J. sigillata by FISH, early-fruiting gene analysis, and SSR analysis. Front. Plant Sci. 2020, 11, 505896. [Google Scholar] [CrossRef]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef]
- Nefic, H.; Musanovic, J.; Metovic, A.; Kurteshi, K. Chromosomal and nuclear alterations in root tip cells of Allium cepa L. induced by alprazolam. Med. Arch. 2013, 67, 388–392. [Google Scholar] [CrossRef]
- Jordan, E.G.; Martini, G.; Bennett, M.D.; Flavell, R.B. Nucleolar fusion in wheat. J. Cell Sci. 1982, 56, 485–495. [Google Scholar] [CrossRef]
- Hernandez-Verdun, D. Assembly and disassembly of the nucleolus during the cell cycle. Nucleus 2011, 2, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Derenzini, M. The AgNORs. Micron 2000, 31, 117–120. [Google Scholar] [CrossRef]
- Sengupta, S.; Peterson, T.R.; Sabatini, D.M. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell 2010, 40, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Qin, R.; Jiang, W.; Liu, D. Cadmium can induce alterations in the cellular localization and expression of threemajor nucleolar proteins in root tip cells of Vicia faba L. Plant Soil 2013, 368, 365–373. [Google Scholar] [CrossRef]
- Tao, W.; Yan, C.; Cai, T.; Hao, S.; Zhai, Z.H. Structural components of the nuclear body in nuclei of Allium cepa cells. Cell Res. 2001, 11, 68–73. [Google Scholar] [CrossRef]
- Muñoz-Díaz, E.; Sáez-Vásquez, J. Nuclear dynamics:formation of bodies and trafficking in plant nuclei. Front. Plant Sci. 2022, 13, 984163. [Google Scholar] [CrossRef] [PubMed]
- Kocira, A.; Świeca, M.; Kocira, S.; Złotek, U.; Jakubczyk, A. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi J. Biol. Sci. 2018, 25, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Gugała, M.; Sikorska, A.; Zarzecka, K. Chemical composition of winter rape seeds depending on the biostimulators used. Agronomy 2019, 9, 716. [Google Scholar] [CrossRef]
Normal Interphase Cells | Normal Interphase Cells (Mean ± S.E.) | Irregular Interphase Cells with: | % ICA (Mean ± S.E.) | |||
---|---|---|---|---|---|---|
Irregularly Shaped Nucleoli (Mean ± S.E.) | Micronucleoli (Mean ± S.E.) | |||||
T | Control | 3163 | 451.86 ± 37.58 | 29.57 ± 10.00 | 0.43 ± 0.297 | 0.082 ± 0.027 b |
SWEEM | 3618 | 603.00 ± 64.42 | 3.67 ± 1.12 | 0.00 ± 0.000 | 0.009 ± 0.003 a | |
SWEAN | 2928 | 488.00 ± 27.09 | 14.83 ± 5.04 | 0.83 ± 0.401 | 0.048 ± 0.019 ab | |
SWE-AA | 3612 | 516.00 ± 42.57 | 17.57 ± 6.51 | 1.43 ± 0.972 | 0.043 ± 0.013 ab | |
AA | 3344 | 557.33 ± 38.00 | 14.33 ± 5.81 | 0.83 ± 0.401 | 0.033 ± 0.013 ab | |
BE | 3779 | 539.86 ± 48.99 | 7.86 ± 1.81 | 0.14 ± 0.143 | 0.019 ± 0.003 ab | |
S | July 2019 | 11,148 | 530.86 ± 24.69 | 19.67 ± 4.52 | 0.76 ± 0.37 | 0.052 ± 0.012 |
August 2019 | 9296 | 516.44 ± 29.06 | 9.39 ± 1.81 | 0.44 ± 0.17 | 0.025 ± 0.004 | |
T × S | Control × July | 1591 | 397.75 ± 24.00 a | 40.50 ± 15.55 | 0.25 ± 0.25 | 0.118 ± 0.039 |
Control × August | 1572 | 524.00 ± 64.66 b | 15.00 ± 5.51 | 0.67 ± 0.67 | 0.034 ± 0.011 | |
SWEEM × July | 1554 | 518.00 ± 50.00 a | 4.33 ± 2.33 | 0.00 ± 0.000 | 0.011 ± 0.006 | |
SWEEM × August | 2064 | 688.00 ± 105.00 b | 3.00 ± 0.58 | 0.00 ± 0.000 | 0.006 ± 0.002 | |
SWEAN × July | 1460 | 486.67 ± 30.12 a | 21.00 ± 8.51 | 1.33 ± 0.88 | 0.068 ± 0.034 | |
SWEAN × August | 1468 | 489.33 ± 52.53 a | 8.67 ± 4.06 | 0.33 ± 0.33 | 0.028 ± 0.012 | |
SWE-AA × July | 2202 | 550.50 ± 71.35 b | 25.50 ± 9.56 | 2.25 ± 1.65 | 0.059 ± 0.018 | |
SWE-AA × August | 1410 | 470.00 ± 25.54 a | 7.00 ± 4.16 | 0.33 ± 0.33 | 0.021 ± 0.011 | |
AA × July | 1922 | 640.67 ± 15.07 b | 14.00 ± 11.50 | 0.67 ± 0.67 | 0.026 ± 0.020 | |
AA × August | 1422 | 474.00 ± 7.00 a | 14.67 ± 6.06 | 1 ± 0.58 | 0.039 ± 0.019 | |
BE × July | 2419 | 604.75 ± 49.58 b | 7.75 ± 2.32 | 0.00 ± 0.000 | 0.017 ± 0.004 | |
BE × August | 1360 | 453.33 ± 73.02 a | 8.00 ± 3.51 | 0.33 ± 0.33 | 0.023 ± 0.003 | |
ANOVA p-value | T | - | n.s. | n.s | n.s. | <0.05 |
S | - | n.s. | n.s. | n.s. | n.s. | |
T × S | - | <0.05 | n.s. | n.s. | n.s. |
Mean Nucleolar Area (µm2) ± S.E. (Number of Interphases Measured) | ||
---|---|---|
Number of nucleoli per nucleus (N) | 1 | 7.08 ± 0.08 c (600) |
2 | 5.31 ± 0.18 b (136) | |
3 | 4.27 ± 0.38 a (27) | |
Treatment (T) | Control | 5.82 ± 0.23 a(150) |
SWEEM | 6.10 ± 0.15 ab (134) | |
SWEAN | 6.71 ± 0.18 bc (126) | |
SWE-AA | 6.44 ± 0.19 ab (128) | |
AA | 6.68 ± 0.19 bc (111) | |
BE | 7.39 ± 0.19 c (114) | |
N × T | 1 × Control | 6.70 ± 0.28 a |
1 × SWEEM | 6.67 ± 0.14 a | |
1 × SWEAN | 7.00 ± 0.20 a | |
1 × SWE-AA | 6.96 ± 0.20 a | |
1 × AA | 6.80 ± 0.20 a | |
1 × BE | 7.38 ± 0.21 a | |
2 × Control | 5.20 ± 0.36 a | |
2 × SWEEM | 4.72 ± 0.32 a | |
2 × SWEAN | 5.59 ± 0.35 a | |
2 × SWE-AA | 4.43 ± 0.27 a | |
2 × AA | 5.15 ± 0.76 a | |
2 × BE | 7.50 ± 0.48 b | |
3 × Control | 3.08 ± 0.29 b | |
3 × SWEEM | 3.90 ± 0.46 b | |
3 × SWEAN | 4.97 ± 1.16 c | |
3 × SWE-AA | 4.97 ± 1.16 c | |
3 × AA | 6.76 ± 0.28 d | |
3 × BE | 0.00 ± 0.00 a | |
ANOVA p-value | N | <0.001 |
T | <0.001 | |
N × T | <0.001 |
Treatment | Concentration of Total Soluble Protein (mg g−1) |
---|---|
Control | 47.13 ± 0.54 d |
SWEEM | 30.11 ± 0.87b |
SWEAN | 20.38 ± 1.05 a |
SWE-AA | 26.92 ± 0.75 b |
AA | 37.29 ± 1.55 c |
BE | 36.47 ± 2.75 c |
ANOVA p-value | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roque, J.; Carvalho, A.; Rodrigues, M.Â.; Correia, C.M.; Lima-Brito, J. Assessing the Effect of Plant Biostimulants and Nutrient-Rich Foliar Sprays on Walnut Nucleolar Activity and Protein Content (Juglans regia L.). Horticulturae 2024, 10, 314. https://doi.org/10.3390/horticulturae10040314
Roque J, Carvalho A, Rodrigues MÂ, Correia CM, Lima-Brito J. Assessing the Effect of Plant Biostimulants and Nutrient-Rich Foliar Sprays on Walnut Nucleolar Activity and Protein Content (Juglans regia L.). Horticulturae. 2024; 10(4):314. https://doi.org/10.3390/horticulturae10040314
Chicago/Turabian StyleRoque, João, Ana Carvalho, Manuel Ângelo Rodrigues, Carlos M. Correia, and José Lima-Brito. 2024. "Assessing the Effect of Plant Biostimulants and Nutrient-Rich Foliar Sprays on Walnut Nucleolar Activity and Protein Content (Juglans regia L.)" Horticulturae 10, no. 4: 314. https://doi.org/10.3390/horticulturae10040314
APA StyleRoque, J., Carvalho, A., Rodrigues, M. Â., Correia, C. M., & Lima-Brito, J. (2024). Assessing the Effect of Plant Biostimulants and Nutrient-Rich Foliar Sprays on Walnut Nucleolar Activity and Protein Content (Juglans regia L.). Horticulturae, 10(4), 314. https://doi.org/10.3390/horticulturae10040314