N-Acetylglutamic Acid Enhances Tolerance to Oxidative and Heat Stress in Humulus lupulus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Measurement of Chlorophyll Content
2.3. DAB Staining and Nitro Blue Tetrazolium Staining
2.4. Trypan Blue Staining
2.5. Measurement of Electrolyte Leakage
2.6. RNA Extraction and qPCR
2.7. Chromatin Immunoprecipitation and qPCR
2.8. Prolonged Heat Stress Assay
3. Results
3.1. NAG Alleviates Oxidative-Stress-Triggered Chlorosis in Hops
3.2. NAG Enhances Expression Levels of Oxidative-Stress-Responsive Genes Associated with Histone Acetylation
3.3. Exogenous Treatment with NAG Confers Heat Stress Tolerance in Hops
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rossini, F.; Virga, G.; Loreti, P.; Iacuzzi, N.; Ruggeri, R.; Provenzano, M.E. Hops (Humulus lupulus L.) as a Novel Multipurpose Crop for the Mediterranean Region of Europe: Challenges and Opportunities of Their Cultivation. Agriculture 2021, 11, 484. [Google Scholar] [CrossRef]
- Almaguer, C.; Schönberger, C.; Gastl, M.; Arendt, E.K.; Becker, T. Humulus lupulus—A Story That Begs to Be Told. A Review. J. Inst. Brew. 2014, 120, 289–314. [Google Scholar] [CrossRef]
- Carbone, K.; Gervasi, F. An Updated Review of the Genus Humulus: A Valuable Source of Bioactive Compounds for Health and Disease Prevention. Plants 2022, 11, 3434. [Google Scholar] [CrossRef] [PubMed]
- Potopová, V.; Lhotka, O.; Možný, M.; Musiolková, M. Vulnerability of Hop-Yields Due to Compound Drought and Heat Events over European Key-Hop Regions. Int. J. Climatol. 2021, 41, E2136–E2158. [Google Scholar] [CrossRef]
- Donner, P.; Pokorný, J.; Ježek, J.; Krofta, K.; Patzak, J.; Pulkrábek, J. Influence of Weather Conditions, Irrigation and Plant Age on Yield and Alpha-Acids Content of Czech Hop (Humulus lupulus L.) Cultivars. Plant Soil Environ. 2020, 66, 41–46. [Google Scholar] [CrossRef]
- Mozny, M.; Trnka, M.; Vlach, V.; Zalud, Z.; Cejka, T.; Hajkova, L.; Potopova, V.; Semenov, M.A.; Semeradova, D.; Büntgen, U. Climate-Induced Decline in the Quality and Quantity of European Hops Calls for Immediate Adaptation Measures. Nat. Commun. 2023, 14, 6028. [Google Scholar] [CrossRef] [PubMed]
- Sako, K.; Nguyen, H.M.; Seki, M. Advances in Chemical Priming to Enhance Abiotic Stress Tolerance in Plants. Plant Cell Physiol. 2021, 61, 1995–2003. [Google Scholar] [CrossRef]
- Huo, L.; Chen, Y.; Zhang, Y.; Zhang, H.; Wang, H.; Xu, K.; Sun, X. Exogenous γ-Aminobutyric Acid Enhances Heat Tolerance of Kiwifruit Plants by Protecting Photosynthetic System and Promoting Heat Shock Proteins Expression. Ann. Agric. Sci. 2023, 68, 137–147. [Google Scholar] [CrossRef]
- Zeng, W.; Hassan, M.J.; Kang, D.; Peng, Y.; Li, Z. Photosynthetic Maintenance and Heat Shock Protein Accumulation Relating to γ-Aminobutyric Acid (GABA)-Regulated Heat Tolerance in Creeping Bentgrass (Agrostis stolonifera). S. Afr. J. Bot. 2021, 141, 405–413. [Google Scholar] [CrossRef]
- Balfagón, D.; Gómez-Cadenas, A.; Rambla, J.L.; Granell, A.; de Ollas, C.; Bassham, D.C.; Mittler, R.; Zandalinas, S.I. γ-Aminobutyric Acid Plays a Key Role in Plant Acclimation to a Combination of High Light and Heat Stress. Plant Physiol. 2022, 188, 2026–2038. [Google Scholar] [CrossRef]
- Quan, J.; Zheng, W.; Wu, M.; Shen, Z.; Tan, J.; Li, Z.; Zhu, B.; Hong, S.-B.; Zhao, Y.; Zhu, Z.; et al. Glycine Betaine and β-Aminobutyric Acid Mitigate the Detrimental Effects of Heat Stress on Chinese Cabbage (Brassica rapa L. ssp. pekinensis) Seedlings with Improved Photosynthetic Performance and Antioxidant System. Plants 2022, 11, 1213. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, L.; Hou, B.-H.; Tsai, C.-H.; Jakab, G.; Mauch-Mani, B.; Somerville, S. The Xenobiotic Beta-Aminobutyric Acid Enhances Arabidopsis Thermotolerance. Plant J. 2008, 53, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Matsui, A.; Todaka, D.; Tanaka, M.; Mizunashi, K.; Takahashi, S.; Sunaoshi, Y.; Tsuboi, Y.; Ishida, J.; Bashir, K.; Kikuchi, J.; et al. Ethanol Induces Heat Tolerance in Plants by Stimulating Unfolded Protein Response. Plant Mol. Biol. 2022, 110, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, T.; Tanno, S.; Ohara, K. N-Acetylglutamic Acid Alleviates Oxidative Stress Based on Histone Acetylation in Plants. Front. Plant Sci. 2023, 14, 1165646. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, T.; Tanno, S.; Ohara, K. Exogenous Treatment with N-Acetylglutamic Acid Confers Tolerance to Heat Stress in Plants. Plant Biotechnol. 2024, 41, 71–76. [Google Scholar] [CrossRef]
- Hirakawa, T.; Tanno, S. In Vitro Propagation of Humulus lupulus through the Induction of Axillary Bud Development. Plants 2022, 11, 1066. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.-H.; Liu, J.; He, X.-J.; Mu, R.-L.; Zhou, H.-L.; Chen, S.-Y.; Zhang, J.-S. Modulation of Ethylene Responses Affects Plant Salt-Stress Responses. Plant Physiol. 2007, 143, 707–719. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Winter, C.M.; Wu, M.-F.; Kwon, C.S.; William, D.A.; Wagner, D. PROTOCOLS: Chromatin Immunoprecipitation from Arabidopsis Tissues. Arab. Book 2014, 12, e0170. [Google Scholar] [CrossRef]
- Rizhsky, L.; Davletova, S.; Liang, H.; Mittler, R. The Zinc Finger Protein Zat12 Is Required for Cytosolic Ascorbate Peroxidase 1 Expression during Oxidative Stress in Arabidopsis. J. Biol. Chem. 2004, 279, 11736–11743. [Google Scholar] [CrossRef]
- Fortunato, S.; Lasorella, C.; Dipierro, N.; Vita, F.; de Pinto, M.C. Redox Signaling in Plant Heat Stress Response. Antioxidants 2023, 12, 605. [Google Scholar] [CrossRef]
- Friedrich, T.; Oberkofler, V.; Trindade, I.; Altmann, S.; Brzezinka, K.; Lämke, J.; Gorka, M.; Kappel, C.; Sokolowska, E.; Skirycz, A.; et al. Heteromeric HSFA2/HSFA3 Complexes Drive Transcriptional Memory after Heat Stress in Arabidopsis. Nat. Commun. 2021, 12, 3426. [Google Scholar] [CrossRef]
- Li, C.; Chen, Q.; Gao, X.; Qi, B.; Chen, N.; Xu, S.; Chen, J.; Wang, X. AtHsfA2 Modulates Expression of Stress Responsive Genes and Enhances Tolerance to Heat and Oxidative Stress in Arabidopsis. Sci. China C Life Sci. 2005, 48, 540–550. [Google Scholar] [CrossRef]
- Winter, G.; Todd, C.D.; Trovato, M.; Forlani, G.; Funck, D. Physiological Implications of Arginine Metabolism in Plants. Front. Plant Sci. 2015, 6, 534. [Google Scholar] [CrossRef] [PubMed]
- Abdel Razik, E.S.; Alharbi, B.M.; Pirzadah, T.B.; Alnusairi, G.S.H.; Soliman, M.H.; Hakeem, K.R. γ-Aminobutyric Acid (GABA) Mitigates Drought and Heat Stress in Sunflower (Helianthus annuus L.) by Regulating Its Physiological, Biochemical and Molecular Pathways. Physiol. Plant 2021, 172, 505–527. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yu, J.; Peng, Y.; Huang, B. Metabolic Pathways Regulated by γ-Aminobutyric Acid (GABA) Contributing to Heat Tolerance in Creeping Bentgrass (Agrostis stolonifera). Sci. Rep. 2016, 6, 30338. [Google Scholar] [CrossRef]
- Priya, M.; Sharma, L.; Kaur, R.; Bindumadhava, H.; Nair, R.M.; Siddique, K.H.M.; Nayyar, H. GABA (γ-Aminobutyric Acid), as a Thermo-Protectant, to Improve the Reproductive Function of Heat-Stressed Mungbean Plants. Sci. Rep. 2019, 9, 7788. [Google Scholar] [CrossRef] [PubMed]
- Kalamaki, M.S.; Alexandrou, D.; Lazari, D.; Merkouropoulos, G.; Fotopoulos, V.; Pateraki, I.; Aggelis, A.; Carrillo-López, A.; Rubio-Cabetas, M.J.; Kanellis, A.K. Over-Expression of a Tomato N-Acetyl-L-Glutamate Synthase Gene (SlNAGS1) in Arabidopsis Thaliana Results in High Ornithine Levels and Increased Tolerance in Salt and Drought Stresses. J. Exp. Bot. 2009, 60, 1859–1871. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, R.L.; Padgitt-Cobb, L.K.; Townsend, M.S.; Henning, J.A. Gene Expression for Secondary Metabolite Biosynthesis in Hop (Humulus lupulus L.) Leaf Lupulin Glands Exposed to Heat and Low-Water Stress. Sci. Rep. 2021, 11, 5138. [Google Scholar] [CrossRef]
- Padgitt-Cobb, L.K.; Kingan, S.B.; Wells, J.; Elser, J.; Kronmiller, B.; Moore, D.; Concepcion, G.; Peluso, P.; Rank, D.; Jaiswal, P.; et al. A Draft Phased Assembly of the Diploid Cascade Hop (Humulus lupulus) Genome. Plant Genome 2021, 14, e20072. [Google Scholar] [CrossRef]
- Kim, J.-M.; To, T.K.; Matsui, A.; Tanoi, K.; Kobayashi, N.I.; Matsuda, F.; Habu, Y.; Ogawa, D.; Sakamoto, T.; Matsunaga, S.; et al. Acetate-Mediated Novel Survival Strategy against Drought in Plants. Nat. Plants 2017, 3, 17097. [Google Scholar] [CrossRef]
- Taniguchi, T.; Miyauchi, K.; Sakaguchi, Y.; Yamashita, S.; Soma, A.; Tomita, K.; Suzuki, T. Acetate-Dependent tRNA Acetylation Required for Decoding Fidelity in Protein Synthesis. Nat. Chem. Biol. 2018, 14, 1010–1020. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Song, N.; Zheng, M.; Liu, X.; Liu, Z.; Xing, J.; Ma, J.; Guo, W.; Yao, Y.; Peng, H.; et al. Histone Acetyltransferase GCN5 Is Essential for Heat Stress-Responsive Gene Activation and Thermotolerance in Arabidopsis. Plant J. 2015, 84, 1178–1191. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Piquerez, S.J.M.; Ramirez-Prado, J.S.; Mastorakis, E.; Veluchamy, A.; Latrasse, D.; Manza-Mianza, D.; Brik-Chaouche, R.; Huang, Y.; Rodriguez-Granados, N.Y.; et al. GCN5 Modulates Salicylic Acid Homeostasis by Regulating H3K14ac Levels at the 5′ and 3′ Ends of Its Target Genes. Nucleic Acids Res. 2020, 48, 5953–5966. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Qu, X.; Ji, L.; Li, G.; Wang, C.; Wang, C.; Zhang, Y.; Zheng, L.; Li, W.; Zheng, X. PIF4 Promotes Expression of HSFA2 to Enhance Basal Thermotolerance in Arabidopsis. Int. J. Mol. Sci. 2022, 23, 6017. [Google Scholar] [CrossRef] [PubMed]
- Isono, K.; Nakamura, K.; Hanada, K.; Shirai, K.; Ueki, M.; Tanaka, K.; Tsuchimatsu, T.; Iuchi, S.; Kobayashi, M.; Yotsui, I.; et al. LHT1/MAC7 Contributes to Proper Alternative Splicing under Long-Term Heat Stress and Mediates Variation in the Heat Tolerance of Arabidopsis. PNAS Nexus 2023, 2, pgad348. [Google Scholar] [CrossRef] [PubMed]
- Endo, N.; Tsukimoto, R.; Isono, K.; Hosoi, A.; Yamaguchi, R.; Tanaka, K.; Iuchi, S.; Yotsui, I.; Sakata, Y.; Taji, T. MOS4-Associated Complex Contributes to Proper Splicing and Suppression of ER Stress under Long-Term Heat Stress in Arabidopsis. PNAS Nexus 2023, 2, pgad329. [Google Scholar] [CrossRef] [PubMed]
- Isono, K.; Tsukimoto, R.; Iuchi, S.; Shinozawa, A.; Yotsui, I.; Sakata, Y.; Taji, T. An ER-Golgi Tethering Factor SLOH4/MIP3 Is Involved in Long-Term Heat Tolerance of Arabidopsis. Plant Cell Physiol. 2021, 62, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Tsukimoto, R.; Isono, K.; Kajino, T.; Iuchi, S.; Shinozawa, A.; Yotsui, I.; Sakata, Y.; Taji, T. Mitochondrial Fission Complex Is Required for Long-Term Heat Tolerance of Arabidopsis. Plant Cell Physiol. 2022, 63, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Peredo, E.L.; Revilla, M.A.; Arroyo-García, R. Assessment of Genetic and Epigenetic Variation in Hop Plants Regenerated from Sequential Subcultures of Organogenic Calli. J. Plant Physiol. 2006, 163, 1071–1079. [Google Scholar] [CrossRef]
- Patzak, J.; Henychová, A.; Svoboda, P.; Malířová, I. Assessment of Epigenetic Methylation Changes in Hop (Humulus lupulus) Plants Obtained by Meristem Culture. Czech J. Genet. Plant Breed. 2020, 56, 159–164. [Google Scholar] [CrossRef]
- Zhou, L.; Huang, Y.; Wang, Q.; Guo, D. Chromatin Accessibility Is Associated with Artemisinin Biosynthesis Regulation in Artemisia Annua. Molecules 2021, 26, 1194. [Google Scholar] [CrossRef] [PubMed]
- Van Holle, A.; Muylle, H.; Haesaert, G.; Naudts, D.; De Keukeleire, D.; Roldán-Ruiz, I.; Van Landschoot, A. Relevance of Hop Terroir for Beer Flavour. J. Inst. Brew. 2021, 127, 238–247. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirakawa, T.; Ohara, K. N-Acetylglutamic Acid Enhances Tolerance to Oxidative and Heat Stress in Humulus lupulus. Horticulturae 2024, 10, 484. https://doi.org/10.3390/horticulturae10050484
Hirakawa T, Ohara K. N-Acetylglutamic Acid Enhances Tolerance to Oxidative and Heat Stress in Humulus lupulus. Horticulturae. 2024; 10(5):484. https://doi.org/10.3390/horticulturae10050484
Chicago/Turabian StyleHirakawa, Takeshi, and Kazuaki Ohara. 2024. "N-Acetylglutamic Acid Enhances Tolerance to Oxidative and Heat Stress in Humulus lupulus" Horticulturae 10, no. 5: 484. https://doi.org/10.3390/horticulturae10050484
APA StyleHirakawa, T., & Ohara, K. (2024). N-Acetylglutamic Acid Enhances Tolerance to Oxidative and Heat Stress in Humulus lupulus. Horticulturae, 10(5), 484. https://doi.org/10.3390/horticulturae10050484