Molecular Cloning and Expression Analysis of Geranyllinalool Synthase Gene (SgGES) from Salvia guaranitica Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Sequence Characterization of SgGES
2.3. Putative Tissue Expression Pattern and Subcellular Localization of SgGES
2.4. RNA Extraction and cDNA Synthesis
2.5. Isolating the Full-Length SgGES Gene
2.6. Nicotiana Tabacum Leaf Transformation Procedure Using Plant Tissue Culture Method and Preparation of Agrobacterium Cultures for Infection
2.7. Semi-Quantitative RT-PCR (sqRT-PCR) Analysis
2.8. Terpenoid Extraction and GC-MS Analysis
2.9. Quantitative Real-Time PCR (qRT-PCR) Analyses
3. Results
3.1. Full-Length Geranyllinalool Synthase (SgGES) Clone and Sequence Analysis
3.2. Putative Tissue Expression and Subcellular Localization of SgGES Gene
3.3. Monitoring the Expression of SgGES Using qRT-PCR
3.4. Functional Expression of SgGES Gene N. tabacum Plants
3.5. Phenotypic Evaluation
3.6. Overexpression of the SgGES Gene Altered the Terpene Profiles in Transgenic and Non-Transgenic Tobacco Plants
4. Discussion
4.1. Cloning and Sequence Analysis of SgGES Gene from S. guaranitica
4.2. Putative Tissue Expression Pattern and Subcellular Localizations of SgGES Gene
4.3. Analysis of SgGES Gene Expression via qRT-PCR
4.4. N. tabacum Plant Phenotypes and Terpene Profile Were Altered by Overexpression of the SgGES Gene
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alziar, G. Catalogue Synonymique des Salvia L. Dumonde (Lamiaceae). I.–VI. Biocosme Mesogéen. (1988–1993), 5 (3–4): 87–136; 6(1–2, 4): 79–115, 163–204; 7(1–2): 59–109; 9(2–3): 413–497; 10(3–4): 33–117. Available online: https://www.researchgate.net/publication/288010566_Catalogue_synonymique_des_Salvia_L_du_monde_Lamiaceae_I-VI (accessed on 16 June 2024).
- Ali, M.; Li, P.; She, G.; Chen, D.; Wan, X.; Zhao, J. Transcriptome and metabolite analyses reveal the complex metabolic genes involved in volatile terpenoid biosynthesis in garden sage (Salvia officinalis). Sci. Rep. 2017, 7, 16074. [Google Scholar] [CrossRef] [PubMed]
- Sarrou, E.; Ioannis, G.; Aliki, X.; Domenico, M.; Stefan, M.; Panagiotis, M.; Athanasios, M.; Paschalina, C. Genetic diversity and metabolic profile of Salvia officinalis populations: Implications for advanced breeding strategies. Planta 2017, 246, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Hussain, R.M.; Rehman, N.U.; She, G.; Li, P.; Wan, X.; Guo, L.; Zhao, J. De novo transcriptome sequencing and metabolite profiling analyses reveal the complex metabolic genes involved in the terpenoid biosynthesis in Blue Anise Sage (Salvia guaranitica L.). DNA Res. 2018, 25, 597–617. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Shao, F.; Lu, S. Identification and characterization of mRNA-like noncoding RNAs in Salvia miltiorrhiza. Planta 2015, 241, 1131–1143. [Google Scholar] [CrossRef] [PubMed]
- Khater, R. Evaluating the productivity of Salvia officinalis, plants using of fertilizers and spraying with vitamins. Egypt. J. Desert Res. 2022, 72, 47–71. [Google Scholar] [CrossRef]
- Zhenqing, B.; Wenrui, L.; Yanyan, J.; Zhiyong, Y.; Jie, J.; Wenli, H.; Pengguo, X.; Zongsuo, L. The ethylene response factor SmERF6 co-regulates the transcription of SmCPS1 and SmKSL1 and is involved in tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. Planta 2018, 248, 243–255. [Google Scholar]
- Bohlmann, J.; Meyer-Gauen, G.; Croteau, R. Plant terpenoid synthases: Molecular biology and phylogenetic analysis. Proc. Natl. Acad. Sci. USA 1998, 95, 4126–4133. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Alshehri, D.; Alkhaibari, A.M.; Elhalem, N.A.; Darwish, D.B.E. Cloning and Characterization of 1,8-Cineole Synthase (SgCINS) Gene From the Leaves of Salvia guaranitica plant. Front. Plant Sci. 2022, 13, 869432. [Google Scholar] [CrossRef]
- Ali, M.; Nishawy, E.; Ramadan, W.A.; Ewas, M.; Rizk, M.S.; Sief-Eldein, A.G.M.; El-Zayat, M.A.S.; Hassan, A.H.M.; Guo, M.; Hu, G.W.; et al. Molecular characterization of a Novel NAD+-dependent farnesol dehydrogenase SoFLDH gene involved in sesquiterpenoid synthases from Salvia officinalis. PLoS ONE 2021, 17, e0269045. [Google Scholar] [CrossRef]
- Xi, J.; Rossi, L.; Lin, X.; Xie, D.Y. Overexpression of a synthetic insect–plant geranyl pyrophosphate synthase gene in Camelina sativa alters plant growth and terpene biosynthesis. Planta 2016, 244, 215–230. [Google Scholar] [CrossRef]
- Abbas, F.; Ke, Y.; Yu, R.; Fan, Y. Functional characterization and expression analysis of two terpene synthases involved in floral scent formation in Lilium ‘Siberia’. Planta 2019, 249, 71–93. [Google Scholar] [CrossRef] [PubMed]
- Wallach, O. Zur KentniB der Terpene uDd dec atherischen Oele. Liebig’s Ann. Chern. 1887, 239, 1–54. [Google Scholar] [CrossRef]
- Ruzicka, L. The isoprene rule and the biogenesis of terpenic compounds. Experientia 1953, 9, 357–367. [Google Scholar] [CrossRef]
- Ruzicka, L. Faraday Lecture (History of the isoprene rule). Proc. Chern. Soc. 1959, 341–360. [Google Scholar]
- Ruzicka, L. In the borderland between bioorganic chemistry and biochemistry. Annu. Rev. Biochem. 1973, 42, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Trapp, S.; Croteau, R. Defensive resin biosynthesis in conifers. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 689–724. [Google Scholar] [CrossRef] [PubMed]
- Gershenzon, J.; Kreish, W. Biochemistry of terpenoids: Monoterpenes, sesquiterpenes, diterpenes, sterols, cardiac glycosides and steroid saponins. In Biochemistry of Plant Secondary Metabolism; Wink, M., Ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. 222–299. [Google Scholar]
- Dorothea, T.; Wilhelm, B.; Armin, H.; Francesco, L.; Ursula, S.R.R.; Jörg-Peter, S. Practical approaches to plant volatile analysis. Plant J. 2006, 45, 540–560. [Google Scholar]
- Ali, M.; Miao, L.; Hou, Q.; Darwish, D.B.; Alrdahe, S.S.; Ali, A.; Benedito, V.A.; Tadege, M.; Wang, X.; Zhao, J. Overexpression of Terpenoid Biosynthesis Genes From Garden Sage (Salvia officinalis) Modulates Rhizobia Interaction and Nodulation in Soybean. Front. Plant Sci. 2021, 12, 783269. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Miao, L.; Soudy, F.A.; Darwish, D.B.E.; Alrdahe, S.S.; Alshehri, D.; Benedito, V.A.; Tadege, M.; Wang, X.; Zhao, J. Overexpression of Terpenoid Biosynthesis Genes Modifies Root Growth and Nodulation in Soybean (Glycine max). Cells 2022, 11, 2622. [Google Scholar] [CrossRef]
- Makris, D.P.; Boskou, G.; Andrikopoulos, N.K. Polyphenolic Content and in Vitro Antioxidant Characteristics of Wine Industry and other Agri-Food Solid Waste Extracts. J. Food Compos. Anal. 2007, 20, 125–132. [Google Scholar] [CrossRef]
- Aziz, R.A.; Hamed, F.K.; Abdulah, N.A. Determination of the main components of the essential oil extracted from Salvia fruticosa by sing GC and GC-MS DAMASCUS. J. Agric. Sci. 2008, 24, 223–236. [Google Scholar]
- Loizzo, M.R.; Menichini, F.; Tundis, R.; Bonesi, M.; Nadjafi, F.; Saab, A.M.; Frega, N.G.; Menichini, F. Comparative chemical composition and antiproliferative activity of aerial parts of Salvia leriifolia Benth. And Salvia acetabulosa L. essential oils against human tumor cell in vitro models. J. Med. Food 2010, 13, 62–69. [Google Scholar] [PubMed]
- Atsuko, T.; Hiroshi, O. Phylogenetic relationships among subgenera, species, and varieties of Japanese Salvia L. (Lamiaceae). J. Plant Res. 2011, 124, 245–252. [Google Scholar]
- Hua, W.P.; Zhang, Y.; Song, J.; Zhao, L.J.; Wang, Z.Z. De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomic 2011, 98, 272–279. [Google Scholar]
- Nadaf, M.; Nasrabadi, M.; Halimi, M. GC-MS analysis of n-hexane extract from aerial parts of Salvia nemorosa. Middle-East J. Sci. Res. 2012, 11, 1127–1130. [Google Scholar]
- Fateme, A.M.; Mohammad, H.F.; Abdolhossein, R.; Ali, Z.; Maryam, S. Volatile Constituents of Salvia compressa and Logochilus macranthus, two Labiatae Herbs Growing wild in Iran. Res. J. Recent Sci. 2013, 2, 66–68. [Google Scholar]
- Ali, M. Cloning, molecular characterization and functional analysis of the CIS-muuroladiene synthase (SgCMS) gene from leaves of Salvia guaranitica plant. Egypt. J. Desert Res. 2023, 73, 239–263. [Google Scholar] [CrossRef]
- Mehmood, N.; Yuan, Y.; Ali, M.; Ali, M.; Iftikhar, J.; Cheng, C.; Lyu, M.; Wu, B. Early transcriptional response of terpenoid metabolism to Colletotrichum gloeosporioides in a resistant wild strawberry Fragaria nilgerrensis. Phytochemistry 2021, 181, 112590. [Google Scholar] [CrossRef] [PubMed]
- Makhadmeh, I.M.; Thabet, S.G.; Ali, M.; Alabbadi, B.; Albalasmeh, A.; Alqudah, A.M. Exploring genetic variation among Jordanian Solanum lycopersicon L. landraces and their performance under salt stress using SSR markers. J. Genet. Eng. Biotechnol. 2022, 20, 45. [Google Scholar] [CrossRef]
- Makhadmeh, I.; Albalasmeh, A.A.; Ali, M.; Thabet, S.G.; Darabseh, W.A.; Jaradat, S.; Alqudah, A.M. Molecular Characterization of Tomato (Solanum lycopersicum L.) Accessions under Drought Stress. Horticulturae 2022, 8, 600. [Google Scholar] [CrossRef]
- Hussain, R.M.; Ali, M.; Feng, X.; Li, X. The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars. BMC Plant Biol. 2017, 17, 55. [Google Scholar] [CrossRef]
- Horsch, R.B.; Fraley, R.T.; Rogers, S.G.; Sanders, P.R.; Lloyd, A.; Hoffmann, N. Inheritance of functional foreign genes in plants. Science 1984, 223, 496–498. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, A.M.; Barnason, A.R.; Rogers, S.G.; Byrne, M.C.; Fraley, R.T.; Horsch, R.B. Transformation of Arabidopsis thaliana with Agrobacterium tumefaciens. Science 1986, 234, 464–466. [Google Scholar] [CrossRef] [PubMed]
- Burow, M.D.; Chlan, C.A.; Sen, P.; Lisca, A.; Murai, N. High-frequency generation of transgenic tobacco plants after modified leaf disk cultivation with Agrobacterium tumefaciens. Plant Mol. Biol. Rep. 1990, 8, 124–139. [Google Scholar] [CrossRef]
- Wise, M.L.; Savage, T.J.; Katahira, E.; Croteau, R. Monoterpene synthases from common sage (Salvia officinalis) cDNA isolation, characterization, and functional expression of (+)-sabinene synthase, 1,8-cineole synthase, and (+)-bornyl diphosphate synthase. J. Biol. Chem. 1998, 273, 14891–14899. [Google Scholar] [CrossRef]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef]
- Rehman, N.U.; Ali, M.; Ahmad, M.Z.; Liang, G.; Zhao, J. Strigolactones promote rhizobia interaction and increase nodulation in soybean (Glycine max). Microb Pathog. 2017, 114, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Degenhardt, J.; Köllner, T.G.; Gershenzon, J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 2009, 70, 1621–1637. [Google Scholar] [CrossRef]
- Su-Fang, E.; Mohamed-Hussein, Z.A.; Othman, R.; Shaharuddin, N.A.; Ismail, I.; Zainal, Z. Functional Characterization of Sesquiterpene Synthase from Polygonum minus. Sci. World J. 2014, 2014, 840592. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Jin, J.; Sarojam, R.; Ramachandran, S. A Comprehensive Survey on the Terpene Synthase Gene Family Provides New Insight into Its Evolutionary Patterns. Genome Biol. Evol. 2019, 11, 2078–2098. [Google Scholar] [CrossRef]
- Yan, X.M.; Zhou, S.S.; Liu, H.; Zhao, S.W.; Tian, X.C.; Shi, T.L.; Bao, Y.T.; Li, Z.C.; Jia, K.H.; Nie, S.; et al. Unraveling the evolutionary dynamics of the TPS gene family in land plants. Front. Plant Sci. 2023, 14, 1273648. [Google Scholar] [CrossRef] [PubMed]
- López-Gallego, F.; Wawrzyn, G.T.; Schmidt-Dannert, C. Selectivity of fungal sesquiterpene synthases: Role of the active site’s H-1α loop in catalysis. Appl. Environ. Microbiol. 2010, 76, 7723–7733. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.S.; Jette, S.; Brigitte, L.; Johannes, N.; Jose, G.B.; Figueiredo, A.C.; Luis, G.P.; Jo, D.; Helena, T. Genomic characterization, molecular cloning and expression analysis of two terpene synthases from Thymus caespititius (Lamiaceae). Planta 2013, 238, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Rebecca, S.W.; Ayelign, M.A.; Lina, B.; Elaheh, N.; Soheil, S.M. Cloning and functional characterization of a floral repressor gene from Lavandula Angustifolia. Planta 2020, 251, 41. [Google Scholar]
- Christianson, D.W. Structural biology and chemistry of the terpenoid cyclases. Chem. Rev. 2006, 106, 3412–3442. [Google Scholar] [CrossRef] [PubMed]
- Davis, E.M.; Croteau, R. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. In Biosynthesis: Aromatic Polyketides, Isoprenoids, Alkaloids; Vederas, J.C., Leeper, F.J., Eds.; Springer: Berlin, Germany, 2000; pp. 53–95. [Google Scholar]
- Whittington, D.A.; Wise, M.L.; Urbansky, M.; Coates, R.M.; Croteau, R.B.; Christianson, D.W. Bornyl diphosphate synthase: Structure and strategy for carbocation manipulation by a terpenoid cyclase. Proc. Natl. Acad. Sci. USA 2002, 99, 15375–15380. [Google Scholar] [CrossRef] [PubMed]
- Hyatt, D.C.; Youn, B.; Zhao, Y.; Santhamma, B.; Coates, R.M.; Croteau, R.B.; Kang, C. Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proc. Natl. Acad. Sci. USA 2007, 104, 5360–5365. [Google Scholar] [CrossRef] [PubMed]
- El-ramah, F.; Ali, M.; Elsherbeny, E.; Ahmed, M. Molecular cloning and characterization of beta-amyrin synthase (SoAMYS) gene from Salvia officinalis plant. Egypt. J. Desert Res. 2022, 72, 27–45. [Google Scholar] [CrossRef]
- Wang, B.; Sun, W.; Li, Q.; Li, Y.; Luo, H.; Song, J.; Sun, C.; Qian, J.; Zhu, Y.; Hayward, A.; et al. Genome-wide identification of phenolic acid biosynthetic genes in Salvia miltiorrhiza. Planta 2015, 241, 711–725. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Yuan, J.S.; Köllner, T.G.; Chen, Y.; Guo, Y.; Zhuang, X.; Chen, X.; Zhang, Y.J.; Fu, J.; et al. The rice terpene synthase gene OsTPS19 functions as an (S)-limonene synthase in planta, and its overexpression leads to enhanced resistance to the blast fungus Magnaporthe oryzae. Plant Biotechnol. J. 2018, 16, 1778–1787. [Google Scholar] [CrossRef]
- Croteau, R.; Felton, M.; Karp, F.; Kjonaas, R. Relationship of camphor biosynthesis to leaf development in sage Salvia officinalis. Plant Physiol. 1981, 67, 820–824. [Google Scholar] [CrossRef] [PubMed]
- Sabine, G.-G.; Corinna, S.; Ralf, S.; Johannes, N. Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae). J. Plant Physiolol. 2012, 169, 353–359. [Google Scholar]
- Abeed, A.H.A.; Ali, M.; Ali, E.F.; Majrashi, A.; Eissa, M.A. Induction of Catharanthus roseus Secondary Metabolites When Calotropis procera Was Used as Bio-Stimulant. Plants 2021, 10, 1623. [Google Scholar] [CrossRef]
- Chen, F.; Ro, D.K.; Petri, J.; Gershenzon, J.; Bohlmann, J.; Pichersky, E.; Tholl, D. Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol. 2004, 135, 1956–1966. [Google Scholar] [CrossRef]
- Ro, D.-K.; Ehlting, J.; Keeling, C.I.; Lin, R.; Mattheus, N.; Bohlmann, J. Microarray expression profiling and functional characterization of AtTPS genes: Duplicated Arabidopsis thaliana sesquiterpene synthase genes At4g13280 and At4g13300 encode root-specific and wound-inducible (Z)-γ-bisabolene synthases. Arch. Biochem. Biophys. 2006, 448, 104–116. [Google Scholar] [CrossRef]
- Kampranis, S.C.; Ioannidis, D.; Purvis, A.; Mahrez, W.; Ninga, E.; Katerelos, N.A.; Anssour, S.; Dunwell, J.M.; Degenhardt, J.; Makris, A.M.; et al. Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: Structural insights into the evolution of terpene synthase function. Plant Cell. 2007, 19, 1994–2005. [Google Scholar] [CrossRef]
- Field, B.; Osbourn, A.E. Metabolic diversification–independent assembly of operon-like gene clusters in different plants. Science 2008, 320, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Tholl, D.; Bohlmann, J.; Pichersky, E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 2011, 66, 212–229. [Google Scholar] [CrossRef] [PubMed]
- Field, B.; Fiston-Lavier, A.S.; Kemen, A.; Geisler, K.; Quesneville, H.; Osbourn, A.E. Formation of plant metabolic gene clusterswithin dynamic chromosomal regions. Proc. Natl. Acad. Sci. USA 2011, 108, 16116–16121. [Google Scholar] [CrossRef]
- Vaughan, M.M.; Wang, Q.; Webster, F.X.; Kiemle, D.; Hong, Y.J.; Tantillo, D.J.; Coates, R.M.; Wray, A.T.; Askew, W.; O’Donnell, C.; et al. Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class I terpene synthaseTPS08 in the root stele is involved in defense against belowground herbivory. Plant Cell 2013, 25, 1108–1125. [Google Scholar] [CrossRef]
- Wang, Q.; Jia, M.; Huh, J.H.; Muchlinski, A.; Peters, R.J.; Tholl, D. Identification of a Dolabellane Type Diterpene Synthase and other Root-Expressed Diterpene Synthases in Arabidopsis. Front. Plant Sci. 2016, 7, 1761. [Google Scholar] [CrossRef] [PubMed]
- Lücker, J.; El Tamer, M.K.; Schwab, W.; Verstappen, F.W.; van der Plas, L.H.; Bouwmeester, H.J.; Verhoeven, H.A. Monoterpene biosynthesis in lemon (Citrus limon). cDNA isolation and functional analysis of four monoterpene synthases. Eur. J. Biochem. 2002, 269, 3160–3171. [Google Scholar] [CrossRef] [PubMed]
- Faldt, J.; Martin, D.; Miller, B.; Rawat, S.; Bohlmann, J. Traumatic resin defense in Norway spruce (Picea abies): Methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Mol. Biol. 2003, 51, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Yoko, I.; David, R.G.; Eyal, F.; Efraim, L.; Eran, P. Characterization of Geraniol Synthase from the Peltate Glands of Sweet Basil. Plant Physiol. 2004, 134, 370–379. [Google Scholar]
- Shimada, T.; Endo, T.; Fujii, H.; Hara, M.; Omura, M. Isolation and characterization of (E)-beta-ocimene and 1,8 cineole synthases in Citrus unshiu Marc. Plant Sci. 2005, 168, 987–995. [Google Scholar] [CrossRef]
- Fahnrich, A.; Krause, K.; Piechulla, B. Product variability of the ‘cineole cassette’ monoterpene synthases of related Nicotiana species. Mol. Plant 2011, 4, 965–984. [Google Scholar] [CrossRef]
NCBI Accession | a Descriptiona | Organism | E Value | Max Score | Total Score | Query Cover | Identity (%) | Accession Length |
---|---|---|---|---|---|---|---|---|
XP_042043873.1 | (E,E)-geranyllinalool synthase-like | Salvia splendens | 0.0 | 1582 | 1582 | 90% | 98.54% | 837 |
XP_041991789.1 | (E,E)-geranyllinalool synthase-like | Salvia splendens | 0.0 | 1575 | 1575 | 90% | 98.18% | 837 |
XP_047940334.1 | (E,E)-geranyllinalool synthase-like | Salvia hispanica | 0.0 | 1526 | 1526 | 90% | 94.66% | 834 |
XP_041994219.1 | (E,E)-geranyllinalool synthase-like | Salvia splendens | 0.0 | 1435 | 1435 | 90% | 87.90% | 851 |
XP_047964745.1 | (E,E)-geranyllinalool synthase-like | Salvia hispanica | 0.0 | 1414 | 1414 | 90% | 87.44% | 850 |
XP_057764549.1 | S-linalool synthase | Salvia miltiorrhiza | 0.0 | 1184 | 1184 | 90% | 74.76% | 820 |
QEV81852.1 | Terpene synthase 13 | Prunella vulgaris | 0.0 | 1067 | 1067 | 90% | 66.07% | 881 |
PIN19742.1 | Alpha-farnesene synthase | Handroanthus impetiginosus | 0.0 | 993 | 993 | 90% | 60.83% | 846 |
UVE15964.1 | Geranyllinalool synthase | Leonurus japonicus | 0.0 | 989 | 989 | 84% | 64.99% | 827 |
QIQ55998.1 | Putative terpene synthase 7 | Eremophila drummondii | 0.0 | 872 | 872 | 83% | 59.04% | 792 |
N | Compound Name | R.T (min.) | Formula | Molecular Mass (g mol−1) | Terpene of Type | % Peak Area | |
---|---|---|---|---|---|---|---|
AtW.T | SgTPS-V | ||||||
1 | 3,4-Dimethylcyclohexanol | 16.114 | C8H16O | 128.212 | 0.04 | ||
2 | L-(-)-Nicotine | 25.9 | C10H14N2 | 162.232 | 23.06 | ||
3 | Cycloheptasiloxane, tetradecamethyl- | 29.69 | C14H42O7Si7 | 519.0776 | 0.02 | ||
4 | Trans-β-Ionone | 30.644 | C13H20O | 192.2973 | 0.05 | ||
5 | Topanol | 31.134 | C15H24O | 220.3505 | Sesqui | 0.06 | |
6 | Stavox | 31.345 | C15H24O | 220.3505 | Sesqui | 0.15 | |
7 | Cyclooctasiloxane, hexadecamethyl- | 34.574 | C16H48O8Si8 | 593.2315 | 0.16 | ||
8 | Carbamic acid, methyl-, 3-methylphenyl ester | 36.029 | C9H11NO2 | 165.1891 | 0.06 | ||
9 | Tetradecanal | 37.76 | C14H28O | 212.3715 | Fatty acids | 0.09 | |
10 | Octadeamethyl-cyclononasiloxane | 38.761 | C18H54O9Si9 | 667.3855 | 0.32 | ||
11 | Pentadecanoic acid | 39.636 | C15H30O2 | 242.3975 | Fatty acids | 0.14 | |
12 | N-Pentadecanal | 40.583 | C15H30O | 226.3981 | Fatty acids | 0.17 | |
13 | Oxirane, tetradecyl- | 40.777 | C16H32O | 240.4247 | 1.29 | ||
14 | Linolenic acid;Methyl linolenate | 42.253 | C19H32O2 | 292.4562 | Fatty acids | 0.86 | |
15 | Alpha.-Linolenic acid, trimethylsilyl ester | 42.458 | C21H38O2Si | 350.6107 | Fatty acids | 0.8 | |
16 | Palmitic acid, methyl ester | 43.187 | C17H34O2 | 270.4507 | Fatty acids | 0.1 | |
17 | Methyl α-linolenate | 44.012 | C19H32O2 | 292.4562 | Fatty acids | 3.48 | |
18 | N-Hexadecanoic acid | 44.285 | C16H32O2 | 256.4241 | Fatty acids | 4.36 | |
19 | Palmitic acid | 44.686 | C16H32O2 | 256.4241 | Fatty acids | 11.74 | |
20 | Cycloartanyl acetate | 45.616 | C32H54O2 | 470.77 | 0.63 | ||
21 | Hexadecamethyl-cyclooctasioxane | 45.865 | C16H48O8Si8 | 593.2315 | 0.3 | ||
22 | Labda-8,13-(E)-dien-15-ol | 45.95 | C20H34O | 290.4834 | Di | 0.2 | |
23 | Stearin, 2-mono | 46.238 | C21H42O4 | 358.5558 | 0.11 | ||
24 | Geranylgeraniol | 46.367 | C22H36O2 | 332.52 | Di | 0.35 | |
25 | Guaia-1(10),11-diene; | 46.392 | C15H24 | 204.3511 | Sesqui | 0.65 | |
26 | All-trans-Retinol acetate | 46.593 | C22H32O2 | 328.4883 | 0.55 | ||
27 | (+)-Ledol; d-Ledol | 46.691 | C15H26O | 222.3663 | Sesqui | 0.63 | |
28 | Linoleic acid, methyl ester | 46.888 | C19H34O2 | 294.4721 | Fatty acids | 0.11 | |
29 | Retinol, acetate, all-trans | 46.926 | C22H32O2 | 328.4883 | 0.87 | ||
30 | Linolenic acid | 47.041 | C19H32O2 | 292.4562 | Fatty acids | 0.47 | |
31 | Methyl linoleate | 47.192 | C19H34O2 | 294.4721 | Di | 0.45 | |
32 | Cis-Phytol | 47.267 | C20H40O | 296.531 | Di | 4.71 | |
33 | Farnesyl butyrate | 47.341 | C19H32O2 | 292.4562 | Di | 0.74 | |
34 | Phytol | 47.603 | C20H40O | 296.531 | Di | 4.82 | |
35 | Citronellyl geranylate | 47.702 | C20H34O2 | 306.4828 | Di | 1.32 | |
36 | (Z)-β-Elemene; | 48.037 | C15H24 | 204.3511 | Di | 0.27 | |
37 | (2E,6E)-Farnesyl pentanoate | 48.064 | C20H34O2 | 306.4828 | Di | 1.22 | |
38 | Phytol, trimethylsilyl ether | 48.303 | C23H48OSi | 368.7121 | Di | 0.21 | |
39 | geranylgeraniol | 48.418 | C22H36O2 | 332.52 | Di | 0.28 | |
40 | Linolenic acid | 48.532 | C18H30O2 | 278.4296 | Fatty acids | 8.02 | |
41 | α-Linolenic acid | 48.907 | C18H30O2 | 278.4296 | Fatty acids | 23.73 | |
42 | Geranylgeraniol | 48.948 | C22H36O2 | 332.52 | Di | 1.17 | |
43 | 4,8,13-Duvatriene-1,3-Diol | 49.156 | C20H34O2 | 306.4828 | 0.68 | ||
44 | Stearic acid | 49.281 | C18H36O2 | 284.4772 | Fatty acid | 2.86 | |
45 | (+)-Ledol | 49.552 | C15H26O | 222.3663 | Sesqui | 1.15 | |
46 | 4,8,13-Duvatriene-1,3-Diol | 50.049 | C20H34O2 | 306.4828 | 43.79 | ||
47 | α-Limonene diepoxide | 50.216 | C10H16O2 | 168.2328 | Mono | 0.84 | |
48 | (E,E)-Geranyllinalool | 50.461 | C20H34O | 290.4834 | Di | 33.8 | |
49 | Behenyl alcohol | 51.405 | C22H46O | 326.6 | 0.23 | ||
50 | d-Ledol | 51.493 | C15H26O | 222.3663 | Sesqui | 0.07 | |
51 | Octadeamethyl-cyclononasiloxane | 52.037 | C18H54O9Si9 | 667.3855 | 0.65 | ||
52 | Methyl 11,14,17-icosatrienoate | 52.978 | C21H36O2 | 320.5093 | 0.24 | ||
53 | Cyclononasiloxane, octadecamethyl- | 53.436 | C18H54O9Si9 | 667.3855 | 0.05 | ||
54 | 7,10-Hexadecadienoic acid, methyl ester | 53.481 | C17H30O2 | 266.4189 | 0.7 | ||
55 | Squalene | 54.046 | C30H50 | 410.718 | Tri | 0.43 | |
56 | n-Heneicosane | 54.964 | C21H44 | 296.5741 | 0.05 | ||
57 | Octadeamethyl-cyclononasiloxane | 56.355 | C18H54O9Si9 | 667.3855 | 0.79 | ||
58 | Methyl linolenate, α | 57.393 | C19H32O2 | 292.4562 | Fatty acids | 0.09 | |
59 | n-Pentatriacontane | 58.253 | C35H72 | 492.9462 | 0.52 | ||
60 | n-Pentatriacotane | 58.992 | C35H72 | 492.9462 | 0.79 | ||
61 | Phthalic acid dioctyl ester | 59.688 | C24H38O4 | 390.5561 | Ester | 0.49 | |
62 | phthalic acid | 60.497 | C24H38O4 | 390.5561 | Ester | 0.15 | |
63 | Methyl 11,14,17-icosatrienoate | 60.973 | C21H36O2 | 320.5093 | 0.4 | ||
64 | Homomyrtenol | 61.574 | C11H18O | 166.26 | Mono | 0.13 | |
65 | Octadeamethyl-cyclononasiloxane | 62.682 | C18H54O9Si9 | 667.3855 | 1.06 | ||
66 | n-Heneicosane | 63.222 | C21H44 | 296.5741 | Alkane | 0.18 | |
67 | n-Tetracontane | 64.117 | C40H82 | 563.0791 | Alkane | 0.14 | |
68 | n-Nonacosane | 66.567 | C29H60 | 408.7867 | Alkane | 0.09 | |
69 | Isovaleric acid, allyl ester | 68.645 | C8H14O2 | 142.1956 | 0.23 | ||
70 | henicosane | 68.682 | C21H44 | 296.5741 | Alkane | 1.55 | |
71 | Tetracontane | 69.7 | C40H82 | 563.0791 | Alkane | 1.61 | |
72 | Octadeamethyl-cyclononasiloxane | 70.054 | C18H54O9Si9 | 667.3855 | 1.15 | ||
73 | Tetrapentacontane | 71.42 | C54H110 | 759.4512 | 0.03 | ||
74 | 9,12-Octadecadien-1-ol, (Z,Z)- | 71.563 | C18H34O | 266.462 | 0.07 | ||
75 | (-)-Myrtenol | 72.087 | C10H16O | 152.2334 | Mono | 0.15 | |
76 | n-Pentatriacontane | 72.462 | C35H72 | 492.9462 | 0.19 | ||
77 | Montanyl alcohol | 72.767 | C28H58O | 410.7595 | 0.33 | ||
78 | α-Curcumene | 73.038 | C15H22 | 202.3352 | Sesqui | 0.15 | |
79 | 3-Methyloctadecane | 73.842 | C19H40 | 268.5209 | 0.03 | ||
80 | Octadecyl chloride | 74.477 | C18H37Cl | 288.939 | 0.63 | ||
81 | Nonacosane | 75.547 | C29H60 | 408.7867 | Alkane | 0.38 | |
82 | n-Octadecyl chloride; | 76.096 | C18H37Cl | 288.939 | 0.04 | ||
83 | Octadeamethyl-cyclononasiloxane | 77.732 | C18H54O9Si9 | 667.3855 | 1.17 | ||
84 | n-Nonacosane | 78.098 | C29H60 | 408.7867 | Alkane | 2.84 | |
85 | n-Octacosane | 78.668 | C28H58 | 394.7601 | Alkane | 0.08 | |
86 | n-Nonacosane | 79.245 | C29H60 | 408.7867 | Alkane | 0.27 | |
Total % monoterpene | 0.99 | 0.13 | 667.3855 | 0.65 | |||
Total % sesquiterpene | 0.33 | 2.8 | 320.5093 | 0.24 | |||
Total % diterpene | 7.55 | 41.72 | 667.3855 | 0.05 | |||
Total % triterpene | 0.43 | 266.4189 | 0.7 | ||||
Total % ester | 0.49 | 0.15 | 410.718 | Tri | 0.43 | ||
Total % of Alkane | 4.74 | 2.4 | 296.5741 | 0.05 | |||
Total % of fatty acid. | 13.99 | 40.17 | 667.3855 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelhameed, A.A.; Eissa, M.A.; El-kholy, R.I.; Darwish, D.B.E.; Abeed, A.H.A.; Soudy, F.A.; Alyamani, A.A.; Abdelmigid, H.M.; Morsi, M.M.; Zhao, J.; et al. Molecular Cloning and Expression Analysis of Geranyllinalool Synthase Gene (SgGES) from Salvia guaranitica Plants. Horticulturae 2024, 10, 668. https://doi.org/10.3390/horticulturae10070668
Abdelhameed AA, Eissa MA, El-kholy RI, Darwish DBE, Abeed AHA, Soudy FA, Alyamani AA, Abdelmigid HM, Morsi MM, Zhao J, et al. Molecular Cloning and Expression Analysis of Geranyllinalool Synthase Gene (SgGES) from Salvia guaranitica Plants. Horticulturae. 2024; 10(7):668. https://doi.org/10.3390/horticulturae10070668
Chicago/Turabian StyleAbdelhameed, Ahmed Ali, Mohamed A. Eissa, Ragab I. El-kholy, Doaa Bahaa Eldin Darwish, Amany H. A. Abeed, Fathia A. Soudy, Amal Ahmed Alyamani, Hala M. Abdelmigid, Maissa M. Morsi, Jian Zhao, and et al. 2024. "Molecular Cloning and Expression Analysis of Geranyllinalool Synthase Gene (SgGES) from Salvia guaranitica Plants" Horticulturae 10, no. 7: 668. https://doi.org/10.3390/horticulturae10070668
APA StyleAbdelhameed, A. A., Eissa, M. A., El-kholy, R. I., Darwish, D. B. E., Abeed, A. H. A., Soudy, F. A., Alyamani, A. A., Abdelmigid, H. M., Morsi, M. M., Zhao, J., Ali, M., & Zayed, M. (2024). Molecular Cloning and Expression Analysis of Geranyllinalool Synthase Gene (SgGES) from Salvia guaranitica Plants. Horticulturae, 10(7), 668. https://doi.org/10.3390/horticulturae10070668