Shade and Nitrogen Fertilizer Effects on Greenhouse Gas Emissions from Creeping Bentgrass Putting Greens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Fertilizers Evaluated
2.3. Experimental Design
2.4. Greenhouse Gas Analysis
2.5. Environmental Conditions
2.6. Turfgrass Color and Quality
2.7. General Plot Maintenance
2.8. Statistical Analysis
3. Results and Discussion
3.1. Canopy Temperature, Soil Temperature, and Soil Moisture
3.2. Greenhouse Gas Flux
3.2.1. CO2 Flux
3.2.2. CH4 Flux
3.2.3. N2O Flux
3.3. Turfgrass Color and Quality
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- US EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2009. Available online: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2009 (accessed on 26 January 2023).
- IPCC. Climate Change in Data: The Physical Science Basis. Available online: https://www.ipcc.ch/report/ar6/wg1/resources/climate-change-in-data (accessed on 4 June 2024).
- US EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2021. Available online: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2021 (accessed on 16 May 2023).
- Bekken, M.A.H.; Soldat, D.J. Estimated Energy Use and Greenhouse Gas Emissions Associated with Golf Course Turfgrass Maintenance in the Northern USA. Int. Turfgrass Soc. Res. J. 2022, 14, 58–75. [Google Scholar] [CrossRef]
- Cardenas, L.M.; Thorman, R.; Ashlee, N.; Butler, M.; Chadwick, D.; Chambers, B.; Cuttle, S.; Donovan, N.; Kingston, H.; Lane, S.; et al. Quantifying Annual N2O Emission Fluxes from Grazed Grassland under a Range of Inorganic Fertiliser Nitrogen Inputs. Agric. Ecosyst. Environ. 2010, 136, 218–226. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Aber, J.D.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, D.G. Human Alteration of the Global Nitrogen Cycle: Sources and Consequences. Ecol. Appl. 1997, 7, 737–750. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Menge, D.N.L.; Reed, S.C.; Cleveland, C.C. Biological Nitrogen Fixation: Rates, Patterns and Ecological Controls in Terrestrial Ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130119. [Google Scholar] [CrossRef] [PubMed]
- Morel, J.L.; Chenu, C.; Lorenz, K. Ecosystem Services Provided by Soils of Urban, Industrial, Traffic, Mining, and Military Areas (SUITMAs). J. Soils Sediments 2015, 15, 1659–1666. [Google Scholar] [CrossRef]
- Raciti, S.M.; Groffman, P.M.; Fahey, T.J. Nitrogen Retention in Urban Lawns and Forests. Ecol. Appl. 2008, 18, 1615–1626. [Google Scholar] [CrossRef] [PubMed]
- Vasenev, V.I.; Ananyeva, N.D.; Makarov, O.A. Specific Features of the Ecological Functioning of Urban Soils in Moscow and Moscow Oblast. Eurasian Soil Sci. 2012, 45, 194–205. [Google Scholar] [CrossRef]
- Beesley, L. Carbon Storage and Fluxes in Existing and Newly Created Urban Soils. J. Environ. Manag. 2012, 104, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Prokhorov, I.; Karev, S. Particulates of Artificial Soil-Ground Production for Landscape and Shade Gardening. Agrochem. Vestn. 2012, 3, 21–25. [Google Scholar]
- Vasenev, V.; Epikhina, A.; Fatiev, M.; Prokhorov, I. Experimental Modelling of Urban Soils’ Constructions with Minimal Emissions of Greenhouse Gases. Agroecology 2014, 1, 43–49. [Google Scholar]
- Kaye, J.P.; Burke, I.C.; Mosier, A.R.; Pablo Guerschman, J. Methane and Nitrous Oxide Fluxes from Urban Soils to the Atmosphere. Ecol. Appl. 2004, 14, 975–981. [Google Scholar] [CrossRef]
- Koerner, B.; Klopatek, J. Anthropogenic and Natural CO2 Emission Sources in an Arid Urban Environment. Environ. Pollut. 2002, 116, S45–S51. [Google Scholar] [CrossRef] [PubMed]
- Sarzhanov, D.A.; Vasenev, V.I.; Sotnikova, Y.L.; Tembo, A.; Vasenev, I.I.; Valentini, R. Short-Term Dynamics and Spatial Heterogeneity of CO2 Emission from the Soils of Natural and Urban Ecosystems in the Central Chernozemic Region. Eurasian Soil Sci. 2015, 48, 416–424. [Google Scholar] [CrossRef]
- Whitman, W.B.; Bowen, T.L.; Boone, D.R. The Methanogenic Bacteria. In The Prokaryotes: Volume 3: Archaea. Bacteria: Firmicutes, Actinomycetes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 165–207. ISBN 978-0-387-30743-5. [Google Scholar]
- Sylvia, D.; Fuhrmann, J.; Hartell, P.; Zuberer, D. Principles and Applications of Soil Microbiology; Pearson: London, UK, 2005. [Google Scholar]
- Knowles, R. Methane: Processes of Production and Consumption. In Agricultural Ecosystem Effects on Trace Gases and Global Climate Change; John Wiley & Sons, Ltd.: London, UK, 1993; pp. 145–156. ISBN 978-0-89118-321-1. [Google Scholar]
- Reeburg, W.; Whalen, S.; Alpern, M. The Role of Methyllotrophic in the Global Methan Budget. In Microbial Growth on C1 Compounds; Murrell, J.C., Kelley, D.P., Eds.; Intercept Ltd.: Andover, UK, 1993. [Google Scholar]
- Kunnemann, T.; Cannavo, P.; Guerin, V.; Guenon, R. Soil CO2, CH4 and N2O Fluxes in Open Lawns, Treed Lawns and Urban Woodlands in Angers, France. Urban Ecosyst. 2023, 26, 1659–1672. [Google Scholar] [CrossRef]
- Milesi, C.; Running, S.W.; Elvidge, C.D.; Dietz, J.B.; Tuttle, B.T.; Nemani, R.R. Mapping and Modeling the Biogeochemical Cycling of Turf Grasses in the United States. Environ. Manag. 2005, 36, 426–438. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Urban Ecosystems and Climate Change. In Carbon Sequestration in Urban Ecosystems; Lal, R., Augustin, B., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 3–19. ISBN 978-94-007-2366-5. [Google Scholar]
- Chawla, S.; Agnihotri, R.; Patel, M.; Patil, S.; Shah, H. Turfgrass: A Billion Dollar Industry. In Proceedings of the National Conference on Floriculture for Rural and Urban Prosperity in the Scenario of Climate Change, Gangtok, India, 16–18 February 2018. [Google Scholar]
- Nutter, G.C.; Watson, J.R., Jr. The Turfgrass Industry. In Turfgrass Science; John Wiley & Sons, Ltd.: London, UK, 1969; pp. 9–26. ISBN 978-0-89118-209-2. [Google Scholar]
- Canedoli, C.; Ferrè, C.; El Khair, D.A.; Padoa-Schioppa, E.; Comolli, R. Soil Organic Carbon Stock in Different Urban Land Uses: High Stock Evidence in Urban Parks. Urban Ecosyst. 2020, 23, 159–171. [Google Scholar] [CrossRef]
- Churkina, G.; Brown, D.G.; Keoleian, G. Carbon Stored in Human Settlements: The Conterminous United States. Glob. Chang. Biol. 2010, 16, 135–143. [Google Scholar] [CrossRef]
- Selhorst, A.; Lal, R. Net Carbon Sequestration Potential and Emissions in Home Lawn Turfgrasses of the United States. Environ. Manag. 2013, 51, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Livesley, S.J.; Ossola, A.; Threlfall, C.G.; Hahs, A.K.; Williams, N.S.G. Soil Carbon and Carbon/Nitrogen Ratio Change under Tree Canopy, Tall Grass, and Turf Grass Areas of Urban Green Space. J. Environ. Qual. 2016, 45, 215–223. [Google Scholar] [CrossRef]
- Nidzgorski, D.A.; Hobbie, S.E. Urban Trees Reduce Nutrient Leaching to Groundwater. Ecol. Appl. 2016, 26, 1566–1580. [Google Scholar] [CrossRef]
- Hatfield, J. Turfgrass and Climate Change. Agron. J. 2017, 109, 1708–1718. [Google Scholar] [CrossRef]
- Goss, R.M.; Baird, J.H.; Kelm, S.L.; Calhoun, R.N. Trinexapac-Ethyl and Nitrogen Effects on Creeping Bentgrass Grown under Reduced Light Conditions. Crop Sci. 2002, 42, 472–479. [Google Scholar] [CrossRef]
- Fry, J.; Huang, B. Applied Turfgrass Science and Physiology; John Wiley & Sons: London, UK, 2004; ISBN 978-0-471-47270-4. [Google Scholar]
- Steir, J.C.; Horgan, B.P.; Bonos, S.A. (Eds.) Turfgrass: Biology, Use, and Management; American Society of Agronomy: Madison, WI, USA, 2013; Volume 56, ISBN 978-0-89118-613-7. [Google Scholar]
- Steinke, K.; Stier, J.C. Nitrogen Selection and Growth Regulator Applications for Improving Shaded Turf Performance. Crop Sci. 2003, 43, 1399–1406. [Google Scholar] [CrossRef]
- Walker, K.S.; Bigelow, C.A.; Smith, D.R.; Van Scoyoc, G.E.; Reicher, Z.J. Aboveground Responses of Cool-Season Lawn Species to Nitrogen Rates and Application Timings. Crop Sci. 2007, 47, 1225–1236. [Google Scholar] [CrossRef]
- Berhanu, Y.; Nigussie, A.; Jifar, A.A.; Ahmed, M.; Biresaw, A.; Mamuye, M.; Fite, A.; Dume, B. Nitrous Oxide and Methane Emissions from Coffee Agroforestry Systems with Different Intensities of Canopy Closure. Sci. Total Environ. 2023, 876, 162821. [Google Scholar] [CrossRef]
- Townsend-Small, A.; Czimczik, C.I. Carbon Sequestration and Greenhouse Gas Emissions in Urban Turf. Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef]
- Chapman, K.E.; Walker, K.S. The Effects of Fertilizer Sources and Site Location on Greenhouse Gas Emissions from Creeping Bentgrass Putting Greens and Kentucky Bluegrass Roughs. Grasses 2023, 2, 78–97. [Google Scholar] [CrossRef]
- Mosier, A.R. Exchange of Gaseous Nitrogen Compounds between Agricultural Systems and the Atmosphere. Plant Soil 2001, 228, 17–27. [Google Scholar] [CrossRef]
- USDA ARS GRACEnet Protocols. Available online: https://www.ars.usda.gov/anrds/gracenet/gracenet-protocols/ (accessed on 2 April 2024).
- Morris, K.N.; Shearman, R.C. NTEP Turfgrass Evaluation Guidelines. In Proceedings of the NTEP Turfgrass Evaluation Workshop, Beltsville, MD, USA, 17 October 1998; pp. 1–5. [Google Scholar]
- Bell, G.E.; Martin, D.L.; Wiese, S.G.; Dobson, D.D.; Smith, M.W.; Stone, M.L.; Solie, J.B. Vehicle-Mounted Optical Sensing: An Objective Means for Evaluating Turf Quality. Crop Sci. 2002, 42, 197–201. [Google Scholar] [CrossRef]
- Bremer, D.J.; Lee, H.; Su, K.; Keeley, S.J. Relationships between Normalized Difference Vegetation Index and Visual Quality in Cool-Season Turfgrass: II. Factors Affecting NDVI and Its Component Reflectances. Crop Sci. 2011, 51, 2219–2227. [Google Scholar] [CrossRef]
- Jiang, Y.; Carrow, R.N. Assessment of Narrow-Band Canopy Spectral Reflectance and Turfgrass Performance under Drought Stress. HortScience 2005, 40, 242–245. [Google Scholar] [CrossRef]
- Jiang, Y.; Carrow, R.N. Broadband Spectral Reflectance Models of Turfgrass Species and Cultivars to Drought Stress. Crop Sci. 2007, 47, 1611–1618. [Google Scholar] [CrossRef]
- Lee, H.; Bremer, D.J.; Su, K.; Keeley, S.J. Relationships between Normalized Difference Vegetation Index and Visual Quality in Turfgrasses: Effects of Mowing Height. Crop Sci. 2011, 51, 323–332. [Google Scholar] [CrossRef]
- Trenholm, L.E.; Carrow, R.N.; Duncan, R.R. Relationship of Multispectral Radiometry Data to Qualitative Data in Turfgrass Research. Crop Sci. 1999, 39, 763–769. [Google Scholar] [CrossRef]
- Leinauer, B.; VanLeeuwen, D.M.; Serena, M.; Schiavon, M.; Sevostianova, E. Digital Image Analysis and Spectral Reflectance to Determine Turfgrass Quality. Agron. J. 2014, 106, 1787–1794. [Google Scholar] [CrossRef]
- Clark, V.; SAS Institute (Eds.) SAS/STAT 9.1: User’s Guide; SAS Pub: Cary, NC, USA, 2004; ISBN 978-1-59047-243-9. [Google Scholar]
- Bell, G.E.; Danneberger, T.K.; McMahon, M.J. Spectral Irradiance Available for Turfgrass Growth in Sun and Shade. Crop Sci. 2000, 40, 189–195. [Google Scholar] [CrossRef]
- Dudeck, A.E.; Peacock, C.H. Shade and Turfgrass Culture. In Turfgrass; John Wiley & Sons, Ltd.: London, UK, 1992; pp. 269–284. ISBN 978-0-89118-224-5. [Google Scholar]
- Miller, G.L.; Edenfield, J.T. Light Intensity and Duration Influence Growth of Ultradwarf Bermudagrasses. Golf Course Manag. 2002, 70, 111–113. [Google Scholar]
- Wan, S.; Luo, Y. Substrate Regulation of Soil Respiration in a Tallgrass Prairie: Results of a Clipping and Shading Experiment. Glob. Biogeochem. Cycles 2003, 17, 2002GB001971. [Google Scholar] [CrossRef]
- Bijoor, N.S.; Czimczik, C.I.; Pataki, D.E.; Billings, S.A. Effects of Temperature and Fertilization on Nitrogen Cycling and Community Composition of an Urban Lawn. Glob. Chang. Biol. 2008, 14, 2119–2131. [Google Scholar] [CrossRef]
- Bremer, D.J. Nitrous Oxide Fluxes in Turfgrass: Effects of Nitrogen Fertilization Rates and Types. J. Environ. Qual. 2006, 35, 1678–1685. [Google Scholar] [CrossRef]
- Firestone, M.K.; Davidson, E.A. Microbiological Basis of NO and N2O Production and Consumption in Soil. In Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere; Wiley: New York, NY, USA, 1989; Volume 47, pp. 7–21. [Google Scholar]
- Hakala, K.; Nikunen, H.-M.; Sinkko, T.; Niemeläinen, O. Yields and Greenhouse Gas Emissions of Cultivation of Red Clover-Grass Leys as Assessed by LCA When Fertilised with Organic or Mineral Fertilisers. Biomass Bioenergy 2012, 46, 111–124. [Google Scholar] [CrossRef]
- Chan, A.S.; Parkin, T.B. Methane Oxidation and Production Activity in Soils from Natural and Agricultural Ecosystems. J. Environ. Qual. 2001, 30, 1896–1903. [Google Scholar] [CrossRef]
- Braun, R.C.; Bremer, D.J. Nitrous Oxide Emissions from Turfgrass Receiving Different Irrigation Amounts and Nitrogen Fertilizer Forms. Crop Sci. 2018, 58, 1762–1775. [Google Scholar] [CrossRef]
- Livesley, S.J.; Dougherty, B.J.; Smith, A.J.; Navaud, D.; Wylie, L.J.; Arndt, S.K. Soil-Atmosphere Exchange of Carbon Dioxide, Methane and Nitrous Oxide in Urban Garden Systems: Impact of Irrigation, Fertiliser and Mulch. Urban Ecosyst. 2010, 13, 273–293. [Google Scholar] [CrossRef]
- Qian, Y.; Follett, R. Carbon Dynamics and Sequestration in Urban Turfgrass Ecosystems. In Carbon Sequestration in Urban Ecosystems; Lal, R., Augustin, B., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 161–172. ISBN 978-94-007-2365-8. [Google Scholar]
- Bell, G.E.; Danneberger, T.K. Temporal Shade on Creeping Bentgrass Turf. Crop Sci. 1999, 39, 1142–1146. [Google Scholar] [CrossRef]
- Kephart, K.D.; Buxton, D.R.; Taylor, S.E. Growth of C3 and C4 Perennial Grasses under Reduced Irradiance. Crop Sci. 1992, 32, 1033–1038. [Google Scholar] [CrossRef]
- Giesler, L.J.; Yuen, G.Y.; Horst, G.L. Canopy Microenvironments and Applied Bacteria Population Dynamics in Shaded Tall Fescue. Crop Sci. 2000, 40, 1325–1332. [Google Scholar] [CrossRef]
- Nangle, E.J.; Gardner, D.S.; Metzger, J.D.; Street, J.R.; Danneberger, T.K. Impact of Nitrogen Source and Trinexapac-Ethyl Application on Creeping Bentgrass (Agrostis stolonifera L.) Physiology under Neutral Shade, Deciduous Tree Shade, and Full Sunlit Conditions. HortScience 2012, 47, 936–942. [Google Scholar] [CrossRef]
- Baldwin, C.M.; Liu, H.; McCarty, L.B.; Luo, H.; Toler, J.E. Nitrogen and Plant Growth Regulator Influence on ‘Champion’ Bermudagrass Putting Green under Reduced Sunlight. Agron. J. 2009, 101, 75–81. [Google Scholar] [CrossRef]
- Russell, T.R.; Karcher, D.E.; Richardson, M.D. Daily Light Integral Requirement of a Creeping Bentgrass Putting Green as Affected by Shade, Trinexapac-Ethyl, and a Plant Colorant. Crop Sci. 2019, 59, 1768–1778. [Google Scholar] [CrossRef]
- Pease, B.W.; Stier, J.C. Nitrogen Rate and Growth Regulator Effects on Shaded Velvet and Creeping Bentgrasses. Agron. J. 2018, 110, 2151–2158. [Google Scholar] [CrossRef]
Canopy Temperature | Soil Temperature | Soil Moisture | |||||
---|---|---|---|---|---|---|---|
Year | Treatment | Mean | Median | Mean | Median | Mean | Median |
°C | °C | VWC % | |||||
2016 | |||||||
Canopy Coverage | |||||||
Shade | 17.0b | 16.75 | 17.3b | 18.5 | 30.1a | 30.7 | |
Sun | 23.2a | 23.20 | 22.0a | 24.4 | 21.7b | 20.8 | |
Source of Variation | df | df | df | ||||
Shade vs. sun | 1 | *** | 1 | *** | 1 | *** | |
Fertilizer | 2 | NS | 2 | NS | 2 | NS | |
Shade * fertilizer | 2 | NS | 2 | NS | 2 | NS | |
2017 | |||||||
Canopy Coverage | |||||||
Shade | 16.8b | 16.75 | 20.0b | 18.6 | 26.1a | 27.9 | |
Sun | 21.2a | 21.20 | 21.5a | 21.7 | 19.6b | 19.0 | |
Source of Variation | df | df | df | ||||
Shade vs. sun | 1 | *** | 1 | *** | 1 | *** | |
Fertilizer | 2 | NS | 2 | NS | 2 | NS | |
Shade * fertilizer | 2 | NS | 2 | NS | 2 | NS |
CO2 | N2O | CH4 | |||||
---|---|---|---|---|---|---|---|
Year | Treatment | Mean | Median | Mean | Median | Mean | Median |
g CO2-C m−2 h−1 | µg N2O-N m−2 h−1 | µg CH4-C m−2 h−1 | |||||
2016 | |||||||
Canopy Coverage | |||||||
Shade | 0.32B | 0.28 | 43.5 | 10.9 | 14.27A | 0.35 | |
Sun | 0.40A | 0.36 | 36.9 | 18.7 | −17.92B | −2.08 | |
Fertilizer | |||||||
Milorganite | 0.36ab | 0.32 | 34.5b | 22.0 | 3.10 | 0.11 | |
Urea | 0.37a | 0.32 | 67.2a | 17.3 | 4.28 | −1.40 | |
Control | 0.32b | 0.28 | 0c | 5.4 | −24.67 | −0.37 | |
Source of Variation | df | df | df | ||||
Shade vs. sun | 1 | *** | 1 | NS | 1 | * | |
Fertilizer | 2 | * | 2 | *** | 2 | NS | |
Shade * Fertilizer | 2 | NS | 2 | NS | 2 | NS | |
2017 | |||||||
Canopy Coverage | |||||||
Shade | 0.30B | 0.27 | 13.0B | 12.3 | 83.3 | 5.8 | |
Sun | 0.45A | 0.45 | 43.6A | 21.2 | −57.4 | −7.6 | |
Fertilizer | |||||||
Milorganite | 0.41a | 0.36 | 34.7 | 19.3 | −5.3 | 2.7 | |
Urea | 0.37b | 0.32 | 32.9 | 20.3 | 86.7 | 1.3 | |
Control | 0.34b | 0.30 | 5.6 | 5.4 | −87.7 | −1.3 | |
Source of Variation | df | df | df | ||||
Shade vs. sun | 1 | *** | 1 | * | 1 | NS | |
Fertilizer | 2 | ** | 2 | NS | 2 | NS | |
Shade * fertilizer | 2 | NS | 2 | NS | 2 | NS |
CO2 | N2O | CH4 | ||
---|---|---|---|---|
Year | Treatment | GWP | Mean | Mean |
2016 | ||||
Canopy Coverage | ||||
Shade | 97% | 3% | 0 | |
Sun | 98% | 2% | 0 | |
Fertilizer | ||||
Milorganite | 98% | 2% | 0 | |
Urea | 96% | 4% | 0 | |
Control | 100% | 0 | 0 | |
2017 | ||||
Canopy Coverage | ||||
Shade | 98% | 1% | 1% | |
Sun | 97% | 2% | 1% | |
Fertilizer | ||||
Milorganite | 98% | 2% | 0% | |
Urea | 97% | 2% | 1% | |
Control | 100% | 0 | 0 |
Turfgrass Color | Turfgrass Quality | |||
---|---|---|---|---|
NDVI | 1–9 Visual Scale | |||
2016 | 2017 | 2016 | 2017 | |
Canopy Coverage | ||||
Shade | 0.81B | 0.86 | 7.6A | 7.6A |
Sun | 0.83A | 0.86 | 7.3B | 7.2B |
Fertilizer | ||||
MILH | 0.82bc | 0.87a | 7.6a | 7.9a |
MILL | 0.81cd | 0.85b | 7.4b | 7.6b |
UREH | 0.83a | 0.86ab | 7.5ab | 7.3b |
UREL | 0.82ab | 0.86ab | 7.5ab | 7.4b |
UNT | 0.80d | 0.84c | 7.3b | 6.9c |
Source of Variation | ||||
Shade vs. sun | *** | NS | ** | *** |
Fertilizer | *** | *** | NS | *** |
Shade * fertilizer | NS | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chapman, K.E.; Walker, K.S. Shade and Nitrogen Fertilizer Effects on Greenhouse Gas Emissions from Creeping Bentgrass Putting Greens. Horticulturae 2024, 10, 832. https://doi.org/10.3390/horticulturae10080832
Chapman KE, Walker KS. Shade and Nitrogen Fertilizer Effects on Greenhouse Gas Emissions from Creeping Bentgrass Putting Greens. Horticulturae. 2024; 10(8):832. https://doi.org/10.3390/horticulturae10080832
Chicago/Turabian StyleChapman, Katy E., and Kristina S. Walker. 2024. "Shade and Nitrogen Fertilizer Effects on Greenhouse Gas Emissions from Creeping Bentgrass Putting Greens" Horticulturae 10, no. 8: 832. https://doi.org/10.3390/horticulturae10080832
APA StyleChapman, K. E., & Walker, K. S. (2024). Shade and Nitrogen Fertilizer Effects on Greenhouse Gas Emissions from Creeping Bentgrass Putting Greens. Horticulturae, 10(8), 832. https://doi.org/10.3390/horticulturae10080832