Shaping the Future of Horticulture: Innovative Technologies, Artificial Intelligence, and Robotic Automation Through a Bibliometric Lens
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Co-Compete Network Analysis of Keywords
3.2. Co-Citation Based Author Network Structure
3.3. Collaborative Institutional Analysis of Co-Authors
3.4. Country-Level Research Analysis and Collaboration
4. Discussions
4.1. Network Analysis of Keywords
4.2. Institutional Affiliation Analysis of Research Collaborations
4.3. Exploring Institutional Connections in Co-Authorship
4.4. Country Based Collaboration Analysis
5. Future Research Pathways Based on Literature Analysis
5.1. IoT and Sensor Networks in Horticulture
5.2. Data Analytics and AI for Decision Support
5.3. Robotics and Automation in Horticulture
5.4. Drones and Aerial Imaging
5.5. Blockchain and Supply Chain Traceability
5.6. Challenges and Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fuglie, K.; Morgan, S.; Jelliffe, J. Global Changes in Agricultural Production, Productivity, and Resource Use over Six Decades. Amber Waves 2024. U.S. Department of Agriculture, Economic Research Service. Available online: https://www.ers.usda.gov/amber-waves/2024/september/global-changes-in-agricultural-production-productivity-and-resource-use-over-six-decades (accessed on 11 April 2025).
- Oberti, R.; Marchi, M.; Tirelli, P.; Calcante, A.; Iriti, M.; Tona, E.; Hočevar, M.; Baur, J.; Pfaff, J.; Schütz, C.; et al. Selective spraying of grapevines for disease control using a modular agricultural robot. Biosyst. Eng. 2016, 146, 203–215. [Google Scholar] [CrossRef]
- Bădîrcea, R.M.; Doran, N.M.; Manta, A.G.; Puiu, S.; Meghisan-Toma, G.M.; Doran, M.D. Linking Financial Development to Environmental Performance Index—The Case of Romania. Econ. Res.-Ekon. Istraž. 2022, 36, 2142635. [Google Scholar] [CrossRef]
- John, D.A.; Babu, G.R. Lessons from the aftermaths of Green Revolution on food system and health. Front. Sustain. Food Syst. 2021, 5, 644559. [Google Scholar] [CrossRef]
- Pingali, P.L. Green Revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef]
- Manta, A.G.; Doran, N.M.; Bădîrcea, R.M.; Badareu, G.; Ghertescu, C.; Lăpădat, C.V.M. Does Common Agricultural Policy Influence Regional Disparities and Environmental Sustainability in European Union Countries? Agriculture 2024, 14, 2242. [Google Scholar] [CrossRef]
- Taylor, M. Hybrid realities: Making a new Green Revolution for rice in south India. J. Peasant Stud. 2019, 47, 483–502. [Google Scholar] [CrossRef]
- Smith, J.C.; Ghosh, A.; Hijmans, R.J. Agricultural intensification was associated with crop diversification in India (1947–2014). PLoS ONE 2019, 14, e0225555. [Google Scholar] [CrossRef]
- Singh, R. Environmental consequences of agricultural development: A case study from the Green Revolution state of Haryana, India. Agric. Ecosyst. Environ. 2000, 82, 97–103. [Google Scholar] [CrossRef]
- Prasad, S.C. Innovating at the margins: The System of Rice Intensification in India and transformative social innovation. Ecol. Soc. 2016, 21, 7. [Google Scholar] [CrossRef]
- US Department of Agriculture Economic Research Service (USDA ERS). Agricultural Productivity in the United States; USDA: Washington, DC, USA, 2014. Available online: https://www.ers.usda.gov/data-products/agricultural-productivity-in-the-united-states (accessed on 23 March 2025).
- Nelson, A.R.L.E.; Ravichandran, K.; Antony, U. The impact of the Green Revolution on indigenous crops of India. J. Ethn. Foods 2019, 6, 8. [Google Scholar] [CrossRef]
- Shiva, V. The Violence of the Green Revolution: Third World Agriculture, Ecology, and Politics; The University Press of Kentucky: Lexington, KY, USA, 2016. [Google Scholar]
- Rose, D.C.; Wheeler, R.; Winter, M.; Lobley, M.; Chivers, C.-A. Agriculture 4.0: Making it work for people, production, and the planet. Land Use Policy 2021, 100, 104933. [Google Scholar] [CrossRef]
- Rijswijk, K.; Klerkx, L.; Turner, J.A. Digitalisation in the New Zealand Agricultural Knowledge and Innovation System: Initial understandings and emerging organisational responses to digital agriculture. NJAS Wagening. J. Life Sci. 2019, 94, 100313. [Google Scholar] [CrossRef]
- Qaim, M.; Zilberman, D. Yield effects of genetically modified crops in developing countries. Science 2003, 299, 900–902. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, S.P.; Iqbal, H.M.N.; Parra-Saldivar, R.; Varjani, S.; Tong, Y.W. Genetic modifications associated with sustainability aspects for sustainable developments. Bioengineered 2022, 13, 9509–9521. [Google Scholar] [CrossRef]
- Ngongolo, K.; Mmbando, G.S. Necessities, environmental impact, and ecological sustainability of genetically modified (GM) crops. Discov. Agric. 2025, 3, 29. [Google Scholar] [CrossRef]
- Fielke, S.; Taylor, B.; Jakku, E. Digitalisation of agricultural knowledge and advice networks: A state-of-the-art review. Agric. Syst. 2020, 180, 102763. [Google Scholar] [CrossRef]
- Ehlers, M.-H.; Finger, R.; El Benni, N.; Gocht, A.; Sørensen, C.A.G.; Gusset, M.; Pfeifer, C.; Poppe, K.; Regan, Á.; Rose, D.C.; et al. Scenarios for European agricultural policy-making in the era of digitalisation. Agric. Syst. 2022, 196, 103318. [Google Scholar] [CrossRef]
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef]
- Kondratieva, N.B. EU Agricultural Digitalization Decalogue. Her. Russ. Acad. Sci. 2021, 91, 736–742. [Google Scholar] [CrossRef]
- Bennett, J.M. Agricultural Big Data: Utilisation to discover the unknown and instigate practice change. Farm Policy J. 2015, 12, 43–50. [Google Scholar]
- Gardezi, M.; Adereti, D.T.; Stock, R.; Ogunyiola, A. In pursuit of responsible innovation for precision agriculture technologies. J. Responsible Innov. 2022, 9, 224–247. [Google Scholar] [CrossRef]
- Fleming, A.; Jakku, E.; Fielke, S.; Taylor, B.M.; Lacey, J.; Terhorst, A.; Stitzlein, C. Foresighting Australian digital agricultural futures: Applying responsible innovation thinking to anticipate research and development impact under different scenarios. Agric. Syst. 2021, 190, 103120. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Weltzien, C.; Hameed, I.A.; Yule, I.J.; Grift, T.E.; Balasundram, S.K.; Pitonakova, L.; Ahmad, D.; Chowdhary, G. Research and development in agricultural robotics: A perspective of digital farming. Int. J. Agric. Biol. Eng. 2018, 11, 1–14. [Google Scholar] [CrossRef]
- Kerridge, E. The Agricultural Revolution Reconsidered. Agric. Hist. 1969, 43, 463–476. [Google Scholar]
- Chaudhari, P.; Patil, R.V.; Mahalle, P.N. Machine Learning-based Detection and Extraction of Crop Diseases: A Comprehensive Study on Disease Patterns for Precision Agriculture. Int. J. Intell. Syst. Appl. Eng. 2024, 12, 394–406. [Google Scholar]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and Agriculture 4.0: New contributions and a future research agenda. NJAS Wagening. J. Life Sci. 2019, 90–91, 100315. [Google Scholar] [CrossRef]
- Barmpounakis, S.; Kaloxylos, A.; Groumas, A.; Katsikas, L.; Sarris, V.; Dimtsa, K.; Fournier, F.; Antoniou, E.; Alonistioti, N.; Wolfert, S. Management and control applications in the Agriculture domain via a Future Internet Business-to-Business platform. Inf. Process. Agric. 2015, 2, 51–63. [Google Scholar] [CrossRef]
- Klerkx, L.; Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Glob. Food Secur. 2020, 24, 100347. [Google Scholar] [CrossRef]
- Prause, L. Digital agriculture and labor: A few challenges for social sustainability. Sustainability 2021, 13, 5980. [Google Scholar] [CrossRef]
- McCampbell, M.; Adewopo, J.; Klerkx, L.; Leeuwis, C. Are farmers ready to use phone-based digital tools for agronomic advice? Ex-ante user readiness assessment using the case of Rwandan banana farmers. J. Agric. Educ. Ext. 2021, 29, 29–51. [Google Scholar] [CrossRef]
- Lajoie-O’Malley, A.; Bronson, K.; van der Burg, S.; Klerkx, L. The future(s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents. Ecosyst. Serv. 2020, 45, 101183. [Google Scholar] [CrossRef]
- Rose, D.C.; Barkemeyer, A.; De Boon, A.; Price, C.; Roche, D. The old, the new, or the old made new? Everyday counter-narratives of the so-called fourth agricultural revolution. Agric. Hum. Values 2023, 40, 423–439. [Google Scholar] [CrossRef]
- Sammons, P.J.; Furukawa, T.; Bulgin, A. Autonomous pesticide spraying robot for use in a greenhouse. In Proceedings of the Australian Conference on Robotics and Automation, Sydney, Australia, 5–7 December 2005; pp. 1–9. [Google Scholar]
- Van Henten, E.J.; Van Tuijl, B.A.J.; Hoogakker, G.J.; Van Der Weerd, M.J.; Hemming, J.; Kornet, J.G.; Bontsema, J. An autonomous robot for de-leafing cucumber plants grown in a high-wire cultivation system. Biosyst. Eng. 2006, 94, 317–323. [Google Scholar] [CrossRef]
- Manta, A.G.; Gherțescu, C.; Bădîrcea, R.M.; Manta, L.F.; Popescu, J.; Lăpădat, C.V.M. How Does the Interplay Between Banking Performance, Digitalization, and Renewable Energy Consumption Shape Sustainable Development in European Union Countries? Energies 2025, 18, 571. [Google Scholar] [CrossRef]
- Aldy, J.E.; Hrubovcak, J.; Vasavada, U. The Role of Technology in Sustaining Agriculture and the Environment. Ecol. Econ. 1998, 26, 81–96. [Google Scholar] [CrossRef]
- Lamprinopoulou, C.; Renwick, A.; Klerkx, L.; Hermans, F.; Roep, D. Application of an integrated systemic framework for analysing agricultural innovation systems and informing innovation policies: Comparing the Dutch and Scottish agrifood sectors. Agric. Syst. 2014, 129, 40–54. [Google Scholar] [CrossRef]
- Martin-Guay, M.-O.; Paquette, A.; Dupras, J.; Rivest, D. The new green revolution: Sustainable intensification of agriculture by intercropping. Sci. Total Environ. 2018, 615, 767–772. [Google Scholar] [CrossRef]
- Khadse, A.; Rosset, P.M.; Morales, H.; Ferguson, B.G. Taking agroecology to scale: The zero budget natural farming peasant movement in Karnataka, India. J. Peasant Stud. 2018, 45, 192–219. [Google Scholar] [CrossRef]
- Chhabra, V. Studies on use of biofertilizers in agricultural production. Eur. J. Mol. Clin. Med. 2020, 7, 2335–2339. [Google Scholar]
- Alisjahbana, A.S. Asia-Pacific Response to COVID-19 and Climate Emergency Must Build a Resilient and Sustainable Future; UN ESCAP: 2020. Available online: https://www.unescap.org/op-ed/asia-pacific-response-covid-19-and-climate-emergency-must-build-resilient-and-sustainable (accessed on 25 March 2025).
- Ameen, A.; Raza, S. Green revolution: A review. Int. J. Adv. Sci. Res. 2017, 3, 129–137. [Google Scholar] [CrossRef]
- Lesser, A. Big Data and Big Agriculture. Gigaom Res. 2014, 11. Available online: https://gigaom.com/report/big-data-and-big-agriculture/ (accessed on 25 March 2025).
- Sonka, S. Big Data: From Hype to Agricultural Tool. Farm Policy J. 2015, 12, 1–9. [Google Scholar]
- Mamun, A. Farm Subsidies and Global Agricultural Productivity; International Food Policy Research Institute: Washington, DC, USA, 2024. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). The Future of Food and Agriculture: Trends and Challenges; FAO: Roma, Italy, 2017. [Google Scholar]
- Staniszewski, J.; Borychowski, M. The Impact of the Subsidies on Efficiency of Different Sized Farms: Case Study of the Common Agricultural Policy of the European Union. Agric. Econ. Zemed. Ekon. 2020, 66, 373–380. [Google Scholar] [CrossRef]
- Khafagy, A.; Vigani, M. Technical Change and the Common Agricultural Policy. Food Policy 2022, 109, 102267. [Google Scholar] [CrossRef]
- Náglová, Z.; Rudinskaya, T. Factors Influencing Technical Efficiency in the EU Dairy Farms. Agriculture 2021, 11, 1114. [Google Scholar] [CrossRef]
- Klebl, F.; Feindt, P.H.; Piorr, A. Farmers’ Behavioural Determinants of On-Farm Biodiversity Management in Europe: A Systematic Review. Agric. Hum. Values 2024, 41, 831–861. [Google Scholar] [CrossRef]
- Lesk, C.; Anderson, W.; Rigden, A.; Coast, O.; Jägermeyr, J.; McDermid, S.; Davis, K.F.; Konar, M. Compound heat and moisture extreme impacts on global crop yields under climate change. Nat. Rev. Earth Environ. 2022, 3, 872–889. [Google Scholar] [CrossRef]
- Marcuello, C.; Foulon, L.; Chabbert, B.; Aguié-Béghin, V.; Molinari, M. Atomic force microscopy reveals how relative humidity impacts the Young’s modulus of lignocellulosic polymers and their adhesion with cellulose nanocrystals at the nanoscale. Int. J. Biol. Macromol. 2020, 147, 1064–1075. [Google Scholar] [CrossRef]
- Paiva, P. Horticulture and Ornamental Horticulture. Ornam. Hortic. 2018, 24, 6. [Google Scholar] [CrossRef]
- Dubey, K. A Review of Agriculture and Horticulture Advances. Int. J. Agric. Environ. Sustain. 2023, 5, 1–6. [Google Scholar]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The Journal Coverage of Web of Science and Scopus: A Comparative Analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. VOSviewer: A Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science Mapping Software Tools: Review, Analysis, and Cooperative Study Among Tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Waltman, L.; Van Eck, N.J. A New Methodology for Constructing a Publication-Level Classification System of Science. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 2378–2392. [Google Scholar] [CrossRef]
- Ball, R.; Dirk, T. Bibliometric Analysis Data, Facts, and Basic Methodological Knowledge: Bibliometrics for Scientists, Science Managers, Research Institutions, and Universities; Research Center Julich: Julich, Germany, 2005; Volume 12. [Google Scholar]
- Zupic, I.; Čater, T. Bibliometric Methods in Management and Organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Gherțescu, C.; Manta, A.G.; Badircea, R.; Manta, L.F. How Does the Digitalization Strategy Affect Bank Efficiency in Industry 4.0? A Bibliometric Analysis. Systems 2024, 12, 492. [Google Scholar] [CrossRef]
- Cao, S.; Huang, H.; Xiao, M.; Yan, L.; Xu, W.; Tang, X.; Luo, X.; Zhao, Q. Research on safety in home care for older adults: A bibliometric analysis. Nurs. Open 2021, 8, 1720–1730. [Google Scholar] [CrossRef]
- Pretty, J.; Toulmin, C.; Williams, S. Sustainable Intensification in African Agriculture. Int. J. Agric. Sustain. 2011, 9, 5–24. [Google Scholar] [CrossRef]
- Canellas, L.P.; Dantas, D.J.; Aguiar, N.O.; Peres, L.E.P.; Zsögön, A.; Olivares, F.L.; Dobbss, L.B.; Façanha, A.R.; Nebbioso, A.; Piccolo, A. Probing the Hormonal Activity of Fractionated Molecular Humic Components in Tomato Auxin Mutants. Ann. Appl. Biol. 2011, 159, 202–211. [Google Scholar] [CrossRef]
- Massa, G.D.; Kim, H.; Wheeler, R.M.; Mitchell, C.A. Plant Productivity in Response to LED Lighting. HortScience 2008, 43, 1951–1956. [Google Scholar] [CrossRef]
- Bantis, F.; Smirnakou, S.; Ouzounis, T.; Koukounaras, A.; Ntagkas, N.; Radoglou, K. Current Status and Recent Achievements in the Field of Horticulture with the Use of Light-Emitting Diodes (LEDs). Sci. Hortic. 2018, 235, 437–451. [Google Scholar] [CrossRef]
- Ouzounis, T.; Fretté, X.; Ottosen, C.O.; Rosenqvist, E. Spectral Effects of LEDs on Chlorophyll Fluorescence and Pigmentation in Phalaenopsis ‘Vivien’ and ‘Purple Star’. Physiol. Plant. 2015, 154, 314–327. [Google Scholar] [CrossRef]
- Eigenbrod, C.; Gruda, N. Urban Vegetable for Food Security in Cities: A Review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef]
- Benyoussef Bisbis, M.; Gruda, N.; Blanke, M. Potential Impacts of Climate Change on Vegetable Production and Product Quality—A Review. J. Clean. Prod. 2018, 170, 1602–1620. [Google Scholar] [CrossRef]
- Neven, D.; Odera, M.M.; Reardon, T.; Wang, H. Kenyan Supermarkets, Emerging Middle-Class Horticultural Farmers, and Employment Impacts on the Rural Poor. World Dev. 2009, 37, 1802–1811. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Bachamanda, S. Environmental Audit of Municipal Solid Waste Management. Int. J. Environ. Technol. Manag. 2007, 7, 369–391. [Google Scholar] [CrossRef]
- Page, G.; Ridoutt, B.; Bellotti, B. Carbon and Water Footprint Tradeoffs in Fresh Tomato Production. J. Clean. Prod. 2012, 32, 219–226. [Google Scholar] [CrossRef]
- Lin, N.; Wang, X.; Zhang, Y.; Hu, X.; Ruan, J. Fertigation management for sustainable precision agriculture based on Internet of Things. J. Clean. Prod. 2020, 277, 124119. [Google Scholar] [CrossRef]
- Kumar, R.; Prabu, J.; Kumar, A.; Yadav, S.; Khanikar, S.; Singh, A.; Hansda, S.; Verma, S. Advancing Horticulture through IoT and Sensor Technologies: Trends, Challenges and Future Directions. J. Exp. Agric. Int. 2025, 47, 389–416. [Google Scholar] [CrossRef]
- Postolache, S.; Sebastião, P.; Viegas, V.; Postolache, O.; Cercas, F. IoT-Based Systems for Soil Nutrients Assessment in Horticulture. Sensors 2023, 23, 403. [Google Scholar] [CrossRef]
- Dong, Y.; Werling, B.; Cao, Z.; Li, G. Implementation of an In-Field IoT System for Precision Irrigation Management. Front. Water 2024, 6, 1353597. [Google Scholar] [CrossRef]
- Geng, W.; Liu, L.; Zhao, J.; Kang, X.; Wang, W. Digital Technologies Adoption and Economic Benefits in Agriculture: A Mixed-Methods Approach. Sustainability 2024, 16, 4431. [Google Scholar] [CrossRef]
- Das, R.; Bhatt, S.; Kathuria, S.; Singh, R.; Chhabra, G.; Malik, P. Artificial Intelligence and Internet of Things Based Technological Advancement in Domain of Horticulture 4.0. In Proceedings of the 2023 IEEE Devices for Integrated Circuit (DevIC), Kalyani, India, 7–8 April 2023. [Google Scholar] [CrossRef]
- Rehman, A.U.; Lu, S.; Ashraf, M.A.; Iqbal, M.S.; Nawabi, A.K.; Amin, F.; Heyat, M.B.B. The Role of Internet of Things (IoT) Technology in Modern Cultivation for the Implementation of Greenhouses. PeerJ Comput. Sci. 2024, 10, e2309. [Google Scholar] [CrossRef] [PubMed]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- Arshad, J.; Aziz, M.; Al-Huqail, A.A.; Zaman, M.H.U.; Husnain, M.; Rehman, A.U.; Shafiq, M. Implementation of a LoRaWAN Based Smart Agriculture Decision Support System for Optimum Crop Yield. Sustainability 2022, 14, 827. [Google Scholar] [CrossRef]
- Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.H.M. Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk. IEEE Access 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M. Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef]
- Kim, J.; Son, H.I. A Voronoi Diagram-Based Workspace Partition for Weak Cooperation of Multi-Robot System in Orchard. IEEE Access 2020, 8, 20676–20686. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Sargani, G.R.; Ihtisham, M.; Khayyam, M.; Ismail, S. Current Progress and Future Prospects of Agricultural Technology: Gateway to Sustainable Agriculture. Sustainability 2021, 13, 4883. [Google Scholar] [CrossRef]
- Klerkx, L.; Rose, D.C. Dealing with the Game-Changers: Rethinking Adoption and Diffusion of Digital Technologies in Agriculture. Agric. Syst. 2020, 180, 102978. [Google Scholar]
- Rabka, M.; Mariyanayagam, D.; Shukla, P. IoT-Based Horticulture Monitoring System. In Intelligent Sustainable Systems, Lecture Notes in Networks and Systems; Nagar, A.K., Jat, D.S., Marín-Raventós, G., Mishra, D.K., Eds.; Springer: Singapore, 2022; Volume 334. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Yan, H.; Zhang, C.; Wang, G.; He, B.; Hao, B.; Han, Y.; Wang, B.; Bao, R.; Syed, T.N.; et al. A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints. Agriculture 2024, 14, 1141. [Google Scholar] [CrossRef]
- Thirumagal, P.; Abdulwahid, A.; HadiAbdulwahid, A.; Kholiya, D.; Rajan, R.; Gupta, M. IoT and Machine Learning Based Affordable Smart Farming. In Proceedings of the 2023 Eighth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), Chennai, India, 6–7 April 2023. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Yan, H.; Zhang, C.; Zhang, J.; Wang, G.; Deng, S.; Syed, T.N.; Wang, B.; Zhou, R. A review of evapotranspiration estimation methods for climate-smart agriculture tools under a changing climate: Vulnerabilities, consequences, and implications. J. Water Clim. Change 2025, 16, 249–288. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big data in smart farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Ngugi, H.N.; Akinyelu, A.A.; Ezugwu, A.E. Machine learning and deep learning for crop disease diagnosis: Performance analysis and review. Agronomy 2024, 14, 3001. [Google Scholar] [CrossRef]
- Walter, A.; Finger, R.; Huber, R.; Buchmann, N. Smart farming is key to developing sustainable agriculture. Proc. Natl. Acad. Sci. USA 2017, 114, 6148–6150. [Google Scholar] [CrossRef]
- Jha, K.; Doshi, A.; Patel, P.; Shah, M. A comprehensive review on automation in agriculture using artificial intelligence. Artif. Intell. Agric. 2019, 2, 1–12. [Google Scholar] [CrossRef]
- Rouphael, Y.; Ciriello, M. Vertical farming: A toolbox for securing vegetable yield for the food of the future. Front. Sci. 2024, 2, 1491748. [Google Scholar] [CrossRef]
- Platero-Horcajadas, M.; Pardo-Pina, S.; Cámara-Zapata, J.-M.; Brenes-Carranza, J.-A.; Ferrández-Pastor, F.-J. Enhancing greenhouse efficiency: Integrating IoT and reinforcement learning for optimized climate control. Sensors 2024, 24, 8109. [Google Scholar] [CrossRef]
- Rose, D.C.; Lyon, J.; de Boon, A.; Hanheide, M.; Pearson, S. Responsible development of autonomous robotics in agriculture. Nat. Food 2021, 2, 306–309. [Google Scholar] [CrossRef]
- Araújo, S.O.; Peres, R.S.; Barata, J.; Lidon, F.; Ramalho, J.C. Characterising the agriculture 4.0 landscape—Emerging trends, challenges and opportunities. Agronomy 2021, 11, 667. [Google Scholar] [CrossRef]
- Ferrag, M.A.; Shu, L.; Yang, X.; Derhab, A.; Maglaras, L. Deep learning-based intrusion detection for distributed denial of service attack in agriculture 4.0. Electronics 2021, 10, 1257. [Google Scholar] [CrossRef]
- Dutta, A.; Roy, S.; Kreidl, O.P.; Bölöni, L. Multi-robot information gathering for precision agriculture: Current state, scope, and challenges. IEEE Access 2021, 9, 161416–161430. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Yépez-Ponce, D.F.; Salcedo, J.V.; Rosero-Montalvo, P.D.; Sanchis, J. Mobile robotics in smart farming: Current trends and applications. Front. Artif. Intell. 2023, 6, 1213330. [Google Scholar] [CrossRef]
- Kutyrev, A.; Kiktev, N.; Jewiarz, M.; Khort, D.; Smirnov, I.; Zubina, V.; Hutsol, T.; Tomasik, M.; Biliuk, M. Robotic Platform for Horticulture: Assessment Methodology and Increasing the Level of Autonomy. Sensors 2022, 22, 8901. [Google Scholar] [CrossRef]
- Hagras, H.; Colley, M.; Callaghan, V.; Carr-West, M. Online learning and adaptation of autonomous mobile robots for sustainable agriculture. Auton. Robot. 2002, 13, 37–52. [Google Scholar] [CrossRef]
- Khort, D.; Kutyrev, A.; Filippov, R.; Semichev, S. Development control system robotic platform for horticulture. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 262, p. 01024. [Google Scholar]
- Birrell, S.; Hughes, J.; Cai, J.; Iida, F. A field-tested robotic harvesting system for iceberg lettuce. J. Field Robot. 2020, 37, 225–245. [Google Scholar] [CrossRef] [PubMed]
- Botta, A.; Cavallone, P.; Baglieri, L.; Colucci, G.; Tagliavini, L.; Quaglia, G. A review of robots, perception, and tasks in precision agriculture. Appl. Mech. 2022, 3, 830–854. [Google Scholar] [CrossRef]
- Dhumale, N.R.; Bhaskar, P.C. Smart agricultural robot for spraying pesticide with image processing-based disease classification technique. In Proceedings of the 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 5–7 March 2021; pp. 604–609. [Google Scholar] [CrossRef]
- Kale, S.K.; Sahrawat, R.; Sangwan, M.; Shikha; Jain, S.; Nandita; Gautam, S.K.; Nagaraju, V. Revolutionary Technologies in Horticultural Crops: A Review. J. Adv. Biol. Biotechnol. 2024, 27, 420–436. [Google Scholar] [CrossRef]
- Astrand, B.; Baerveldt, A.J. A Vision Based Row-Following System for Agricultural Field Machinery. Mechatronics 2005, 15, 251–269. [Google Scholar] [CrossRef]
- Hutsol, T.; Kutyrev, A.; Kiktev, N.; Biliuk, M. Robotic Technologies in Horticulture: Analysis and Implementation Prospects. Agric. Eng. 2023, 27, 113–133. [Google Scholar] [CrossRef]
- Bechar, A.; Vigneault, C. Agricultural Robots for Field Operations: Concepts and Components. Biosyst. Eng. 2016, 149, 94–111. [Google Scholar] [CrossRef]
- Bogue, R. Robots Poised to Revolutionise Agriculture. Ind. Robot Int. J. 2016, 43, 450–456. [Google Scholar] [CrossRef]
- Bulanon, D.M.; Burks, T.F.; Alchanatis, V. Image Fusion of Visible and Thermal Images for Fruit Detection. Biosyst. Eng. 2009, 103, 12–22. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. A Review of the Use of Convolutional Neural Networks in Agriculture. J. Agric. Sci. 2018, 156, 312–322. [Google Scholar] [CrossRef]
- Gongal, A.; Amatya, S.; Karkee, M.; Zhang, Q.; Lewis, K. Sensors and Systems for Fruit Detection and Localization: A Review. Comput. Electron. Agric. 2015, 116, 8–19. [Google Scholar] [CrossRef]
- Sistler, F.E. Robotics and Intelligent Machines in Agriculture. IEEE J. Robot. Autom. 1987, 3, 3–6. [Google Scholar] [CrossRef]
- Khort, D.; Kutyrev, A.; Filippov, R.; Kiktev, N.; Komarchuk, D. Robotized Platform for Picking of Strawberry Berries. In Proceedings of the 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T), Kyiv, Ukraine, 8–11 October 2019. [Google Scholar]
- Bak, T.; Jakobsen, H. Agricultural Robotic Platform with Four Wheel Steering for Weed Detection. Biosyst. Eng. 2004, 87, 125–136. [Google Scholar] [CrossRef]
- International Federation of Robotics (IFR). World Robotics 2021—Service Robots Report; IFR: Frankfurt, Germany, 2021; ISBN 978-3-8163-0744-1. [Google Scholar]
- Pretto, A.; Aravecchia, S.; Burgard, W.; Chebrolu, N.; Dornhege, C.; Falck, T.; Fleckenstein, F.; Fontenla, A.; Imperoli, M.; Khanna, R.; et al. Building an Aerial–Ground Robotics System for Precision Farming: An Adaptable Solution. IEEE Robot. Autom. Mag. 2019, 28, 29–49. [Google Scholar] [CrossRef]
- Liu, J.; Anavatti, S.; Garratt, M.; Abbass, H.A. Modified continuous ant colony optimisation for multiple unmanned ground vehicle path planning. Expert Syst. Appl. 2022, 196, 116605. [Google Scholar] [CrossRef]
- Katikaridis, D.; Moysiadis, V.; Tsolakis, N.; Busato, P.; Kateris, D.; Pearson, S.; Sørensen, C.; Bochtis, D. UAV-Supported Route Planning for UGVs in Semi-Deterministic Agricultural Environments. Agronomy 2022, 12, 1937. [Google Scholar] [CrossRef]
- Potena, C.; Khanna, R.; Nieto, J.; Siegwart, R.; Nardi, D.; Pretto, A. AgriColMap: Aerial-Ground Collaborative 3D Mapping for Precision Farming. IEEE Robot. Autom. Lett. 2018, 4, 1085–1092. [Google Scholar] [CrossRef]
- Tagarakis, A.; Filippou, E.; Kalaitzidis, D.; Benos, L.; Busato, P.; Bochtis, D. Proposing UGV and UAV Systems for 3D Mapping of Orchard Environments. Sensors 2022, 22, 1571. [Google Scholar] [CrossRef] [PubMed]
- Pearson, S. DEFRA Review of Automation in Horticulture; UK Department for Environment, Food & Rural Affairs (Defra): London, UK, 2022. [Google Scholar]
- Rovira-Más, F.; Chatterjee, I.; Sáiz-Rubio, V. The role of GNSS in the navigation strategies of cost-effective agricultural robots. Comput. Electron. Agric. 2015, 112, 172–183. [Google Scholar] [CrossRef]
- Subramanian, V.; Burks, T.F.; Arroyo, A.A. Development of machine vision and laser radar-based autonomous vehicle guidance systems for citrus grove navigation. Comput. Electron. Agric. 2006, 53, 130–143. [Google Scholar] [CrossRef]
- Khort, D.; Kutyrev, A.; Smirnov, I.; Osypenko, V.; Kiktev, N. Computer vision system for recognizing the coordinates, location, and ripeness of strawberries. In Data Stream Mining & Processing; Part of the Communications in Computer and Information Science book series (CCIS); Springer: Cham, Switzerland, 2020; Volume 1158, pp. 334–343. [Google Scholar]
- McFadden, J.; Njuki, E.; Griffin, T. Precision Agriculture in the Digital Era: Recent Adoption on U.S. Farms; Economic Information Bulletin No. 248; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2023. Available online: https://ers.usda.gov/sites/default/files/_laserfiche/publications/105894/EIB-248.pdf (accessed on 25 March 2025).
- Syed, T.N.; Zhou, J.; Marinello, F.; Lakhiar, I.A.; Chandio, F.A.; Rottok, L.T.; Zheng, Y.; Gamechu, T.T. Definition of a reference standard for performance evaluation of autonomous vehicles real-time obstacle detection and distance estimation in complex environments. Comput. Electron. Agric. 2025, 232, 110143. [Google Scholar] [CrossRef]
- Colantoni, A.; Rezza, F.; Boccacci Mariani, M.; Benincasa, P. Unmanned aerial vehicle in precision agriculture: A review. Agronomy 2018, 16, 414–425. [Google Scholar]
- Abbas, A.; Zhang, Z.; Zheng, H.; Alami, M.M.; Alrefaei, A.F.; Abbas, Q.; Zhou, L. Drones in plant disease assessment, efficient monitoring, and detection: A way forward to smart agriculture. Agronomy 2023, 13, 1524. [Google Scholar] [CrossRef]
- Del Cerro, J.; Cruz-Ulloa, C.; Barrientos, A.; De León-Rivas, J. Unmanned aerial vehicles in agriculture: A survey. Agronomy 2021, 11, 203. [Google Scholar] [CrossRef]
- Popescu, D.; Stoican, F.; Stamatescu, G.; Ichim, L.; Dragana, C. Advanced UAV–WSN System for Intelligent Monitoring in Precision Agriculture. Sensors 2020, 20, 817. [Google Scholar] [CrossRef]
- D’Oleire-Oltmanns, S.M.; Peter, K.; Johannes, B.R. Unmanned Aerial Vehicle (UAV) for Monitoring Soil Erosion in Morocco. Remote Sens. 2012, 4, 3390–3416. [Google Scholar] [CrossRef]
- Rallo, P.; de Castro, A.; López-Granados, F.; Morales-Sillero, A.; Torres-Sánchez, J.; Jiménez, M.; Paz Suárez, M. Exploring UAV-imagery to support genotype selection in olive breeding programs. Sci. Hortic. 2020, 273, 109615. [Google Scholar] [CrossRef]
- Vijayasuganthi, K.; Sudharson, K.; Janaki, L.; SureshKumar, A.; Devi, K.K.; Mathiyalagan, P. Management Practices for Sustainable Agriculture in the Age of Smart Farming. In Proceedings of the 2025 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 18–19 January 2025; pp. 1–7. [Google Scholar] [CrossRef]
- Sudharson, K.; Alekhya, B.; Abinaya, G.; Rohini, C.; Arthi, S.; Dhinakaran, D. Efficient Soil Condition Monitoring with IoT Enabled Intelligent Farming Solution. In Proceedings of the IEEE International Students’ Conference on Electrical Electronics and Computer Science, Bhopal, India, 18–19 February 2023; pp. 1–6. [Google Scholar]
- Bacco, M.; Barsocchi, P.; Ferro, E.; Gotta, A.; Ruggeri, M. The Digitisation of Agriculture: A Survey of Research Activities on Smart Farming. Array 2019, 3, 100009. [Google Scholar] [CrossRef]
- Adewusi, A.; Chiekezie, N.R.; Eyo-Udo, N.L. Blockchain Technology in Agriculture: Enhancing Supply Chain Transparency and Traceability. Financ. Account. Res. J. 2023, 5, 1514. [Google Scholar] [CrossRef]
- Vignesh, B.; Chandrakumar, M.; Divya, K.; Prahadeeswaran, M.; Vanitha, G. Blockchain Technology in Agriculture: Ensuring Transparency and Traceability in the Food Supply Chain. Plant Sci. Today 2025, 12, 5970. [Google Scholar] [CrossRef]
- Ellahi, R.M.; Wood, L.C.; Bekhit, A.E.-D.A. Blockchain-Driven Food Supply Chains: A Systematic Review for Unexplored Opportunities. Appl. Sci. 2024, 14, 8944. [Google Scholar] [CrossRef]
- Vu, T.T.; Trinh, H.H.H. Blockchain Technology for Sustainable Supply Chains of Agri-Food in Vietnam: A SWOT Analysis. Sci. Technol. Dev. J. Econ.-Law Manag. 2021, 5, 1278–1289. [Google Scholar] [CrossRef]
- Rejeb, A.; Keogh, J.G.; Zailani, S.; Treiblmaier, H.; Rejeb, K. Blockchain Technology in the Food Industry: A Review of Potentials, Challenges and Future Research Directions. Logistics 2020, 4, 27. [Google Scholar] [CrossRef]
- Li, C.; Yang, T.; Shi, Y. Blockchain Adoption and Organic Subsidy in an Agricultural Supply Chain Considering Market Segmentation. Mathematics 2023, 12, 106. [Google Scholar] [CrossRef]
- Syed, T.N.; Liu, J.; Zhou, X.; Zhao, S.; Yuan, Y.; Mohamed, S.H.A.; Lakhiar, I.A. Seedling-lump integrated non-destructive monitoring for automatic transplanting with Intel RealSense depth camera. Artif. Intell. Agric. 2019, 3, 18–32. [Google Scholar] [CrossRef]
- Xu, J.; Guo, S.; Xie, D.; Yan, Y. Blockchain: A new safeguard for agri-foods. Artif. Intell. Agric. 2020, 4, 153–161. [Google Scholar] [CrossRef]
- Patil, A.S.; Tama, B.A.; Park, Y.; Rhee, K.H. A framework for blockchain based secure smart green house farming. In Advances in Computer Science and Ubiquitous Computing; Park, J., Loia, V., Yi, G., Sung, Y., Eds.; Springer: Singapore, 2017; pp. 1162–1167. [Google Scholar] [CrossRef]
- Lin, Y.P.; Petway, J.R.; Anthony, J.; Mukhtar, H.; Liao, S.W.; Chou, C.F.; Ho, Y.F. Blockchain: The evolutionary next step for ICT E-agriculture. Environments 2017, 4, 50. [Google Scholar] [CrossRef]
- Krithika, L.B. Survey on the Applications of Blockchain in Agriculture. Agriculture 2022, 12, 1333. [Google Scholar] [CrossRef]
- Khan, S.; Guivant, J.; Li, X. Design and experimental validation of a robust model predictive control for the optimal trajectory tracking of a small-scale autonomous bulldozer. Robotics 2022, 147, 103903. [Google Scholar] [CrossRef]
- Fuglie, K.; Gautam, M.; Goyal, A.; Maloney, W.F. Harvesting Prosperity: Technology and Productivity Growth in Agriculture; World Bank: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Fountas, S.; Carli, G.; Sørensen, C.G.; Tsiropoulos, Z.; Cavalaris, C.; Vatsanidou, A.; Pérez-Ruíz, M. Farm Management Information Systems: Current Situation and Future Perspectives. Comput. Electron. Agric. 2020, 175, 105528. [Google Scholar] [CrossRef]
- Lioutas, E.D.; Charatsari, C.; De Rosa, M. Digitalization of Agriculture: A Way to Solve the Food Problem or a Trolley Dilemma? Technol. Soc. 2021, 67, 101744. [Google Scholar] [CrossRef]
Revolution | Time Period | Key Developments | Impacts |
---|---|---|---|
Neolithic Agricultural Revolution | ~12,000 years ago | Domestication of plants and animals, sedentary communities | Increased food production, social hierarchies, health issues |
Arab Agricultural Revolution | 8th to 13th centuries | Introduction of new crops (e.g., rice, cotton, citrus), improved irrigation techniques, crop rotation, agricultural manuals | Diversified diets, boosted trade, spread of knowledge, transformation of Mediterranean agriculture |
British Agricultural Revolution | Late 18th–early 19th century | Enclosure, crop rotation, mechanization | Increased productivity, rural depopulation, commercial agriculture |
Green Revolution | Mid-20th century | High-yield crops, chemical fertilizers, mechanization | Increased food production, environmental degradation, socio-economic issues |
Digital and Technological Revolution | Current Era | IoT, AI, ICT in farming, precision agriculture | Enhanced efficiency, reduced environmental impacts, data privacy challenges |
Sustainable and Climate-Smart Agriculture | Emerging Trends | Organic farming, agroforestry, ecological intensification | Improved soil health, climate resilience, economic benefits |
No | Authors Names | Title of the Paper | Year of Publication | Number of Citations | Journal Name | JIF Quartile |
---|---|---|---|---|---|---|
1 | Pretty, J., Toulmin, C., and Williams, S. [67] | Sustainable intensification in African agriculture | 2011 | 674 | International Journal of Agricultural Sustainability | Q1 |
2 | L.P. Canellas, D.J. Dantas, N.O. Aguiar, L.E.P. Peres, A. Zsögön, F.L. Olivares, L.B. Dobbss, A.R. Façanha, A. Nebbioso, A. Piccolo [68] | Probing the hormonal activity of fractionated molecular humic components in tomato auxin mutants | 2011 | 597 | Annals of Applied Biology | Q2 |
3 | Massa, G. D., Kim, H., Wheeler, R. M., and Mitchell, C. A. [69] | Plant Productivity in Response to LED Lighting | 2008 | 583 | HortScience | Q2 |
4 | Bantis, F.; Smirnakou, S.; Ouzounis, T.; Koukounaras, A.; Ntagkas, N.; Radoglou, K. [70] | Current Status and Recent Achievements in the Field of Horticulture with the Use of Light-Emitting Diodes (LEDs) | 2018 | 265 | Scientia Horticulturae | Q1 |
5 | Ouzounis T, Fretté X, Ottosen CO, Rosenqvist E. [71] | Spectral effects of LEDs on chlorophyll fluorescence and pigmentation in Phalaenopsis ‘Vivien’ and ‘Purple Star’ | 2015 | 261 | Physiologia Plantarum | Q1 |
6 | Eigenbrod, C., Gruda, N. [72] | Urban vegetable for food security in cities | 2015 | 247 | Agronomy for Sustainable Development | Q1 |
7 | Benyoussef Bisbis, M.; Gruda, N.; Blanke, M. [73] | Potential Impacts of Climate Change on Vegetable Production and Product Quality—A Review | 2018 | 241 | Journal of Cleaner Production | Q1 |
8 | Neven, D.; Odera, M.M.; Reardon, T.; Wang, H. Kenyan [74] | Supermarkets, Emerging Middle-Class Horticultural Farmers, and Employment Impacts on the Rural Poor | 2009 | 160 | World Development | Q1 |
9 | Ramachandra, T.V.; Bachamanda, S. [75] | Environmental Audit of Municipal Solid Waste Management | 2007 | 153 | International Journal of Environmental Technology and Management | Q4 |
10 | Page, G.; Ridoutt, B.; Bellotti, B. [76] | Carbon and water footprint tradeoffs in fresh tomato production | 2012 | 152 | Journal of Cleaner Production | Q1 |
No | Author | Documents | Citations | Area of the Publication |
---|---|---|---|---|
1 | Singh, B. | 7 | 1 | Sustainable agriculture, soilless cultivation systems |
2 | Elings, A. | 5 | 19 | Horticulture, greenhouse systems, urban agriculture |
3 | Goswami, Aakansha | 5 | 1 | Agricultural economics, multi-criteria decision analysis |
4 | Gruda, Nazim | 4 | 584 | Horticulture, soilless farming, sustainable agriculture |
5 | Mitchell, Cary A. | 4 | 724 | Horticulture, controlled environment agriculture, hydroponics |
6 | Appolloni, Elisa | 3 | 161 | Organizational psychology, sustainability in business |
7 | Bergstrand, K. -J. | 3 | 28 | Horticulture, greenhouse lighting, photobiology |
8 | Blok, C. | 3 | 9 | Soilless cultivation technologies, plant nutrition |
9 | Diacono, Mariangela | 3 | 31 | Agroecology, organic farming systems |
10 | Dieleman, J. A. | 3 | 34 | Plant physiology, environmental control in greenhouses |
Ranking | Organization | Documents | Citations | Total Link Strength |
---|---|---|---|---|
1 | Wageningen Univ & Res | 15 | 112 | 8 |
2 | Wageningen ur Greenhouse Hort | 11 | 120 | 3 |
3 | Chinese Acad Agr Sci | 10 | 131 | 3 |
4 | Chinese Acad Sci | 10 | 211 | 7 |
5 | Purdue Univ | 10 | 853 | 1 |
6 | Univ Bologna | 10 | 127 | 3 |
7 | Wageningen Univ | 10 | 509 | 3 |
8 | Texas A&M Univ | 9 | 47 | 3 |
9 | Univ Florida | 9 | 42 | 5 |
10 | Univ Wageningen & Res Ctr | 9 | 171 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poenaru, M.M.; Manta, L.F.; Gherțescu, C.; Manta, A.G. Shaping the Future of Horticulture: Innovative Technologies, Artificial Intelligence, and Robotic Automation Through a Bibliometric Lens. Horticulturae 2025, 11, 449. https://doi.org/10.3390/horticulturae11050449
Poenaru MM, Manta LF, Gherțescu C, Manta AG. Shaping the Future of Horticulture: Innovative Technologies, Artificial Intelligence, and Robotic Automation Through a Bibliometric Lens. Horticulturae. 2025; 11(5):449. https://doi.org/10.3390/horticulturae11050449
Chicago/Turabian StylePoenaru, Maria Magdalena, Liviu Florin Manta, Claudia Gherțescu, and Alina Georgiana Manta. 2025. "Shaping the Future of Horticulture: Innovative Technologies, Artificial Intelligence, and Robotic Automation Through a Bibliometric Lens" Horticulturae 11, no. 5: 449. https://doi.org/10.3390/horticulturae11050449
APA StylePoenaru, M. M., Manta, L. F., Gherțescu, C., & Manta, A. G. (2025). Shaping the Future of Horticulture: Innovative Technologies, Artificial Intelligence, and Robotic Automation Through a Bibliometric Lens. Horticulturae, 11(5), 449. https://doi.org/10.3390/horticulturae11050449