Synergistic Biofertilization by Marine Streptomyces sp. and Leonardite Enhances Yield and Heatwave Resilience in Tomato Plants
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of Shell-Associated Bacteria in Scutellastra mexicana
2.2. Molecular Identification of Strain LAP3
2.3. In Vitro Evaluation of Plant Growth-Promoting Activity of LAP3 Strain
2.4. Plant Material
2.5. Biostimulant Preparation
2.6. Experimental Design
2.7. Plant Growth and Photosynthetic Performance Assessment in Response to Biostimulant Inoculatio
2.8. Evaluation of Antioxidant Enzyme Activity and Total Phenolic Content in Response to Biostimulant Inoculation
2.9. Effect of Biostimulants on Tomato Yield and Quality During the Reproductive Stage
2.10. LAP3 Strain Root Colonization Visualization
2.11. Statistical Analysis
3. Results
3.1. Isolation, Identification, and Characterization of the Streptomyces sp. LAP3 Strain from S. mexicana
3.2. The Marine Bacterium Streptomyces LAP3 Colonizes Roots
3.3. LAP3 Enhances Biomass Accumulation in Tomato Plants
3.4. Marine Streptomyces Inoculation Enhances Photoprotective Capacity and Induces an Increase in Chlorophyll Content
3.5. Marine Streptomyces Inoculation Promotes Antioxidant Activity
3.6. Effect on Tomato Fruit Yield and Quality During Reproductive Stage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MacLaren, C.; Mead, A.; van Balen, D.; Claessens, L.; Etana, A.; de Haan, J.; Haagsma, W.; Jäck, O.; Keller, T.; Labuschagne, J.; et al. Long-Term Evidence for Ecological Intensification as a Pathway to Sustainable Agriculture. Nat. Sustain. 2022, 5, 770–779. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.A.; Bardgett, R.D.; Van Straalen, N.M. The Unseen Majority: Soil Microbes as Drivers of Plant Diversity and Productivity in Terrestrial Ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef]
- Hayat, R.; Ali, S.; Amara, U.; Khalid, R.; Ahmed, I. Soil Beneficial Bacteria and Their Role in Plant Growth Promotion: A Review. Ann. Microbiol. 2010, 60, 579–598. [Google Scholar] [CrossRef]
- Malusá, E.; Vassilev, N. A Contribution to Set a Legal Framework for Biofertilisers. Appl. Microbiol. Biotechnol. 2014, 98, 6599–6607. [Google Scholar] [CrossRef]
- Fasusi, O.A.; Cruz, C.; Babalola, O.O. Agricultural Sustainability: Microbial Biofertilizers in Rhizosphere Management. Agriculture 2021, 11, 163. [Google Scholar] [CrossRef]
- Lata, R.; Chowdhury, S.; Gond, S.K.; White, J.F. Induction of Abiotic Stress Tolerance in Plants by Endophytic Microbes. Lett. Appl. Microbiol. 2018, 66, 268–276. [Google Scholar] [CrossRef]
- Ramanan, R.; Kang, Z.; Kim, B.H.; Cho, D.H.; Jin, L.; Oh, H.M.; Kim, H.S. Phycosphere Bacterial Diversity in Green Algae Reveals an Apparent Similarity across Habitats. Algal Res. 2015, 8, 140–144. [Google Scholar] [CrossRef]
- Palacios, O.A.; López, B.R.; de-Bashan, L.E. Microalga Growth-Promoting Bacteria (MGPB): A Formal Term Proposed for Beneficial Bacteria Involved in Microalgal–Bacterial Interactions. Algal Res. 2022, 61, 102585. [Google Scholar] [CrossRef]
- Ocampo-Alvarez, H.; Meza-Canales, I.D.; Mateos-Salmón, C.; Rios-Jara, E.; Rodríguez-Zaragoza, F.A.; Robles-Murguía, C.; Muñoz-Urias, A.; Hernández-Herrera, R.M.; Choix-Ley, F.J.; Becerril-Espinosa, A. Diving Into Reef Ecosystems for Land-Agriculture Solutions: Coral Microbiota Can Alleviate Salt Stress During Germination and Photosynthesis in Terrestrial Plants. Front. Plant Sci. 2020, 11, 648. [Google Scholar] [CrossRef]
- Becerril-Espinosa, A.; Hernández-Herrera, R.M.; Meza-Canales, I.D.; Perez-Ramirez, R.; Rodríguez-Zaragoza, F.A.; Méndez-Morán, L.; Sánchez-Hernández, C.V.; Palmeros-Suárez, P.A.; Palacios, O.A.; Choix, F.J.; et al. Habitat-Adapted Heterologous Symbiont Salinispora arenicola Promotes Growth and Alleviates Salt Stress in Tomato Crop Plants. Front. Plant Sci. 2022, 13, 920881. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; Henson, J.; Van Volkenburgh, E.; Hoy, M.; Wright, L.; Beckwith, F.; Kim, Y.O.; Redman, R.S. Stress Tolerance in Plants via Habitat-Adapted Symbiosis. ISME J. 2008, 2, 404–416. [Google Scholar] [CrossRef]
- Duarte, B.; Carreiras, J.A.; Cruz-Silva, A.; Mateos-Naranjo, E.; Rodríguez-Llorente, I.D.; Pajuelo, E.; Redondo-Gómez, S.; Mesa-Marín, J.; Figueiredo, A. Marine Plant Growth Promoting Bacteria (PGPB) Inoculation Technology: Testing the Effectiveness of Different Application Methods to Improve Tomato Plants Tolerance against Acute Heat Wave Stress. Plant Stress 2024, 11, 100434. [Google Scholar] [CrossRef]
- Rashad, F.M.; Fathy, H.M.; El-Zayat, A.S.; Elghonaimy, A.M. Isolation and Characterization of Multifunctional Streptomyces Species with Antimicrobial, Nematicidal and Phytohormone Activities from Marine Environments in Egypt. Microbiol. Res. 2015, 175, 34–47. [Google Scholar] [CrossRef]
- Kerbab, S.; Silini, A.; Bouket, A.C.; Cherif-Silini, H.; Eshelli, M.; Rabhi, N.E.H.; Belbahri, L. Mitigation of NaCl Stress in Wheat by Rhizosphere Engineering Using Salt Habitat Adapted PGPR Halotolerant Bacteria. Appl. Sci. 2021, 11, 1034. [Google Scholar] [CrossRef]
- Qin, S.; Zhang, Y.J.; Yuan, B.; Xu, P.Y.; Xing, K.; Wang, J.; Jiang, J.H. Isolation of ACC Deaminase-Producing Habitat-Adapted Symbiotic Bacteria Associated with Halophyte Limonium sinense (Girard) Kuntze and Evaluating Their Plant Growth-Promoting Activity under Salt Stress. Plant Soil 2014, 374, 753–766. [Google Scholar] [CrossRef]
- Qin, S.; Feng, W.W.; Wang, T.T.; Ding, P.; Xing, K.; Jiang, J.H. Plant Growth-Promoting Effect and Genomic Analysis of the Beneficial Endophyte Streptomyces sp. KLBMP 5084 Isolated from Halophyte Limonium sinense. Plant Soil 2017, 416, 117–132. [Google Scholar] [CrossRef]
- Rangseekaew, P.; Barros-Rodríguez, A.; Pathom-Aree, W.; Manzanera, M. Deep-Sea Actinobacteria Mitigate Salinity Stress in Tomato Seedlings and Their Biosafety Testing. Plants 2021, 10, 1687. [Google Scholar] [CrossRef]
- Michel-Morfin, J.; Valdez-Cibrian, A.; Gómez-Torres, M.; Landa Jaime, V.; Gomez-Gastelum, L.; Carballo, J.L. Population Status of the Endangered Giant Mexican Limpet Scutellastra mexicana in the Central Mexican Pacific. Aquat. Conserv. 2020, 31, 531–542. [Google Scholar] [CrossRef]
- Espinosa, F.; Carballo, J.L.; Bautista-Guerrero, E.; Yáñez, B.; García-Gómez, J.C.; Michel-Morfín, J.E. Redescription of the Highly Endangered Species Scutellastra mexicana (Broderip & G.B. Sowerby I, 1829) (Mollusca, Gastropoda). J. Nat. Hist. 2020, 54, 991–1007. [Google Scholar] [CrossRef]
- Galambos, N.; Compant, S.; Moretto, M.; Sicher, C.; Puopolo, G.; Wäckers, F.; Sessitsch, A.; Pertot, I.; Perazzolli, M. Humic Acid Enhances the Growth of Tomato Promoted by Endophytic Bacterial Strains Through the Activation of Hormone-, Growth-, and Transcription-Related Processes. Front. Plant Sci. 2020, 11, 582267. [Google Scholar] [CrossRef]
- da Silva, M.S.R.d.A.; dos Santos, B.d.M.S.; da Silva, C.S.R.d.A.; da Silva, C.S.R.d.A.; Antunes, L.F.d.S.; dos Santos, R.M.; Santos, C.H.B.; Rigobelo, E.C. Humic Substances in Combination with Plant Growth-Promoting Bacteria as an Alternative for Sustainable Agriculture. Front. Microbiol. 2021, 12, 719653. [Google Scholar] [CrossRef]
- Canellas, L.P.; Canellas, N.O.A.; da Silva, R.M.; Spaccini, R.; Mota, G.P.; Olivares, F.L. Biostimulants Using Humic Substances and Plant-Growth-Promoting Bacteria: Effects on Cassava (Manihot esculentus) and Okra (Abelmoschus esculentus) Yield. Agronomy 2023, 13, 80. [Google Scholar] [CrossRef]
- Ciriello, M.; Fusco, G.M.; Woodrow, P.; Carillo, P.; Rouphael, Y. Unravelling the Nexus of Plant Response to Non-Microbial Biostimulants under Stress Conditions. Plant Stress 2024, 11, 100421. [Google Scholar] [CrossRef]
- Sonmez, S.; Öktüren Asri, F. Effects of Leonardite on Soil Properties and the Nutrients Concentrations of Tomato Plants. Commun. Soil Sci. Plant Anal. 2024, 55, 1463–1475. [Google Scholar] [CrossRef]
- Savy, D.; Brostaux, Y.; Cozzolino, V.; Delaplace, P.; Jardin, P.; Piccolo, A. Quantitative Structure-Activity Relationship of Humic-Like Biostimulants Derived from Agro-Industrial Byproducts and Energy Crops. Front. Plant Sci. 2020, 11, 581. [Google Scholar] [CrossRef]
- Tiwari, J.; Ramanathan, A.L.; Bauddh, K.; Korstad, J. Humic Substances: Structure, Function and Benefits for Agroecosystems a Review. Pedosphere 2023, 33, 237–249. [Google Scholar] [CrossRef]
- Becerril-Espinosa, A.; Mateos-Salmón, C.; Burgos, A.; Rodríguez-Zaragoza, F.A.; Meza-Canales, I.D.; Juarez-Carrillo, E.; Rios-Jara, E.; Ocampo-Alvarez, H. Dry Stamping Coral Powder: An Effective Method for Isolating Coral Symbiotic Actinobacteria. Microorganisms 2023, 11, 2951. [Google Scholar] [CrossRef] [PubMed]
- Mincer, T.J.; Jensen, P.R.; Kauffman, C.A.; Fenical, W. Widespread and Persistent Populations of a Major New Marine Actinomycete Taxon in Ocean Sediments. Appl. Environ. Microbiol. 2002, 68, 5005–5011. [Google Scholar] [CrossRef]
- Mincer, T.J.; Fenical, W.; Jensen, P.R. Culture-Dependent and Culture-Independent Diversity within the Obligate Marine Actinomycete Genus Salinispora. Appl. Environ. Microbiol. 2005, 71, 7019–7028. [Google Scholar] [CrossRef] [PubMed]
- Gontang, E.A.; Fenical, W.; Jensen, P.R. Phylogenetic Diversity of Gram-Positive Bacteria Cultured from Marine Sediments. Appl. Environ. Microbiol. 2007, 73, 3272–3282. [Google Scholar] [CrossRef]
- Glickmann, E.; Dessaux, Y. A Critical Examination of the Specificity of the Salkowski Reagent for Indolic Compounds Produced by Phytopathogenic Bacteria. Appl. Environ. Microbiol. 1995, 61, 793–796. [Google Scholar] [CrossRef]
- Pantoja-Guerra, M.; Burkett-Cadena, M.; Cadena, J.; Dunlap, C.A.; Ramírez, C.A. Lysinibacillus spp.: An IAA-Producing Endospore Forming-Bacteria That Promotes Plant Growth. Anton. Leeuwe. 2023, 116, 615–630. [Google Scholar] [CrossRef]
- Penrose, D.M.; Glick, B.R. Methods for Isolating and Characterizing ACC Deaminase-Containing Plant Growth-Promoting Rhizobacteria. Physiol. Plant. 2003, 118, 10–15. [Google Scholar] [CrossRef]
- Nautiyal, C.S. An Efficient Microbiological Growth Medium for Screening Phosphate Solubilizing Microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef]
- Schwyn, B.; Neilands, J.B. Universal Chemical Assay for the Detection and Determination of Siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Louden, B.C.; Haarmann, D.; Lynne, A.M. Use of Blue Agar CAS Assay for Siderophore Detection. J. Microbiol. Biol. Educ. 2011, 12, 51–53. [Google Scholar] [CrossRef]
- Dahal, B.; NandaKafle, G.; Perkins, L.; Brözel, V.S. Diversity of Free-Living Nitrogen Fixing Streptomyces in Soils of the Badlands of South Dakota. Microbiol. Res. 2017, 195, 31–39. [Google Scholar] [CrossRef]
- Rohban, R.; Amoozegar, M.A.; Ventosa, A. Screening and Isolation of Halophilic Bacteria Producing Extracellular Hydrolyses from Howz Soltan Lake, Iran. J. Ind. Microbiol. Biotechnol. 2009, 36, 333–340. [Google Scholar] [CrossRef]
- Percival Zhang, Y.H.; Himmel, M.E.; Mielenz, J.R. Outlook for Cellulase Improvement: Screening and Selection Strategies. Biotechnol. Adv. 2006, 24, 452–481. [Google Scholar] [CrossRef]
- Kasana, R.C.; Salwan, R.; Dhar, H.; Dutt, S.; Gulati, A. A Rapid and Easy Method for the Detection of Microbial Cellulases on Agar Plates Using Gram’s Iodine. Curr. Microbiol. 2008, 57, 503–507. [Google Scholar] [CrossRef]
- García, D.; Cegarra, J.; Abad, M. A Comparison between Alkaline and Decomplexing Reagents to Extract Humic Acids from Low Rank Coals. Fuel Process. Technol. 1996, 48, 51–60. [Google Scholar] [CrossRef]
- Murchie, E.H.; Lawson, T. Chlorophyll Fluorescence Analysis: A Guide to Good Practice and Understanding Some New Applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef]
- Schreiber, U. Pulse-Amplitude-Modulation (PAM) Fluorometry and Saturation Pulse Method: An Overview. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 279–319. ISBN 978-1-4020-3218-9. [Google Scholar]
- Beyer, W.F.; Fridovich, I. Assaying for Superoxide Dismutase Activity: Some Large Consequences of Minor Changes in Conditions. Anal. Biochem. 1987, 161, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Asada, K. Purification of Ascorbate Peroxidase in Spinach Chloroplasts; Its Inactivation in Ascorbate-Depleted Medium and Reactivation by Monodehydroascorbate Radical. Plant Cell Physiol. 1987, 28, 867–880. [Google Scholar] [CrossRef]
- Kato, M.; Shimizu, S. Chlorophyll Metabolism in Higher Plants. VII. Chlorophyll Degradation in Senescing Tobacco Leaves; Phenolic-Dependent Peroxidative Degradation. Can. J. Bot. 1987, 65, 729–735. [Google Scholar] [CrossRef]
- Xu, B.J.; Chang, S.K.C. A Comparative Study on Phenolic Profiles and Antioxidant Activities of Legumes as Affected by Extraction Solvents. J. Food Sci. 2007, 72, s159–s166. [Google Scholar] [CrossRef]
- Soller, H.; Wedemeier, A. Prediction of Synergistic Multi-Compound Mixtures—A Generalized Colby Approach. Crop Prot. 2012, 42, 180–185. [Google Scholar] [CrossRef]
- Toma, T.; Kováč, J.; Ďurkovič, J. Fast, Easy, and Comprehensive Techniques for Microscopic Observations of Fungal and Oomycete Organisms Inside the Roots of Herbaceous and Woody Plants. BioProtocol J. 2024, 14, e5013. [Google Scholar] [CrossRef]
- Kocak, F.O. Simulatenous Evaluation of Composting Experiments and Metagenome Analyses to Illuminate the Effect of Streptomyces spp. on Organic Matter Degradation. World J. Microbiol. Biotechnol. 2023, 39, 70. [Google Scholar] [CrossRef] [PubMed]
- Worsley, S.F.; Newitt, J.; Rassbach, J.; Batey, S.F.D.; Holmes, N.A.; Murrell, J.C.; Wilkinson, B.; Hutchings, M.I. Streptomyces Endophytes Promote Host Health and Enhance Growth across Plant Species. Appl. Environ. Microbiol. 2020, 86, e01053-20. [Google Scholar] [CrossRef]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-Term Effects of Organic Amendments on Soil Fertility. A Review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef]
- Jones, S.E.; Elliot, M.A. Streptomyces Exploration: Competition, Volatile Communication and New Bacterial Behaviours. Trends Microbiol. 2017, 25, 522–531. [Google Scholar] [CrossRef]
- Zhang, G.; Li, B.; Yang, Y.; Zhang, Z.; Cheng, D.; Wang, F.; Wei, Z.; Mao, N.; Wang, S.; Liu, X.; et al. Biodegradation of Humic Acids by Streptomyces rochei to Promote the Growth and Yield of Corn. Microbiol. Res. 2024, 286, 127826. [Google Scholar] [CrossRef] [PubMed]
- Tikhonov, V.V.; Yakushev, A.V.; Zavgorodnyaya, Y.A.; Byzov, B.A.; Demin, V.V. Effects of Humic Acids on the Growth of Bacteria. Eurasian Soil Sci. 2010, 43, 305–313. [Google Scholar] [CrossRef]
- Suárez-Estrella, F.; Vargas-García, M.C.; López, M.J.; Moreno, J. Effect of Humic Substances Extracted from Compost to Plant Growth and Soil Microorganisms. Dyn. Soil Dyn. Plant 2008, 2, 96–102. [Google Scholar]
- Donald, L.; Pipite, A.; Subramani, R.; Owen, J.; Keyzers, R.A.; Taufa, T. Streptomyces: Still the Biggest Producer of New Natural Secondary Metabolites, a Current Perspective. Microbiol. Res. 2022, 13, 418–465. [Google Scholar] [CrossRef]
- Abo-Zaid, G.A.; Matar, S.M.; Abdelkhalek, A. Induction of Plant Resistance against Tobacco Mosaic Virus Using the Biocontrol Agent Streptomyces cellulosae Isolate Actino 48. Agronomy 2020, 10, 1620. [Google Scholar] [CrossRef]
- Abo-Zaid, G.A.; Darwish, M.H.; Ghozlan, H.A.; Abdel-Gayed, M.A.; Sabry, S.A. Sustainable Management of Peanut Damping-off and Root Rot Diseases Caused by Rhizoctonia Solani Using Environmentally Friendly Bio-Formulations Prepared from Batch Fermentation Broth of Chitinase-Producing Streptomyces cellulosae. BMC Plant Biol. 2024, 24, 760. [Google Scholar] [CrossRef] [PubMed]
- Guidi, L.; Lo Piccolo, E.; Landi, M. Chlorophyll Fluorescence, Photoinhibition and Abiotic Stress: Does It Make Any Difference the Fact to Be a C3 or C4 Species? Front. Plant Sci. 2019, 10, 174. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll Fluorescence—A Practical Guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Adams, W., III; Mattoo, A. Photoprotection, Photoinhibition, Gene Regulation, and Environment; Springer Science & Business Media: Dordrecht, The Netherlamnds, 2006. [Google Scholar] [CrossRef]
- Fujita, M.; Hasanuzzaman, M. Approaches to Enhancing Antioxidant Defense in Plants. Antioxidants 2022, 11, 925. [Google Scholar] [CrossRef] [PubMed]
- Galicia-Campos, E.; García-Villaraco Velasco, A.; Montero-Palmero, M.B.; Gutiérrez-Mañero, F.J.; Ramos-Solano, B. Modulation of Photosynthesis and ROS Scavenging Response by Beneficial Bacteria in Olea Europaea Plantlets under Salt Stress Conditions. Plants 2022, 11, 2748. [Google Scholar] [CrossRef]
- Peripolli, M.; Dornelles, S.H.B.; Lopes, S.J.; Tabaldi, L.A.; Trivisiol, V.S.; Rubert, J. Application of Biostimulants in Tomato Subjected to Water Deficit: Physiological, Enzymatic and Production Responses. Rev. Bras. Eng. Agric. Ambient. 2021, 25, 90–95. [Google Scholar] [CrossRef]
- Mishra, P.; Mishra, J.; Arora, N.K. Plant Growth Promoting Bacteria for Combating Salinity Stress in Plants—Recent Developments and Prospects: A Review. Microbiol. Res. 2021, 252, 126861. [Google Scholar] [CrossRef] [PubMed]
- Carreiras, J.; Cruz-Silva, A.; Fonseca, B.; Carvalho, R.C.; Cunha, J.P.; Proença Pereira, J.; Paiva-Silva, C.; Santos, S.A.; Janeiro Sequeira, R.; Mateos-Naranjo, E.; et al. Improving Grapevine Heat Stress Resilience with Marine Plant Growth-Promoting Rhizobacteria Consortia. Microorganisms 2023, 11, 856. [Google Scholar] [CrossRef]
- Badawy, I.H.; Hmed, A.A.; Sofy, M.R.; Al-Mokadem, A.Z. Alleviation of Cadmium and Nickel Toxicity and Phyto-Stimulation of Tomato Plant L. by Endophytic Micrococcus luteus and Enterobacter cloacae. Plants 2022, 11, 2018. [Google Scholar] [CrossRef]
- Rathod, K.; Rana, S.; Dhandhukia, P.; Thakker, J.N. Marine Bacillus subtilis as an Effective Biocontrol Agent against Fusarium oxysporum f. sp. Ciceris. Eur. J. Plant Pathol. 2023, 167, 759–770. [Google Scholar] [CrossRef]
- Kaya, C.; Şenbayram, M.; Akram, N.A.; Ashraf, M.; Alyemeni, M.N.; Ahmad, P. Sulfur-Enriched Leonardite and Humic Acid Soil Amendments Enhance Tolerance to Drought and Phosphorus Deficiency Stress in Maize (Zea mays L.). Sci. Rep. 2020, 10, 6432. [Google Scholar] [CrossRef]
- Li, S. Novel Insight into Functions of Ascorbate Peroxidase in Higher Plants: More than a Simple Antioxidant Enzyme. Redox Biol. 2023, 64, 102789. [Google Scholar] [CrossRef]
- Bouchama, K.; Rouabhi, R.; Djebar, M.R. Cadmium Phytotoxicity on Seed Germination, Early Growth and the Differential Antioxidant Response of Guaiacol Peroxidase in Phragmites australis Seedling Organs. Pol. J. Environ. Stud. 2023, 32, 1531–1544. [Google Scholar] [CrossRef]
- Yildiztekin, M.; Tuna, A.L.; Kaya, C. Physiological Effects of the Brown Seaweed (Ascophyllum nodosum) and Humic Substances on Plant Growth, Enzyme Activities of Certain Pepper Plants Grown under Salt Stress. Acta Biol. Hung. 2018, 69, 325–335. [Google Scholar] [CrossRef]
- Cuypers, A.; Hendrix, S.; dos Reis, R.A.; De Smet, S.; Deckers, J.; Gielen, H.; Jozefczak, M.; Loix, C.; Vercampt, H.; Vangronsveld, J.; et al. Hydrogen Peroxide, Signaling in Disguise during Metal Phytotoxicity. Front. Plant Sci. 2016, 7, 470. [Google Scholar] [CrossRef]
- Gutiérrez-Martínez, P.B.; Torres-Morán, M.I.; Romero-Puertas, M.C.; Casas-Solís, J.; Zarazúa-Villaseñor, P.; Sandoval-Pinto, E.; Ramírez-Hernández, B.C. Assessment of Antioxidant Enzymes in Leaves and Roots of Phaseolus vulgaris Plants under Cadmium Stress//Evaluación de Enzimas Antioxidantes En Hojas y Raíces de Plantas Phaseolus vulgaris Bajo Estrés de Cadmio. Biotecnia 2020, 22, 110–118. [Google Scholar] [CrossRef]
- Rangseekaew, P.; Barros-Rodríguez, A.; Pathom-Aree, W.; Manzanera, M. Plant Beneficial Deep-Sea Actinobacterium, Dermacoccus abyssi MT1.1T promote growth of tomato (Solanum lycopersicum) under salinity stress. Biology 2022, 11, 191. [Google Scholar] [CrossRef] [PubMed]
- Chanadech, S.; Ruen-ngam, D.; Intaraudom, C.; Pittayakhajonwut, P.; Chongruchiroj, S.; Pratuangdejkul, J.; Thawai, C. Isolation of Manumycin-Type Derivatives and Genome Characterization of a Marine Streptomyces sp. C1-2. Res. Microbiol. 2021, 172, 103812. [Google Scholar] [CrossRef]
- Subramanian, P.; Gurunathan, J. Differential Production of Pigments by Halophilic Bacteria Under the Effect of Salt and Evaluation of Their Antioxidant Activity. Appl. Biochem. Biotechnol. 2020, 190, 391–409. [Google Scholar] [CrossRef]
- Ansari, M.; Devi, B.M.; Sarkar, A.; Chattopadhyay, A.; Satnami, L.; Balu, P.; Choudhary, M.; Shahid, M.A.; Jailani, A.A.K. Microbial Exudates as Biostimulants: Role in Plant Growth Promotion and Stress Mitigation. J. Xenobiot. 2023, 13, 572–603. [Google Scholar] [CrossRef]
- Pathak, D.; Suman, A.; Dass, A.; Sharma, P.; Krishnan, A.; Gond, S. Enhancing Wheat Growth and Nutrient Content through Integrated Microbial and Non-microbial Biostimulants. Physiol. Plant. 2024, 176, e14485. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.Y.; Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Khalil, M.I.; Gan, S.H. Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review. Foods 2021, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Mezeyová, I.; Kollárová, I.; Golian, M.; Árvay, J.; Mezey, J.; Šlosár, M.; Galovičová, L.; Rosa, R.; Bakalár, M.; Horečná, T. The Effect of Humic-Based Biostimulants on the Yield and Quality Parameters of Chili Peppers. Horticulturae 2024, 10, 998. [Google Scholar] [CrossRef]
- Ampong, K.; Thilakaranthna, M.S.; Gorim, L.Y. Understanding the Role of Humic Acids on Crop Performance and Soil Health. Front. Agron. 2022, 4, 848621. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and Fulvic Acids as Biostimulants in Horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Pukalchik, M.; Kydralieva, K.; Yakimenko, O.; Fedoseeva, E.; Terekhova, V. Outlining the Potential Role of Humic Products in Modifying Biological Properties of the Soil—A Review. Front. Environ. Sci. 2019, 7, 80. [Google Scholar] [CrossRef]
Streptomyces PGP Properties | Activity |
---|---|
Auxin like molecules | 5.7 ± 1.02 µg/mL |
ACC deaminase | + |
Phosphate solubilization | + |
Siderophores | + |
Nitrogen-fixing | + |
Cellulolytic capacity | Hydrolysis index |
Amylase | HI = 2.88 ± 0.05 |
Exoglucanase | HI = 4.46 ± 0.39 |
Endoglucanase | HI = 4.16 ± 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becerril-Espinosa, A.; Lomeli-Mancilla, A.G.; Gutiérrez-Martínez, P.B.; Ramírez-Hernández, B.C.; Michel-Morfín, J.E.; Enciso-Padilla, I.; Perez-Ramirez, R.; Choix-Ley, F.J.; Maldonado-Villegas, M.M.; Juarez-Carrillo, E.; et al. Synergistic Biofertilization by Marine Streptomyces sp. and Leonardite Enhances Yield and Heatwave Resilience in Tomato Plants. Horticulturae 2025, 11, 1081. https://doi.org/10.3390/horticulturae11091081
Becerril-Espinosa A, Lomeli-Mancilla AG, Gutiérrez-Martínez PB, Ramírez-Hernández BC, Michel-Morfín JE, Enciso-Padilla I, Perez-Ramirez R, Choix-Ley FJ, Maldonado-Villegas MM, Juarez-Carrillo E, et al. Synergistic Biofertilization by Marine Streptomyces sp. and Leonardite Enhances Yield and Heatwave Resilience in Tomato Plants. Horticulturae. 2025; 11(9):1081. https://doi.org/10.3390/horticulturae11091081
Chicago/Turabian StyleBecerril-Espinosa, Amayaly, Ahtziri G. Lomeli-Mancilla, Paulina Beatriz Gutiérrez-Martínez, Blanca Catalina Ramírez-Hernández, Jesús Emilio Michel-Morfín, Ildefonso Enciso-Padilla, Rodrigo Perez-Ramirez, Francisco Javier Choix-Ley, Marcela Mariel Maldonado-Villegas, Eduardo Juarez-Carrillo, and et al. 2025. "Synergistic Biofertilization by Marine Streptomyces sp. and Leonardite Enhances Yield and Heatwave Resilience in Tomato Plants" Horticulturae 11, no. 9: 1081. https://doi.org/10.3390/horticulturae11091081
APA StyleBecerril-Espinosa, A., Lomeli-Mancilla, A. G., Gutiérrez-Martínez, P. B., Ramírez-Hernández, B. C., Michel-Morfín, J. E., Enciso-Padilla, I., Perez-Ramirez, R., Choix-Ley, F. J., Maldonado-Villegas, M. M., Juarez-Carrillo, E., Burgos, A., & Ocampo-Alvarez, H. (2025). Synergistic Biofertilization by Marine Streptomyces sp. and Leonardite Enhances Yield and Heatwave Resilience in Tomato Plants. Horticulturae, 11(9), 1081. https://doi.org/10.3390/horticulturae11091081