Evaluation of Fungicides and Application Strategies for the Management of the Red Leaf Blotch Disease of Almond
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Plots
2.2. Fungicide Products Application
2.3. Experimental Trials
2.3.1. Fungicide Selection Trials
2.3.2. Application Strategies Trials
2.4. Disease Assessment
2.5. Data Analysis
3. Results
3.1. Fungicide Selection
3.2. Application Strategies
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batlle, I.; Dicenta, F.; Socias i Company, R.; Gradziel, T.M.; Wirthensohn, M.; Duval, H.; Vargas, F.J. Classical genetics and breeding. In Almonds, Botany, Production and Uses; Socias i Company, R., Gradziel, T.M., Eds.; CAB International: Boston, MA, USA, 2017; pp. 111–148. [Google Scholar]
- Gradziel, T.; Curtis, R.; Rafel Socias i Company. Production and growing regions. In Almonds, Botany, Production and Uses; Rafel Socias i Company, Gradziel, T.M., Eds.; CAB International: Boston, MA, USA, 2017; pp. 70–86. [Google Scholar]
- Socias I Company, R.; Gómez Aparisi, J.; Alonso, J.M.; Rubio-Cabetas, M.J.; Kodad, O. Retos y perspectivas de los nuevos cultivares y patrones de almendro para un cultivo sostenible. Inf. Técnica Económica Agrar. 2009, 105, 99–116. [Google Scholar]
- MAPA a. Avances de. Superficies y Producciones Anuales de Cultivos, año. 2020. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-anuales-cultivos (accessed on 8 November 2021).
- Torguet, L.; Batlle, I.; Alegre, S.; Miarnau, X. Nuevas plagas y enfermedades emergentes, una amenaza para el cultivo del almendro en España. Rev. De Frutic. 2016, 49, 152–165. [Google Scholar]
- Almacellas, J. Síntomas, daños y métodos de control de la mancha ocre del almendro. Vida Rural. 2014, 389, 28–32. [Google Scholar]
- Miarnau, X.; Zazurca, L.; Torguet, L.; Zúñiga, E.; Batlle, I.; Alegre, S.; Luque, J. Cultivar susceptibility and environmental parameters affecting symptom expression of red leaf blotch of almond in Spain. Plant Dis. 2021, 105, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Miarnau, X.; Montserrat, R.; Batlle, I.; Alegre, S.; Vargas, F.J. High density planting in almond orchards. In Proceedings of the VI International Symposium on Almonds and Pistachios (ISHS), Murcia, Spain, 27–31 May 2013. [Google Scholar]
- Miarnau, X.; Torguet, L.; Batlle, I.; Alegre, S. El cultivo del almendro en alta densidad. Rev. De Frutic. 2016, 49, 68–87. [Google Scholar]
- Torguet, L.; Maldonado, M.; Miarnau, X. Importancia y control de las enfermedades en el cultivo del almendro. Agricultura 2019, 1026, 72–77. [Google Scholar]
- Cannon, P. Systematics and diversity of the Phyllachoraceae associated with Rosaceae, with a monograph of Polystigma. Mycol. Res. 1996, 100, 1409–1427. [Google Scholar] [CrossRef]
- Banihashemi, Z. Biology and control of Polystigma ochraceum, the cause of almond red leaf blotch. Plant Pathol. 1990, 39, 309–315. [Google Scholar] [CrossRef]
- Saad, A.T.; Masannat, K. Economic importance and cycle of Polystigma ochraceum, causing red leaf blotch disease of almond, in Lebanon. EPPO Bull. 1997, 27, 481–485. [Google Scholar] [CrossRef]
- Kranz, J. Plant diseases in Cyrenaica. FAO Plant Prot. Bull. 1962, 10, 121–125. [Google Scholar]
- López-López, M.; Calderón, R.; González-Dugo, V.; Zarco-Tejada, P.J.; Fereres, E. Early detection and quantification of almond red leaf blotch using high-resolution hyperspectral and thermal imagery. Remote Sens. 2016, 8, 276. [Google Scholar] [CrossRef]
- Dicenta, F.; Sánchez-Pérez, R.; Rubio, M.; Egea, J.; Batlle, I.; Miarnau, X.; Palasciano, M.; Lipari, E.; Confolent, C.; Martínez, P.; et al. The origin of the self-compatible almond ‘Guara’. Sci. Hortic. 2015, 197, 1–4. [Google Scholar] [CrossRef]
- Lin, A.; Szteinberg, A. Control of the almond disease Polystigma by urea treatments. Hassadeh 1992, 73, 62–66. [Google Scholar]
- Amanifar, N. Evaluation of the efficiency of two fungicides on the control of almond leaf blotch disease on two cultivars in along Zayanderood. J Plant Prot. 2017, 31, 166–171. [Google Scholar]
- Bayt Tork, D.; Taherian, M.; Divan, R. Evaluation of some fungicides for controlling almond red leaf blotch (Polystigma amygdalinum). Int. J. Adv. Biol. Biomed. Res. 2014, 4, 1011–1016. [Google Scholar]
- Sahragard, N.; Eshaghi, R.; Aflaki, M.R.; Banihashemi, Z. Time of fungicide application against Polystigma amygdalinum in almond based on ascospore discharge in Chahar Mahal va Bakhtiari province. Iran. J. Plant Pathol. 2007, 43, 219–239. [Google Scholar]
- Shabi, E.; Elisha, S.; Kessel, G.J.; Birger, R.; Singer, G. Almond anthracnose and red leaf blotch (RLB) and their control and the influence of fungicide treatment on rust build up. Fungic. Nematic. Tests 1988, 43, 82. [Google Scholar]
- Sharifi-Tehrani, A. Etude comparée de Faction de quelques fongicides sur les taches brunes de l’amandier Polystigma ochraceum (Wahl.) Sacc. Meded. Van De Facutteit Landbouwwet. Rijksuniv. Gent 1985, 50, 1259–1263. [Google Scholar]
- MAPA, b. Registro de Productos Fitosanitarios. Available online: https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/productos-fitosanitarios/fitos.asp (accessed on 8 November 2021).
- Lucas, J.A.; Hawkins, N.J.; Fraaije, B.A. The evolution of fungicide resistance. Adv. Appl. Microbiol. 2015, 90, 29–92. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Fungicide Resistance Action Committee. FRAC Code List ©*2020: Fungal Control Agents Sorted by Cross Resistance Pattern and Mode of Action. Available online: https://www.frac.info/knowledge-database/knowledge-database (accessed on 17 February 2021).
- Felipe, A.J. Estados fenológicos del almendro. Información Técnica Económica. Agraria 1977, 8, 8–9. [Google Scholar]
- Zúñiga, E.; Romero, J.; Ollero-Lara, A.; Lovera, M.; Arquero, O.; Miarnau, X.; Torguet, L.; Trapero, A.; Luque, J. Inoculum and infection dynamics of Polystigma amygdalinum in almond orchards in Spain. Plant Dis. 2020, 104, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Zúñiga, E.; Luque, J.; Torguet, L.; Miarnau, X. Biología y epidemiología de la mancha ocre del almendro en Cataluña. Rev. De Frutic. 2017, 57, 6–15. [Google Scholar]
- MAPA c. Lista de Sustancias Activas Aprobadas, Excluidas y en Evaluación Comunitaria, Sustancias de Bajo Riesgo, Sustancias Candidatas a la Sustitución y Lista de Sustancias Básicas. Available online: https://www.mapa.gob.es/agricultura/pags/fitos/registro/fichas/pdf/Lista_Sustancias_activas_aceptadas_excluidas.pdf (accessed on 23 November 2021).
- Torguet, L.; Martinez, G.; Girabet, R.; Zazurca, L.; Maldonado, M.; Miarnau, X. La mancha bacteriana, una enfermedad de gran expansión en el cultivo del almendro en España. Vida Rural. 2020, 480, 10–15. [Google Scholar]
- Veloukas, T.; Karaoglanidis, G.S. Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity. Pest Manag. Sci. 2011, 68, 858–864. [Google Scholar] [CrossRef]
- Stack, A.J.; Madra, M.; Gordon, T.R.; Bostock, R.M. Seasonal variation in host susceptibility to Fusarium canker in young almond trees. Plant Dis. 2020, 104, 772–779. [Google Scholar] [CrossRef]
- Bartlett, D.; Clough, J.; Godwin, J.; Hall, A.; Hamer, M.; Parr-Dobrzanski, B. Review: The strobilurin fungicides. Pest Manag. Sci. 2004, 60, 309. [Google Scholar] [CrossRef]
- Horsfield, A.; Wicks, T.; Wilson, D. Field evaluation of fungicides for the control of rust, brown rot, shot hole and scab in almonds. Australas. Plant Pathol. 2010, 39, 112–119. [Google Scholar] [CrossRef]
- Ojiambo, P.; Paul, P.A.; Holmes, G.J. A quantitative review of fungicide efficacy for managing downy Mildew in Cucurbits. Phytopathology 2010, 100, 1066–1076. [Google Scholar] [CrossRef]
- Ashkan, M.; Assadi, P. Red blotch of almond (Polystigma ochraceum) in Iran. Iran. J. Plant Pathol. 1974, 10, 49–63. [Google Scholar]
Active Ingredient | Chemical Group 1 | FRAC Group 2 | Commercial Name | Manufacturer | Formulation 3 | Registered Concentration 4 |
---|---|---|---|---|---|---|
Captan | Phthalimide | M4 | Capteran 50 | Adama Agriculture España SA | 500 g kg−1 WG | 2.5–3.0 g L−1 (peach) |
Captan | Phthalimide | M4 | Blancado 85 | Comercial Química Massó SA | 850 g kg−1 WG | Not registered 5 |
Copper oxide | Copper | M1 | Nordox 30/30 | Comercial Química Massó SA | 338 g kg−1 WG | Not registered 5 |
Copper oxide | Copper | M1 | Nordox 45 | Comercial Química Massó SA | 450 g kg−1 WP | 1.5–2 g L−1 (vegetables) |
Cyflufenamid | Amidoxine | U6 | Siz | Sipcam Iberia SA | 51.3 g L−1 EW | 0.5 mL L−1 (almond) |
Cyproconazole | Triazole | 3 | Caddy 10 petite | Bayer CropScience SL | 100 g kg−1 WG | 0.1–0.2 g L−1 (peach) |
Dodine | Guanidine | M7 | Syllit Flow | Arysta Lifescience Iberia SL | 544 g L−1 SC | 1.1–1.3 mL L−1 (almond) |
Fenbuconazole | Triazole | 3 | Impala Star | Dow Agrosciences Iberica SA | 25 g L−1 EW | 3.0–8.4 mL L−1 (almond) |
Fenbuconazole | Triazole | 3 | Impala | Dow Agrosciences Iberica SA | 50 g L−1 EW | 1.5–2.0 mL L−1 (almond) |
Fenpyrazamine | Pyrazolium | 7 | Prolectus | Kenogard SA | 500 g kg−1 WG | 0.8–1.2 g L−1 (peach) |
Fluopyram | Carboxamide | 7 | Luna Privilege | Bayer CropScience SL | 500 g L−1 SC | 0.3–0.5 mL L−1 (peach) |
Folpet | Phthalimide | M4 | Folpan 80 | Adama Agriculture España SA | 800 g L−1 WG | 2.0 g L−1 (vegetables) |
Myclobutanil | Triazole | 3 | Systhane 25 | Dow Agrosciences Iberica SA | 25 g L−1 EW | 2.0–6.0 mL L−1 (vegetables) |
Penthiopyrad | Carboxamide | 7 | Fontelis | Dupont Iberica | 200 g L−1 SC | 1.5 mL L−1 (vegetables) |
Tebuconazole | Triazole | 3 | Orius | Nufarm España SA | 200 g L−1 EW | 0.9–0.1 mL L−1 (apricot) |
Thiram | Carbamate | M3 | Tiram Flow | Exclusivas Sarabia SA | 500 g L−1 SC | Not registered 5 |
Trifloxystrobin | Strobilurin | 11 | Flint | Bayer Cropscience SL | 500 g L−1 WG | 0.2 g L−1 (peach) |
Fluopyram + trifloxystrobin | Carboxamide, strobilurin | 7 11 | Luna Sensation | Bayer Cropscience SL | 250 g L−1 and 250 g L−1 SC | 0.6–0.8 mL L−1 (vegetables) |
Isopyrazam + difenoconazole | Pyrazole, triazole | 7 3 | Embrelia | Adama Agriculture España SA | 100 g L−1 and 40 g L−1 SC | 1 mL L−1 (peach) |
Pyraclostrobin + boscalid | Strobilurin, carboxamide | 11 7 | Signum | Basf Española SL | 67 g kg−1 and 267 g kg−1 WG | 1.0 g L−1 (almond) |
Tebuconazole + trifloxystrobin | Triazole, strobilurin | 3 11 | Flint Max | Bayer Cropscience SL | 500 g L−1 and 250 g L−1 WG | 0.3 mL L−1 (peach) |
Trial | Year | Location | Cultivar | Fungicide 1 | Rate (%) | Alternate Product 2 | Starting Time 3 | Timing between Sprays | Number of Sprays |
---|---|---|---|---|---|---|---|---|---|
1 | 2015 | Alcarràs | ‘Guara’ | Captan 50% | 0.250 | Thiram 50% | Petal fall | Every 14 days | 4 |
Cyproconazole 10% | 0.015 | at 0.250 | |||||||
Dodine 54,4% | 0.100 | ||||||||
Captan 50d% + dodine 54.4% | 0.250 0.100 | ||||||||
2 | 2016 | Alcarràs | ‘Guara’ | Cyproconazole 10% | 0.015 | Captan 50% | Petal fall | Every 14 days | 4 |
Fenbuconazole 5% | 0.150 | at 0.250 | |||||||
Fluopyram 20% | 0.040 | ||||||||
Fluopyram 20% + trifloxystrobin 20% | 0.040 | ||||||||
Penthiopyrad 20% | 0.150 | ||||||||
Pyraclostrobin 6.7% + boscalid 26.7% | 0.100 | ||||||||
Tebuconazole 20% | 0.100 | ||||||||
Thiram 50% | 0.250 | ||||||||
Trifloxystrobin 50% | 0.015 | ||||||||
3 | 2017 | Alcarràs | ‘Guara’ | Fenbuconazole 2,5% | 0.300 | Folpet 80% | Petal fall | Every 21 days | 4 |
Fenpyrazamine 50% | 0.120 | at 0.200 | |||||||
Fluopyram 25% + trifloxystrobin 25% | 0.040 | ||||||||
Isopyrazam 10% + difenoconazole 4% | 0.150 | ||||||||
Penthiopyrad 20% | 0.150 | ||||||||
Pyraclostrobin 6.7% + boscalid 26.7% | 0.100 | ||||||||
Tebuconazole 20% | 0.100 | ||||||||
Thiram 50% | 0.250 | ||||||||
Trifloxystrobin 50% | 0.015 |
Trial | Year | Location | Cultivar | Fungicide 1 | Rate (%) | Starting Time 2 | Timing Between Sprays | Number Of Sprays |
---|---|---|---|---|---|---|---|---|
1 | 2015 | Alcarràs | ‘Guara’ | Captan 85% | 0.150 | Petal fall | Every 14 days | 5 |
Copper oxide 30% | 0.075 | |||||||
Copper oxide 45% | 0.050 | |||||||
Copper oxide 30% + captan 85% | 0.075 0.150 | |||||||
2 | 2018 | Alcarràs | ‘Guara’ | Cyflufenamid 5.13% | 0.500 | Petal fall | Every 21 days | 4 |
Dodine 40% | 0.200 | |||||||
Fenbuconazole 2.5% | 0.300 | |||||||
Fenpyrazamine 50% | 0.120 | |||||||
Folpet 80% | 0.200 | |||||||
Fluopyram 20% + trifloxystrobin 20% | 0.040 | |||||||
Penthiopyrad 20% | 0.150 | |||||||
Pyraclostrobin 6.7% + boscalid 26.7% | 0.100 | |||||||
Trifloxystrobin 25% + tebuconazole 50% | 0.030 | |||||||
3 | 2019 | Vilagrassa | ‘Tarraco’ | Dodine 54.4% | 0.125 | Petal fall | Every 21 days | 4 |
Fenbuconazole 2.5% | 0.300 | |||||||
Myclobutanil 2.5% | 0.060 | |||||||
Penthiopyrad 20% | 0.150 | |||||||
Pyraclostrobin 6.7% + boscalid 26.7% | 0.100 |
Trial | Year | Fungicide | Rate (%) | Strategy 1 | Starting Time 2 | Application Timing | Number of Sprays |
---|---|---|---|---|---|---|---|
1 | 2017 | Pyraclostrobin 6.7% + boscalid 26.7% | 0.100 | Cadence 1 | Petal fall | Every 14 days | 9 |
Cadence 2 | Petal fall | Every 21 days | 6 | ||||
Meteorological 1 | Petal fall | After >15 mm rainfalls | 5 | ||||
Meteorological 2 | Petal fall | 15 days after >15 mm rainfall with ≈10–15 °C as mean minimum temp. | 3 | ||||
2 | 2018 | Pyraclostrobin 6.7% + boscalid 26.7% | 0.100 | Cadence 1 | Petal fall | Every 21 days | 7 |
Cadence 2 | Petal fall | Every 31 days | 5 | ||||
Meteorological 1 | Petal fall | 15 days after >15 mm rainfall with ≈10–15 °C as mean minimum temp. (applications until June) | 2 | ||||
Meteorological 2 | Petal fall | 15 days after >15 mm rainfall with ≈10–15 °C as mean minimum temp. | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torguet, L.; Zazurca, L.; Martínez, G.; Pons-Solé, G.; Luque, J.; Miarnau, X. Evaluation of Fungicides and Application Strategies for the Management of the Red Leaf Blotch Disease of Almond. Horticulturae 2022, 8, 501. https://doi.org/10.3390/horticulturae8060501
Torguet L, Zazurca L, Martínez G, Pons-Solé G, Luque J, Miarnau X. Evaluation of Fungicides and Application Strategies for the Management of the Red Leaf Blotch Disease of Almond. Horticulturae. 2022; 8(6):501. https://doi.org/10.3390/horticulturae8060501
Chicago/Turabian StyleTorguet, Laura, Lourdes Zazurca, Guillem Martínez, Gemma Pons-Solé, Jordi Luque, and Xavier Miarnau. 2022. "Evaluation of Fungicides and Application Strategies for the Management of the Red Leaf Blotch Disease of Almond" Horticulturae 8, no. 6: 501. https://doi.org/10.3390/horticulturae8060501
APA StyleTorguet, L., Zazurca, L., Martínez, G., Pons-Solé, G., Luque, J., & Miarnau, X. (2022). Evaluation of Fungicides and Application Strategies for the Management of the Red Leaf Blotch Disease of Almond. Horticulturae, 8(6), 501. https://doi.org/10.3390/horticulturae8060501