Use of a Biostimulant Obtained from Slaughterhouse Sludge in a Greenhouse Tomato Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biostimulant Properties
2.2. Experimental Design
- C treatment: control, plants were not fertilized with the biostimulant;
- S1 treatment: plants amended with the biostimulant applied to the substrate at a dose of 0.7 g L−1;
- S2 treatment: plants amended with the biostimulant applied to the substrate at a dose of 1.4 g L−1;
- F1 treatment: plants fertilized foliarly with the biostimulant at a dose of 0.7 g L−1;
- F2 treatment: plants fertilized foliarly with the biostimulant at a dose of 1.4 g L−1.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Da Costa, P.B.; Beneduzi, A.; de Souza, R.; Schoenfeld, R.; Vargas, L.K.; Passaglia, L.M.P. The effects of different fertilization conditions on bacterial plant growth promoting traits: Guidelines for directed bacterial prospection and testing. Plant Soil 2013, 368, 267–280. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020, 10, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, M.; Cea, M.; Medina, J.; González, A.; Díez, M.; Cartes, P.; Monreal, C.; Naria, R. Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Sci. Total Environ. 2015, 505, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Ashour, M.; Hassan, S.M.; Elshobary, M.E.; Ammar, G.A.G.; Gaber, A.; Alsanie, W.F.; Mansour, A.T.; El-Shenody, R. Impact of commercial seaweed liquid estract (TAM) biostimulant and its bioactive molecules on growth and antioxidant activities of hot pepper (Capsicum annuum). Plants 2021, 10, 1045. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.M.; Ashour, M.; Soliman, A.A.E.; Hassanien, H.A.; Alsanie, W.F.; Gaber, A.; ElShobary, M.E. The potential of a new commercial seaweed extract in stimulating morpho-agronomic and bioactive properties of Eruca vesicaria (L.) Cav. Sustainability 2021, 13, 4485. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y. Biostimulants in agriculture. Sci. Hortic. 2015, 196, 1–2. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant action of a plant-derived protein hydrolyzates produced through enzymatic hydrolysis. Front. Plant Sci. 2014, 5, 448. [Google Scholar] [CrossRef] [Green Version]
- Ertani, A.; Pizzeghello, D.; Francioso, O.; Sambo, P.; Sanchez-Cortes, S.; Nardi, S. Capsium chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: Chemical and metabolomic approaches. Front. Plant Sci. 2014, 5, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Tejada, M.; Rodríguez-Morgado, B.; Gómez, I.; Franco-Andreu, L.; Benítez, C.; Parrado, J. Use of bioferilizers obtained from sewage sludges on maize yield. Eur. J. Agron. 2016, 78, 13–19. [Google Scholar] [CrossRef]
- Tejada, M.; Rodríguez-Morgado, B.; Paneque, P.; Parrado, J. Effects of foliar fertilization of a biostimulant obtained from chicken feathers on maize yield. Eur. J. Agron. 2018, 96, 54–59. [Google Scholar] [CrossRef]
- Searchinger, T. The Great Balancing CCT: Installment 1 of Creating a Sustainable Food Future; World Resources Institute: Washington, DC, USA, 2013; pp. 1–15. [Google Scholar]
- Kapoore, R.V.; Wodd, E.E.; Llewellyn, C.A. Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol. Adv. 2021, 49, 107754. [Google Scholar] [CrossRef] [PubMed]
- European Comission (Ed.) Circular Economy Package-Proposal for a Regulation of the European Parlament and of the Council; 2016/0084; European Comission: Brussels, Belgium, 2016.
- Ávila-Pozo, P.; Parrado, J.; Caballero, P.; Díaz-López, M.; Bastida, F.; Tejada, M. Use of slaughterhouse sludge in the bioremediation of an oxyfluorfen-polluted soil. Int. J. Environ. Res. 2021, 15, 723–731. [Google Scholar] [CrossRef]
- Bilalis, D.; Krokida, M.; Roussis, I.; Papastylianou, P.; Travlos, I.; Cheimona, N.; Dede, A. Effects of organic and inorganic fertilization on yield and quality of processing tomato (Lycopersicon esculentum Mill.). Folia Hort. 2018, 30, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Maach, M.; Boudouasar, K.; Akodad, M.; Skalli, A.; Moumen, A.; Baghour, M. Application of biostimulants improves yield and fruit quality in tomato. Int. J. Veg. Sci. 2021, 27, 288–293. [Google Scholar] [CrossRef]
- Rodríguez-Morgado, B.; Gómez, I.; Parrado, J.; García-Martínez, A.M.; Aragón, C.; Tejada, M. Obtaining edaphic biostimulants/biofertiliaers from different sewage sludges. Effects on soil biological properties. Environ. Technol. 2015, 36, 2217–2226. [Google Scholar] [CrossRef]
- Adler-Nissen, J. Enzymatic hydrolysis of food protein. Proc. Biochem. 1977, 12, 15–32. [Google Scholar]
- Parrado, J.; Rodríguez-Morgado, B.; Tejada, M.; Hernandez, T.; García, C. Proteomic analysis of enzyme production by Bacillus licheniformis using different feather wastes as the sole fermentation media. Enzyme Microb. Technol. 2014, 57, 1–7. [Google Scholar] [CrossRef]
- Tejada, M.; Gonzalez, J.L.; Hernandez, M.T.; Garcia, C. Agricultural use of leachates obtained from two different vermicomposting processes. Biores. Technol. 2008, 99, 6228–6232. [Google Scholar] [CrossRef]
- Nuez, F. El Cultivo del Tomate; Mundi-Prensa: Madrid, Spain, 1995. [Google Scholar]
- Madejón, P.; Xiong, J.; Cabrera, F.; Madejón, E. Quality of trace element contaminated soils amended with compost under fast growing tree Paulownia fortune plantation. J. Environ. Manag. 2014, 144, 176–185. [Google Scholar] [CrossRef] [Green Version]
- MAPA. Métodos Oficiales de Análisis; Secretaría General Técnica del Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 1986; Volume 1, pp. 221–285. [Google Scholar]
- Lichtenthaler, H.K. Chlorophyll and carotenoids: Pigments of photosynthetic biomembranes. In Methods Enzymology; Packer, L., Douce, R., Eds.; Academic Press: Sandiego, Spain, 1987; pp. 350–382. [Google Scholar]
- Fish, W.W.; Perkins-Veazie, P.; Collins, J.K. A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J. Food Compos. Anal. 2002, 15, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Francesca, S.; Arena, C.; Mele, B.H.; Schettini, C.; Ambrosino, P.; Barone, A.; Rigano, M.M. The use of a plant-based biostimulant improves plant performances and fruit quality in tomato plants grown at elevated temperatures. Agronomy 2020, 10, 363. [Google Scholar] [CrossRef] [Green Version]
- De Paula, B.S.; Feltrim, D.; Engel, D.C.H.; Baptistella, J.L.C.; Rodrigues, M.; Engel, E.; Mazzafera, P. Algae-based biostimulants increase yield and quality of mini tomatoes under protected cultivation. JSFA Rep. 2022, 2, 155–160. [Google Scholar] [CrossRef]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Kocira, A.; Lamorska, J.; Kornas, R.; Nowosad, N.; Tomaszewska, M.; Leszczyńska, D.; Kozłowicz, K.; Sylwester Tabor, S. Changes in biochemistry and yield in response to biostimulants applied in bean (Phaseolus vulgaris L.). Agronomy 2020, 10, 189. [Google Scholar] [CrossRef] [Green Version]
- Ertani, A.; Cavani, L.; Pizzeghello, D.; Brandellero, E.; Altissimo, A.; Ciavatta, C.; Nardi, S. Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J. Plant Nutr. Soil Sci. 2009, 172, 237–244. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [Green Version]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules 2021, 11, 698. [Google Scholar] [CrossRef]
- Garcia, A.C.; Olaetxea, M.; Santos, L.A.; Mora, V.; Baigorri, R.; Fuentes, M.; Zamarreño, A.M.; Berbara, R.L.; Garcia-Mina, J.M. Involvement of hormone- and ROS-signaling pathways in the beneficial action of humic substances on plants growing under normal and stressing conditions. BioMed. Res. Int. 2016, 2016, 3747501. [Google Scholar] [CrossRef]
- Conselvan, G.B.; Fuentes, D.; Merchant, A.; Peggion, C.; Francioso, O.; Carletti, P. Effects of humic substances and indole-3-acetic acid on Arabidopsis sugar and amino acid metabolic profile. Plant Soil 2018, 426, 17–32. [Google Scholar] [CrossRef]
- Sestili, F.; Rouphael, Y.; Cardarelli, M.; Pucci, A.; Bonini, P.; Canaguier, R.; Colla, G. Protein hydrolysate stimulates growth in tomato coupled with N-dependent gene expression involved in N assimilation. Front. Plant Sci. 2018, 9, 1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.-S.; Su, H.N.; Li, K.; Xie, B.B.; Liu, L.N.; Zhang, X.Y.; Chen, X.L.; Huang, F.; Zhou, B.C.; Zhang, Y.Z. Supramolecular architecture of photosynthetic membrane in red algae in response to nitrogen starvation. Biochim. Biophys. Acta 2016, 1857, 1751–1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.-T.; Xie, Y.-Z.; Chen, X.-F.; Zhang, J.; Chen, H.-H.; Ye, X.; Guo, J.; Yang, L.-T.; Chen, L.-S. Growth, mineral nutrients, photosynthesis and related physiological parameters of citrus in response to nitrogen deficiency. Agronomy 2021, 11, 1859. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Jafari, S.M. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
Chemical Composition | |
Dry matter (%) | 15.3 ± 2.1 |
Organic matter (g kg−1) | 658 ± 351 |
N (g kg−1) | 4.3 ± 1.3 |
P (g kg−1) | 6.2 ± 1.6 |
K (g kg−1) | 9.3 ± 2.1 |
S (g kg−1) | 12.4 ± 2.7 |
Ca (g kg−1) | 17.1 ± 3.1 |
Mg (g kg−1) | 2.1 ± 0.9 |
Fe (g kg−1) | 3.7 ± 1.2 |
Cu (mg kg−1) | 81.3 ± 11.6 |
Mn (mg kg−1) | 39.8 ± 12.4 |
Zn (mg kg−1) | 298 ± 37 |
Pb (mg kg−1) | 6.4 ± 1.8 |
Ni (mg kg−1) | 5.2 ± 1.3 |
Protein Molecular Weight Distribution (Da) | |
>10,000 | 48.7 ± 1.5 |
10,000–5000 | 4.1 ± 1.9 |
5000–3000 | 2.0 ± 0.7 |
3000–1000 | 5.7 ± 1.1 |
1000–300 | 7.2 ± 1.8 |
<300 | 32.3 ± 2.5 |
Parameter | Crop Time (Days) | C Treatment | S1 Treatment | S2 Treatment | F1 Treatment | F2 Treatment |
---|---|---|---|---|---|---|
Plant height (cm) | 35 | 33.4 ± 3.5 a | 35.0 ± 2.7 a | 40.2 ± 2.9 a | 36.2 ± 1.9 a | 39.4 ± 2.2 a |
55 | 55.2 ± 4.4 a | 64.8 ± 3.8 b | 66.7 ± 3.0 b | 61.8 ± 2.7 b | 64.2 ± 2.0 b | |
75 | 65.8 ± 3.1 a | 79.6 ± 4.0 b | 84.1 ± 2.4 c | 73.2 ± 3.6 b | 79.2 ± 3.1 b | |
95 | 70.3 ± 3.7 a | 87.8 ± 4.1 b | 98.2 ± 4.7 c | 80.9 ± 3.2 b | 91.4 ± 2.9 bc | |
120 | 74.3 ± 4.1 a | 96.2 ± 3.8 b | 109.3 ± 5.2 c | 86.8 ± 4.1 b | 95.9 ± 3.7 b | |
Number of flowers per plant | 35 | - | - | - | - | - |
55 | 3.2 ± 1.3 a | 5.7 ± 1.0 b | 6.2 ± 1.3 b | 8.2 ± 1.1 c | 11.3 ± 1.8 d | |
75 | 5.7 ± 1.1 a | 6.8 ± 1.4 b | 7.9 ± 1.6 b | 8.4 ± 1.3 bc | 9.5 ± 1.2 c | |
95 | 4.1 ± 1.0 a | 9.5 ± 1.4 bc | 10.3 ± 2.1 c | 6.1 ± 1.7 ab | 7.8 ± 1.2 b | |
120 | 1.2 ± 0.5 a | 2.6 ± 0.3 b | 4.1 ± 0.6 c | 2.5 ± 0.3 b | 2.3 ± 0.5 b | |
Number of fruits per plant | 35 | - | - | - | - | - |
55 | 1.4 ± 0.2 a | 3.3 ± 0.3 b | 3.9 ± 0.4 c | 2.5 ± 0.5 b | 3.7 ± 0.4 b | |
75 | 1.7 ± 0.3 a | 6.0 ± 0.8 b | 7.2 ± 1.0 c | 5.1 ± 0.6 b | 5.9 ± 0.9 b | |
95 | 2.1 ± 0.3 a | 9.6 ± 1.2 b | 12.9 ± 1.5 c | 8.2 ± 1.0 b | 9.7 ± 1.2 b | |
120 | 1.2 ± 0.2 a | 2.7 ± 0.4 b | 3.2 ± 0.3 b | 2.2 ± 0.6 b | 2.8 ± 0.3 b |
Parameter (Unit) | C Treatment | S1 Treatment | S2 Treatment | F1 Treatment | F2 Treatment |
---|---|---|---|---|---|
N ‡ (%) | 1.3 ± 0.2 a | 1.9 ± 0.2 b | 3.0 ± 0.3 c | 1.7 ± 0.1 b | 2.2 ± 0.2 bc |
P (%) | 0.56 ± 0.18 a | 0.79 ±0.11 b | 0.83 ± 0.13 c | 0.72 ± 0.17 b | 0.73 ± 0.15 b |
K (%) | 2.0 ± 0.4 a | 2.7 ± 0.6 b | 3.2 ± 0.5 c | 2.3 ± 0.7 a | 2.5 ± 0.5 ab |
S (%) | 0.25 ± 0.1 a | 0.45 ± 0.14 b | 0.57 ± 0.17 b | 0.32 ± 0.11 ab | 0.43 ± 0.14 b |
Ca (%) | 6.1 ± 0.8 a | 8.7 ± 0.9 b | 10.5 ± 1.3 c | 7.3 ± 0.7 b | 8.6 ± 1.0 b |
Mg (%) | 0.40 ± 0.11 a | 0.50 ± 0.08 b | 0.53 ± 0.10 b | 0.48 ± 0.07 ab | 0.51 ± 0.11 b |
Fe (mg kg−1) | 79.2 ± 8.9 a | 99.2 ± 9.6 b | 128.3 ± 12.4 c | 93.5 ± 10.1 b | 105.4 ± 11.3 b |
Mn (mg kg−1) | 119.2 ± 12.3 a | 159.3 ± 15.4 b | 177.4 ± 14.9 c | 143.4 ± 13.5 b | 150.3 ± 15.8 b |
Cu (mg kg−1) | 4.8 ± 0.8 a | 6.3 ± 0.5 b | 8.4 ± 1.0 c | 5.5 ± 0.6 ab | 6.7 ± 0.7 b |
Zn (mg kg−1) | 25.4 ± 0.7 a | 30.4 ± 1.8 b | 32.6 ± 1.0 b | 30.8 ± 1.5 b | 31.7 ± 1.7 b |
Parameter | C Treatment | S1 Treatment | S2 Treatment | F1 Treatment | F2 Treatment |
---|---|---|---|---|---|
Chlorophyll a (mg g−1) | 2.4 ± 0.6 a | 4.5 ± 1.3 b | 6.7 ± 1.8 c | 3.9 ± 0.8 b | 5.5 ± 1.2 b |
Chlorophyll b (mg g−1) | 1.3 ± 0.2 a | 2.9 ± 0.5 b | 3.8 ± 0.9 c | 2.4 ± 0.7 b | 3.1 ± 0.6 b |
Total chlorophyll (mg g−1) | 4.7 ± 0.9 a | 10.3 ± 1.2 b | 15.5 ± 1.5 c | 8.3 ± 1.1 b | 12.3 ± 1.7 b |
Parameter (Unit) | C Treatment | S1 Treatment | S2 Treatment | F1 Treatment | F2 Treatment |
---|---|---|---|---|---|
N (%) | 1.1 ± 0.1 a | 1.8 ± 0.3 b | 2.3 ± 0.4 c | 2.3 ± 0.4 c | 1.7 ± 0.2 b |
P (%) | 0.31 ± 0.12 a | 0.44 ±0.10 b | 0.53 ± 0.14 c | 0.39 ± 0.12 b | 0.45 ± 0.11 b |
K (%) | 2.5 ± 0.6 a | 4.2 ± 1.2 b | 4.9 ± 1.3 c | 3.5 ± 1.0 b | 4.0 ± 1.1 b |
S (%) | 0.11 ± 0.1 a | 0.17 ± 0.03 b | 0.19 ± 0.05 b | 0.13 ± 0.04 ab | 0.14 ± 0.04 b |
Ca (%) | 0.11 ± 0.1 a | 0.19 ± 0.2 bb | 0.24 ± 0.3 c | 0.16 ± 0.2 b | 0.19 ± 0.3 b |
Mg (%) | 0.09 ± 0.02 a | 0.14 ± 0.02 b | 0.20 ± 0.10 b | 0.14 ± 0.037 b | 0.17 ± 0.10 b |
Fe (mg kg−1) | 19.3 ± 1.4 a | 34.9 ± 4.1 b | 49.5 ± 4.6 c | 29.6 ± 3.7 b | 35.9 ± 2.9 b |
Mn (mg kg−1) | 8.8 ± 1.1 a | 9.6 ± 1.5 b | 13.1 ± 1.5 c | 9.1 ± 1.2 b | 10.6 ± 1.1 b |
Cu (mg kg−1) | 1.7 ± 0.2 a | 2.6 ± 0.7 b | 3.5 ± 1.2 c | 2.3 ± 0.6 b | 2.8 ± 0.9 b |
Zn (mg kg−1) | 9.8 ± 1.2 a | 12.1 ± 0.8 ab | 16.5 ± 1.3 b | 13.4 ± 1.0 b | 14.2 ± 1.0 b |
C treatment | S1 Treatment | S2 Treatment | F1 Treatment | F2 Treatment |
---|---|---|---|---|
62.1 ± 1.5 a | 80.7 ± 1.8 bc | 93.8 ± 2.6 c | 71.8 ± 2.0 b | 77.1 ± 1.4 b |
Parameter (Unit) | C Treatment | S1 Treatment | S2 Treatment | F1 Treatment | F2 Treatment |
---|---|---|---|---|---|
Equatorial diameter (cm) | 17.2 ± 1.4 a | 25.2 ± 1.0 b | 28.4 ± 1.3 c | 20.3 ± 1.2 b | 23.5 ± 1.1 b |
Fresh weight (g) | 97.6 ± 3.5 a | 159.3 ± 4.8 c | 220.6 ± 5.6 d | 125.3 ± 4.0 b | 139.6 ± 3.9 b |
Dry weight (g) | 58.9 ± 2.3 a | 87.6 ± 3.5 c | 119.7 ± 3.8 d | 68.6 ± 2.6 b | 72.6 ± 2.9 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ávila-Pozo, P.; Parrado, J.; Caballero, P.; Tejada, M. Use of a Biostimulant Obtained from Slaughterhouse Sludge in a Greenhouse Tomato Crop. Horticulturae 2022, 8, 622. https://doi.org/10.3390/horticulturae8070622
Ávila-Pozo P, Parrado J, Caballero P, Tejada M. Use of a Biostimulant Obtained from Slaughterhouse Sludge in a Greenhouse Tomato Crop. Horticulturae. 2022; 8(7):622. https://doi.org/10.3390/horticulturae8070622
Chicago/Turabian StyleÁvila-Pozo, Paloma, Juan Parrado, Pablo Caballero, and Manuel Tejada. 2022. "Use of a Biostimulant Obtained from Slaughterhouse Sludge in a Greenhouse Tomato Crop" Horticulturae 8, no. 7: 622. https://doi.org/10.3390/horticulturae8070622
APA StyleÁvila-Pozo, P., Parrado, J., Caballero, P., & Tejada, M. (2022). Use of a Biostimulant Obtained from Slaughterhouse Sludge in a Greenhouse Tomato Crop. Horticulturae, 8(7), 622. https://doi.org/10.3390/horticulturae8070622