Role of the Green Husks of Persian Walnut (Juglans regia L.)—A Review
Abstract
:1. Introduction
2. Botany of Walnut
3. Nut Characteristics
3.1. Physical Characteristics of Kernel
3.2. Chemical Compounds in Kernel
4. Walnut Green Husks
4.1. Phenolic Compounds in Walnut Green Husks
4.2. Extraction Methods of Phenolic Compounds
4.3. Uses of Walnut Husks
4.4. Effects of Walnut Green Husk Biochemical Compounds on Abiotic and Biotic Factors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vahdati, K.; Arab, M.M.; Sarikhani, S.; Sadat-Hosseini, M.; Leslie, C.A.; Brown, P.J. Advances in Persian Walnut (Juglans regia L.) Breeding Strategies. In Advances in Plant Breeding Strategies: Nut and Beverage Crops; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2019; Volume 4, pp. 401–472. [Google Scholar]
- Oğuz, H.; Oğuz, İ. Walnut (Juglans regia L.) Breeding and Walnut Breeding Criteria. In Walnut; Gundesli, M.A., Ed.; Iksad Publications: Ankara, Turkey, 2021; pp. 203–230. [Google Scholar]
- Bujdosó, G.; Lengyel-Kónya, É.; Berki, M.; Végh, A.; Fodor, A.; Adányi, N. Effects of Phenolic Compounds on Walnut Bacterial Blight in the Green Husk of Hungarian-Bred Cultivars. Plants 2022, 11, 2996. [Google Scholar] [CrossRef]
- Tomer, V.; Kumar, A.; Gupta, K.; Shukla, S.; Rafiq, S. Walnut. 10. In Antioxidants in Vegetables and Nuts—Properties and Health Benefits; Nayik, G.A., Gull, A., Eds.; Springer Nature, Singapore Pte Ltd.: Singapore, 2020; pp. 385–422. [Google Scholar]
- Iordanescu, O.A.; Radulov, I.P.; Buhan, I.; Cocan, I.; Berbecea, A.A.; Popescu, I.; Posta, D.S.; Camen, D.; Lalescu, D. Physical, Nutritional, and Functional Properties of Walnuts Genotypes (Juglans regia L.) from Romania. Agronomy 2021, 11, 1092. [Google Scholar] [CrossRef]
- de Rigo, D.; Enescu, C.M.; Houston Durrant, T.; Tinner, W.; Caudullo, G. Juglans regia in Europe: Distribution, habitat, usage, and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publications Office of the EU: Luxembourg, 2016; p. 103. [Google Scholar]
- Vahdati, K.; Sadeghi-Majd, R.; Sestras, A.F.; Licea-Moreno, R.J.; Peixe, A.; Sestras, R.E. Clonal Propagation of Walnuts (Juglans spp.): A Review on Evolution from Traditional Techniques to Application of Biotechnology. Plants 2022, 11, 3040. [Google Scholar] [CrossRef]
- Stonehouse, W. The Effects of Walnuts (Juglans regia) on the Characteristics of the Metabolic Syndrome. In Nuts and Seeds in Health and Disease Prevention; Victor, R.P., Ronald, R.W., Vinood, B.P., Eds.; Academic Press: Amsterdam, The Netherlands, 2011; pp. 1141–1148. ISBN 9780123756886. [Google Scholar] [CrossRef]
- Hassankhah, A.; Rahemi, M.; Ramshini, H.; Sarikhani, S.; Vahdati, K. Flowering in Persian walnut: Patterns of gene expression during flower development. BMC Plant Biol. 2020, 20, 136. [Google Scholar] [CrossRef] [Green Version]
- Aslamarz, A.A.; Vahdati, K.; Rahemi, M.; Hassani, D. Estimation of Chilling and Heat Requirements of Some Persian Walnut Cultivars and Genotypes. HortScience 2009, 44, 697–701. [Google Scholar] [CrossRef] [Green Version]
- Chandler, W.H.; Kimball, M.H.; Phillip, G.L.; Tufts, W.P.; Weldon, G.P. Chilling requirements for opening of buds on deciduous orchard trees and some other plants in California. Univ. Cal. Agr. Expt. Bull. 1937, 611, 3–62. [Google Scholar]
- Bujdosó, G.; Illes, B.; Varjas, V.; Cseke, K. Is “Esterhazy II”, an Old Walnut Variety in the Hungarian Gene Bank, the Original Genotype? Plants 2021, 10, 854. [Google Scholar] [CrossRef] [PubMed]
- Britannica, The Editors of Encyclopaedia. “Walnut”. Encyclopedia Britannica. Available online: https://www.britannica.com/plant/walnut-tree-and-nut (accessed on 8 June 2023).
- Wilkinson, J. Nut Grower’s Guide. In The Complete Handbook for Producers and Hobbyists; Landlinks Press: Collingwood, Australia, 2005; ISBN 0 643 06963 1. [Google Scholar]
- Jahanban-Esfahlan, A.; Ostadrahimi, A.; Tabibiazar, M.; Amarowicz, R. A Comprehensive Review on the Chemical Constituents and Functional Uses of Walnut (Juglans spp.) Husk. Int. J. Mol. Sci. 2019, 20, 3920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.L.; Liu, Q.L.; Teixeira da Silva, J.A. Ultrastructure of pericarp and seed capsule cells in the developing walnut (Juglans regia L.) fruit. S. Afr. J. Bot. 2009, 75, 128–136. [Google Scholar] [CrossRef]
- Bujdosó, G.; Cseke, K. The Persian (English) walnut (Juglans regia L.) assortment of Hungary: Nut characteristics and origin. Sci. Hort. 2021, 283, 110035. [Google Scholar] [CrossRef]
- Pakrah, S.; Rahemi, M.; Haghjooyan, R.; Nabipour, A.; Kakavand, F.; Zahedzadeh, F.; Vahdati, K. Comparing Physical and Biochemical Properties of Dried and Fresh Kernels of Persian Walnut. Erwerbs-Obstbau 2022, 64, 455–462. [Google Scholar] [CrossRef]
- Altuntas, E.; Erkol, M. Physical properties of shelled and kernel walnuts as affected by the moisture content. Czech J. Food Sci. 2010, 28, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Gandev, S.I. Behavior of some local and foreign walnut cultivars under the climatic conditions of South Bulgaria. Fruits 2017, 72, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Gandev, S.I. Agrobiological evaluation of the local walnut cultivars ‘Izvor 10’ and ‘Sheynovo’ in the climatic conditions of Southern Bulgaria. Acta Hortic. 2019, 1259, 67–70. [Google Scholar] [CrossRef]
- Hričovský, I.; Benediková, D.; Cagáňová, I.; Michálek, S.; Paulen, O.; Šebo, M.; Varga, M.; Župník, M. Pomológia. [1. Part], Jablone, Hrušky, čerešne, Višne, škrupinové Ovocie [Pomology (1st Vol.): Apples, Pears, Sweet and Sour Cherries, Nut Tree Crops]; Nezávislosť Publisher: Bratislava, Slovakia, 1976; pp. 215–218. [Google Scholar]
- Geisenheim Walnut No. 26 Walnut Tree. Available online: https://www.walnuss24.de/produkt/walnussbaum-sorten-kaufen/geisenheimer-walnuss-nr-26-baum/ (accessed on 29 May 2023).
- Bernard, A.; Lheureux, F.; Dirlewanger, E. Walnut: Past and future of genetic improvement. Tree Genet. Genomes 2018, 14, 1. [Google Scholar] [CrossRef] [Green Version]
- Geisenheim Cultivars. Available online: https://www.hs-geisenheim.de/en/research/departments/pomology/department-of-pomology/geisenheim-cultivars/#collapse11041 (accessed on 29 May 2023).
- Tsurkan, I.P. On walnut varieties in Moldavia. Acta Hortic. 1988, 224, 355–358. [Google Scholar] [CrossRef]
- Botu, M.; Tudor, M.; Papachatzis, A. Evaluation of some walnut cultivars with different bearing habits in the ecological conditions of Oltenia—Romania. Acta Hortic. 2010, 861, 119–126. [Google Scholar] [CrossRef]
- Botu, M.; Tudor, M.; Botu, I.; Cosmulescu, S.; Papachatzis, A. Evaluation of walnut cultivars in the conditions of the Oltenia’s hill area regarding functioning potential. Ann. Univ. Craiova Ser. Biol. Hortic. Food Prod. Process. Technol. Environ. Eng. 2010, 15, 94–103. [Google Scholar]
- Botu, M.; Giura, S.; Scutelnicu, A.; Achim, G.; Cosmulescu, S.; Botu, I. Walnut cultivars with perspectives for ecological culture in Romania. Rom. J. Hortic. 2021, 2, 85–92. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Baciu, A.; Botu, M.; Achim, G. Environmental factors’ influence on walnut flowering. Acta Hortic. 2010, 861, 83–88. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Botu, M.; Trandafir, I. Mineral composition and physical characteristics of walnut (Juglans regia L.) cultivars originating in Romania. Selcuk J. Agric. Food Sci. 2010, 24, 33–37. [Google Scholar]
- Cosmulescu, S.; Botu, M.; Achim, G. Determination of apomictic fruit set ratio in several Romanian walnuts (Juglans regia L.) cultivars. Not. Bot. Horti Agrobo. 2012, 40, 229–233. [Google Scholar] [CrossRef] [Green Version]
- Quality Seedlings—An Investment in the Future. Available online: https://leska.rs/en/walnut/ (accessed on 29 May 2023).
- Cerović, S.; Gološin, B.; Todorović, J.; Bijelic, S.; Ognjanov, V. Walnut (Juglans regia L.) selection in Serbia. Hort. Sci. 2010, 37, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Cerovic, S.; Gološin, B.; Bijelic, S.; Bogdanovic, B. Five decades of the selection of walnut (Juglans regia L.): In Serbia. In Yearbook of Scientific Works of the Faculty of Agriculture; Bogdanović, D., Ed.; SCIndeks: Belgrade, Serbia, 2014; Volume 38, pp. 19–28. [Google Scholar] [CrossRef] [Green Version]
- Golosin, B.; Cerovic, S.; Korac, M.; Korac, J.; Bijelic, S. Biological-pomological characteristics of walnut cultivars and selections with lateral fruit buds. Savrem. Poljopr. 2002, 4, 22–29. [Google Scholar]
- Solar, A.; Stampar, F. Evaluation of some perspective walnut genotypes in Slovenia. Acta Hortic. 2005, 705, 131–136. [Google Scholar] [CrossRef]
- Solar, A.; Veberic, R.; Stampar, F. ‘Sava’ and ‘Krka’ Walnut Cultivars. HortScience 2014, 49, 1081–1082. [Google Scholar] [CrossRef] [Green Version]
- Sutyemez, M.; Özcan, A.; Bükücü, Ş. A superior genetic source for late leafing in walnut ‘Ahir Nut’. Hortic. Sci. 2022, 49, 205–212. [Google Scholar] [CrossRef]
- Sütyemez, M. New walnut cultivars: Maras 18, Sütyemez 1, and Kaman 1. Hortscience 2016, 51, 1301–1303. [Google Scholar] [CrossRef]
- Akça, Y. ‘Şebin’ Persian walnut. Acta Hortic. 2014, 1050, 139–142. [Google Scholar] [CrossRef]
- Akça, Y.; Polat, A.A. Present status and future of walnut production in Turkey. Eur. J. Plant Sci. Biotechnol. 2007, 1, 57–64. [Google Scholar]
- Andrienko, M.V.; Zatokovoy, F.T.; Satina, L.F. Walnut in the Ukranie. Acta Hortic. 1990, 284, 339–342. [Google Scholar] [CrossRef]
- Sheng, F.; Hu, B.; Jin, Q.; Wang, J.; Wu, C.; Luo, Z. The Analysis of Phenolic Compounds in Walnut Husk and Pellicle by UPLC-Q-Orbitrap HRMS and HPLC. Molecules 2021, 26, 3013. [Google Scholar] [CrossRef]
- Li, X.; Guo, M.; Chi, J.; Ma, J. Bioactive Peptides from Walnut Residue Protein. Molecules 2020, 25, 1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahanban-Esfahlan, A.; Ostadrahimi, A.; Tabibiazar, M.; Amarowicz, R. A Comparative Review on the Extraction, Antioxidant Content and Antioxidant Potential of Different Parts of Walnut (Juglans regia L.) Fruit and Tree. Molecules 2019, 24, 2133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, X.; Hua, Y.; Chen, G. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut (Juglans regia L.) proteins and protein fractionations. Int. J. Mol. Sci. 2014, 15, 2003–2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ros, E. Health Benefits of Nut Consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef] [Green Version]
- Savage, G.P. Chemical composition of walnuts (Juglans regia L.) grown in New Zealand. Plant Foods Hum. Nutr. 2001, 56, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Bolling, B.W.; Chen, C.Y.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios, and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Medic, A.; Jakopic, J.; Solar, A.; Hudina, M.; Veberic, R. Walnut (J. regia) Agro-Residues as a Rich Source of Phenolic Compounds. Biology 2021, 10, 535. [Google Scholar] [CrossRef]
- Medic, A.; Zamljen, T.; Hudina, M.; Veberic, R. Identification and Quantification of Naphthoquinones and Other Phenolic Compounds in Leaves, Petioles, Bark, Roots, and Buds of Juglans regia L., Using HPLC-MS/MS. Horticulturae 2021, 7, 326. [Google Scholar] [CrossRef]
- Mateș, L.; Rusu, M.E.; Popa, D.S. Phytochemicals and Biological Activities of Walnut Septum: A Systematic Review. Antioxidants 2023, 12, 604. [Google Scholar] [CrossRef]
- Valentová, K.; Vrba, J.; Bancířová, M.; Ulrichová, J.; Křen, V. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 2014, 68, 267–282. [Google Scholar] [CrossRef] [PubMed]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Pycia, K.; Kapusta, I.; Jaworska, G. Impact of the Degree of Maturity of Walnuts (Juglans regia L.) and Their Variety on the Antioxidant Potential and the Content of Tocopherols and Polyphenols. Molecules 2019, 24, 2936. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Rho, H.S.; Choi, K. Antiinflammatory Effects of a P-coumaric Acid and Kojic Acid Derivative in LPS-stimulated RAW264.7 Macrophage Cells. Biotechnol. Bioproc. E 2019, 24, 653–657. [Google Scholar] [CrossRef]
- Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran. J. Basic Med. Sci. 2019, 22, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.; Wianowska, D. Chlorogenic acids—Their properties, occurrence, and analysis. Ann. UMCS Chem. 2017, 72, 61. [Google Scholar] [CrossRef]
- Heleno, S.A.; Martins, A.; Queiroz, M.J.; Ferreira, I.C. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chem. 2015, 173, 501–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Shitany, N.A.; El-Bastawissy, E.A.; El-desoky, K. Ellagic acid protects against carrageenan-induced acute inflammation through inhibition of nuclear factor kappa B, inducible cyclooxygenase and proinflammatory cytokines, and enhancement of interleukin-10 via an antioxidant mechanism. Int. Immunopharmacol. 2014, 19, 290–299. [Google Scholar] [CrossRef]
- Choi, S.W.; Park, K.I.; Yeon, J.T.; Ryu, B.J.; Kim, K.J.; Kim, S.H. Anti-osteoclastogenic activity of matairesinol via suppression of p38/ERK-NFATc1 signaling axis. BMC Complement. Altern. Med. 2014, 14, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milder, I.E.; Arts, I.C.; van de Putte, B.; Venema, D.P.; Hollman, P.C. Lignan contents of Dutch plant foods: A database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br. J. Nut. 2005, 93, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Bolling, B.W.; McKay, D.L.; Blumberg, J.B. The phytochemical composition and antioxidant actions of tree nuts. Asia Pac. J. Clin. Nutr. 2010, 19, 117–123. [Google Scholar] [PubMed]
- Yin, T.P.; Cai, L.; Chen, Y.; Li, Y.; Wang, Y.R.; Liu, C.S.; Ding, Z.T. Tannins and Antioxidant Activities of the Walnut (Juglans regia) Pellicle. Nat. Prod. Commun. 2015, 10, 2141–2144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeram, N.P.; Lee, R.; Heber, D. Bioavailability of ellagic acid in human plasma after consumption of ellagitannins from pomegranate (Punica granatum L.) juice and dietary supplements. Clin. Chim. Acta 2004, 348, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Carey, A.N.; Fisher, D.R.; Bielinski, D.F.; Cahoon, D.S.; Shukitt-Hale, B. Walnut-Associated Fatty Acids Inhibit LPS-Induced Activation of BV-2 Microglia. Inflammation 2020, 43, 241–250. [Google Scholar] [CrossRef]
- Chamorro, F.; Carpena, M.; Lourenço-Lopes, C.; Taofiq, O.; Otero, P.; Cao, H.; Xiao, J.; Simal-Gandara, J.; Prieto, M.A. By-Products of Walnut (Juglans regia) as a Source of Bioactive Compounds for the Formulation of Nutraceuticals and Functional Foods. Biol. Life Sci. Forum. 2022, 12, 35. [Google Scholar] [CrossRef]
- Liu, B.; Liang, J.; Zhao, D.; Wang, K.; Jia, M.; Wang, J. Morphological and Compositional Analysis of Two Walnut (Juglans regia L.) Cultivars Growing in China. Plant Foods Hum. Nutr. 2020, 75, 116–123. [Google Scholar] [CrossRef]
- Yang, H.; Xiao, X.; Li, J.; Wang, F.; Mi, J.; Shi, Y.; He, F.; Chen, L.; Zhang, F.; Wan, X. Chemical Compositions of Walnut (Juglans spp.) Oil: Combined Effects of Genetic and Climatic Factors. Forests 2022, 13, 962. [Google Scholar] [CrossRef]
- Wang, R.; Zhong, D.; Wu, S.; Han, Y.; Zheng, Y.; Tang, F.; Ni, Z.; Liu, Y. The phytochemical profiles for walnuts (J. regia and J. sigillata) from China with protected geographical indications. Food Sci. Technol. 2021, 41, 695–701. [Google Scholar] [CrossRef]
- Bouabdallah, I.; Bouali, I.; Martinez-Force, E.; Albouchi, A.; Perez Camino, M.C.; Boukhchina, S. Composition of fatty acids, triacylglycerols, and polar compounds of different walnut varieties (Juglans regia L.) from Tunisia. Nat. Prod. Res. 2014, 28, 1826–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poggetti, L.; Ferfuia, C.; Chiabà, C.; Testolin, R.; Baldini, M. Kernel oil content and oil composition in walnut (Juglans regia L.) accessions from north-eastern Italy. J. Sci. Food Agric. 2018, 98, 955–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, P.; Jin, J.; Liu, R.; Jin, Q.; Wang, X. Chemical Compositions of Walnut (Juglans regia L.) Oils from Different Cultivated Regions in China. J. Am. Oil Chem. Soc. 2018, 95, 825–834. [Google Scholar] [CrossRef]
- Yerlikaya, C.; Yucel, S.; Erturk, Ü.; Korukluoğlu, M. Proximate Composition, Minerals and Fatty Acid Composition of Juglans regia L. Genotypes and Cultivars Grown in Turkey. Braz. Arch. Biol. Technol. 2012, 55, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Gu, M.; Chen, H.P.; Zhao, M.M.; Wang, X.; Yang, B.; Ren, J.Y.; Su, G.W. Identification of antioxidant peptides released from defatted walnut (Juglans Sigillata Dode) meal proteins with pancreatin. LWT Food Sci. Technol. 2015, 60, 213–220. [Google Scholar] [CrossRef]
- Mapelli, S.; Brambilla, I.; Bertani, A. Free amino acids in walnut kernels and young seedlings. Tree Physiol. 2001, 21, 1299–1302. [Google Scholar] [CrossRef] [Green Version]
- La Torre, C.; Caputo, P.; Plastina, P.; Cione, E.; Fazio, A. Green Husk of Walnuts (Juglans regia L.) from Southern Italy as a Valuable Source for the Recovery of Glucans and Pectins. Fermentation 2021, 7, 305. [Google Scholar] [CrossRef]
- Yilmaz, S.; Akça, Y.; Saçlik, S. Green Husk and Inshell Biomass Production Capabilities of Six Walnut Cultivars. Agric. Food 2017, 5, 389–397. Available online: https://www.scientific-publications.net/en/article/1001431 (accessed on 20 June 2023).
- Fernández-Agulló, A.; Pereira, E.; Freire, M.S.; Valentão, P.; Andrade, P.B.; González-Álvarez, J.; Pereira, J.A. Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Ind. Crop. Prod. 2013, 42, 126–132. [Google Scholar] [CrossRef]
- Solar, A.; Colaric, M.; Usenik, V.; Stampar, F. Seasonal variations of selected flavonoids, phenolic acids, and quinones in annual shoots of common walnut (Juglans regia L.). Plant Sci. 2006, 170, 453–461. [Google Scholar] [CrossRef]
- Soto-Madrid, D.; Gutiérrez-Cutiño, M.; Pozo-Martínez, J.; Zúñiga-López, M.C.; Olea-Azar, C.; Matiacevich, S. Dependence of the Ripeness Stage on the Antioxidant and Antimicrobial Properties of Walnut (Juglans regia L.) Green Husk Extracts from Industrial By-Products. Molecules 2021, 26, 2878. [Google Scholar] [CrossRef]
- Zhang, Q. Effects of Extraction Solvents On Phytochemicals and Antioxidant Activities of Walnut (Juglans Regia L.) Green Husk Extracts. Eur. J. Food Sci. Technol. 2015, 3, 15–21. [Google Scholar]
- Hama, J.R.; Omer, R.A.; Rashid, R.S.M.; Mohammad, N.E.A.; Thoss, V. The Diversity of Phenolic Compounds along Defatted Kernel, Green Husk and Leaves of Walnut (Juglans regia L.). Anal. Chem. Lett. 2016, 6, 35–46. [Google Scholar] [CrossRef]
- Cosmulescu, S.N.; Trandafir, I.; Nour, V. Influence of the extraction solvent on antioxidant capacity and total phenolic in currant fruits. J. Appl. Bot. Food Qual. 2014, 87, 206–209. [Google Scholar] [CrossRef]
- Jakopič, J.; Solar, A.; Colaric, M.; Hudina, M.; Veberič, R.; Stampar, F. The influence of ethanol concentration on content of total and individual phenolics in walnut alcoholic drink. Acta Aliment. 2008, 37, 233–239. [Google Scholar] [CrossRef]
- Jakopič, J.; Veberič, R.; Stampar, F. Extraction of phenolic compounds from green walnut fruits in different solvents. Acta Agric. Slov. 2009, 93, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Barekat, S.; Nasirpour, A.; Keramat, J.; Dinari, M.; Meziane-Kaci, M.; Paris, C.; Desobry, S. Phytochemical Composition, Antimicrobial, Anticancer Properties, and Antioxidant Potential of Green Husk from Several Walnut Varieties (Juglans regia L.). Antioxidants 2023, 12, 52. [Google Scholar] [CrossRef]
- Croitoru, A.; Ficai, D.; Craciun, L.; Ficai, A.; Andronescu, E. Evaluation and Exploitation of Bioactive Compounds of Walnut, (Juglans regia). Curr. Pharm. Des. 2019, 25, 119–131. [Google Scholar] [CrossRef]
- Bourais, I.; Elmarrkechy, S.; Taha, D.; Badaoui, B.; Mourabit, Y.; Salhi, N.; Alshahrani, M.M.; Al Awadh, A.A.; Bouyahya, A.; Goh, K.W.; et al. Comparative Investigation of Chemical Constituents of Kernels, Leaves, Husk, and Bark of Juglans regia L., Using HPLC-DAD-ESI-MS/MS Analysis and Evaluation of Their Antioxidant, Antidiabetic, and Anti-Inflammatory Activities. Molecules 2022, 27, 8989. [Google Scholar] [CrossRef]
- Soto-Maldonado, C.; Vergara-Castro, M.; Jara-Quezada, J.; Caballero-Valdés, E.; Müller-Pavez, A.; Zúñiga-Hansen, M.E.; Altamirano, C. Polyphenolic extracts of walnut (Juglans regia) green husk containing juglone inhibit the growth of HL-60 cells and induce apoptosis. Electron. J. Biotechnol. 2019, 39, 1–7. [Google Scholar] [CrossRef]
- Rahmani, F.; Dehganiasl, M.; Heidari, R.; Rezaee, R.; Darvishzadeh, R. Genotype impact on antioxidant potential of hull and kernel in Persian walnut (Juglans regia L.). Int. Food Res. J. 2018, 25, 35–42. [Google Scholar]
- Meshkini, A.; Tahmasbi, M. Antiplatelet Aggregation Activity of Walnut Hull Extract via Suppression of Reactive Oxygen Species Generation and Caspase Activation. J. Acupunct. Meridian Stud. 2017, 10, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, K.; Ghasemi, Y.; Ehteshamnia, A.; Nabavi, S.M.; Nabavi, S.F.; Ebrahimzadeh, M.A.; Pourmorad, F. Influence of environmental factors on antioxidant activity, phenol and flavonoids contents of walnut (Juglans regia L.) green husks. J. Med. Plant Res. 2011, 5, 1128–1133. [Google Scholar]
- Akbari, V.; Jamei, R.; Heidari, R.; Esfahlan, A.J. Antiradical activity of different parts of Walnut (Juglans regia L.) fruit as a function of genotype. Food Chem. 2012, 135, 2404–2410. [Google Scholar] [CrossRef] [PubMed]
- Vieira, V.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Coutinho, J.A.P.; Ferreira, O.; Barros, L.; Ferreira, I.C.F.R. Hydroethanolic extract of Juglans regia L. green husks: A source of bioactive phytochemicals. Food Chem. Toxicol. 2020, 137, 111189. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Slatnar, A.; Veberic, R.; Stampar, F.; Solar, A. Phenolic response in green walnut husk after the infection with bacteria Xanthomonas arboricola pv. juglandis. Physiol. Mol. Plant Pathol. 2011, 76, 159–165. [Google Scholar] [CrossRef]
- Zakaria Nizam, M.H.; Al Mamun, M.; Yousuf, M.; Ali, R.; Rahman, L.; Miah, M. Dyeing of S/J Cotton Knit Fabric with Natural Dye Extracts from Green Walnut Shells: Assessment of Mordanting Effect on Fastness Properties. J. Text. Sci. Technol. 2017, 3, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.K.M.M.; Widhalm, J.R. Agricultural Uses of Juglone: Opportunities and Challenges. Agronomy 2020, 10, 1500. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Y.; Song, Z.; Fang, G. Insecticidal activities and active components of the alcohol extract from green peel of Juglans mandshurica. J. For. Res. 2007, 18, 62–64. [Google Scholar] [CrossRef]
- Liu, S.; Cheng, S.; Jia, J.; Cui, J. Resource efficiency and environmental impact of juglone in Pericarpium Juglandis: A review. Front. Environ. Sci. 2022, 10, 999059. [Google Scholar] [CrossRef]
- Stampar, F.; Solar, A.; Hudina, M.; Veberic, R.; Colaric, M.; Fabcic, J. Phenolics in walnut liqueur. Acta Hortic. 2007, 744, 451–454. [Google Scholar] [CrossRef]
- Lockyer, S.; de la Hunty, A.E.; Steenson, S.; Spiro, A.; Stanner, S.A. Walnut consumption and health outcomes with public health relevance—A systematic review of cohort studies and randomized controlled trials published from 2017 to present. Nutr. Rev. 2023, 81, 26–54. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhong, L.; Yang, H.; Zhu, F.; Hou, X.; Wu, C.; Zhang, R.; Cheng, Y. Comparative analysis of antioxidant activities between dried and fresh walnut kernels by metabolomic approaches. LWT Food Sci. Technol. 2022, 155, 112875. [Google Scholar] [CrossRef]
- Pop, A.; Fizeșan, I.; Vlase, L.; Rusu, M.E.; Cherfan, J.; Babota, M.; Gheldiu, A.M.; Tomuta, I.; Popa, D.S. Enhanced Recovery of Phenolic and Tocopherolic Compounds from Walnut (Juglans regia L.) Male Flowers Based on Process Optimization of Ultrasonic Assisted-Extraction: Phytochemical Profile and Biological Activities. Antioxidants 2021, 10, 607. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Han, Q.; Yan, X.; Feng, L.; Zhang, Y.; Zhang, R.; Zhang, Y. Polyphenols-rich extracts from walnut green husk prevent non-alcoholic fatty liver disease, vascular endothelial dysfunction, and colon tissue damage in rats induced by a high-fat diet. J. Funct. Foods 2021, 87, 104853. [Google Scholar] [CrossRef]
- Sagawa, H.D.C.; Assis, d.A.B.R.; Zaini, P.A.; Wilmarth, P.A.; Phinney, B.S.; Moreira, L.M.; Dandekar, A.M. Proteome Analysis of Walnut Bacterial Blight Disease. Int. J. Mol. Sci. 2020, 21, 7453. [Google Scholar] [CrossRef]
- Xu, H.; Wang, G.; Zhang, J.; Zhang, M.; Fu, M.; Xiang, K.; Zhang, M.; Chen, X. Identification of phenolic compounds and active antifungal ingredients of walnut in response to anthracnose (Colletotrichum gloeosporioides). Postharvest Biol. Technol. 2022, 192, 112019. [Google Scholar] [CrossRef]
- Wianowska, D.; Garbaczewska, S.; Cieniecka-Roslonkiewicz, A.; Dawidowicz, A.L.; Typek, R.; Kielczewska, A. Influence of the Extraction Conditions on the Antifungal Properties of Walnut Green Husk Isolates. Anal. Lett. 2020, 53, 1970–1981. [Google Scholar] [CrossRef]
- Maleita, C.; Esteves, I.; Chim, R.; Fonseca, L.; Braga, E.M.M.; Abrantes, I.; de Sousa, C.H. Naphthoquinones from Walnut Husk Residues Show Strong Nematicidal Activities against the Root-knot Nematode (Meloidogyne hispanica). ACS Sustain. Chem. Eng. 2017, 5, 3390–3398. [Google Scholar] [CrossRef]
- Bai, Y.-C.; Li, B.-X.; Xu, C.-Y.; Raza, M.; Wang, Q.; Wang, Q.-Z.; Fu, Y.-N.; Hu, J.-Y.; Imoulan, A.; Hussain, M.; et al. Intercropping Walnut and Tea: Effects on Soil Nutrients, Enzyme Activity, and Microbial Communities. Front. Microbiol. 2022, 13, 852342. [Google Scholar] [CrossRef]
- Medic, A.; Zamljen, T.; Slatnar, A.; Hudina, M.; Grohar, M.C.; Veberic, R. Effect of Juglone and Other Allelochemicals in Walnut Leaves on Yield, Quality and Metabolites of Snack Cucumber (Cucumis sativus L.). Foods 2023, 12, 371. [Google Scholar] [CrossRef] [PubMed]
- Ðorąevic, T.; Ðurovic-Pejcev, R.; Stevanovic, M.; Saric-Krsmanovic, M.; Radivojevic, L.; Šantric, L.; Gajic-Umiljendic, J. Phytotoxicity and allelopathic potential of Juglans regia L. leaf extract. Front. Plant Sci. 2022, 13, 986740. [Google Scholar] [CrossRef] [PubMed]
- Kocacë Aliskan, I.; Terzi, I. Allelopathic effects of walnut leaf extracts and juglone on seed germination and seedling growth. J. Hortic. Sci. Biotechnol. 2001, 76, 436–440. [Google Scholar] [CrossRef]
Country | Walnut Cultivars | Ripening/Harvest Period | Nut Size (mm) | Kernel Ratio (%) | Reference |
---|---|---|---|---|---|
Bulgaria | Dryanovski, Izvor 10, Petrushtinski, Sheinovo, Silistrenski | Second week September–first week October | 30–36 | 41–50 | [20,21] |
Czech Republic | Apollo, Mars, Sychrov, Viktoria | Second week September–first week October | 32–34 | 42–52 | [22,23] |
France | Feradam, Ferbel, Ferjean, Fernette, Fernor, Ferouette, Fertignac, Franquette, Lara | Third week September–second week October | 30–34 | 41–49 | [24] |
Germany | Aufhausen Baden Walnussbaum, Alex, Börde Riesen Walnussbaum, Esterhazy II, Geisenheim Nr. 26, Geisenheim Nr. 120, Geisenheim Nr. 139, Kurmarker Walnuss Nr. 1247, Moselaner Walnussbaum Nr 120, Ockerwitzer lange, Red reif, Riesenpilar, Seifersdorfer runde, Spreewalder Walnuss Nr. 286, Weinsberg 1, Weinheimer Walnuss Nr. 139, Wunder von Monrepos | Third week September–second week October | 30–34 | 41–50 | [24,25] |
Hungary | Alsószentivani 117, Alsószentiváni kései, Bonifác, Eszterházi kései, Érdió1, Milotai 10, Milotai bőtermő, Milotai intenzív, Milotai kései, Tiszacsécsi 83 | Second week September–first week October | 32–35 | 42–45 | [3,12,17] |
Moldova | Kalarashsky, Kishinevsky, Kostjuzhensky, Korzheutsky, Skinossky | Third week September–second week October | 32–36 | 43–57 | [26] |
Romania | Germisara, Jupâneşti, Redval, Sibișel 44, Timval, Unival, Valcor, Valcris, Valrex, Valmit, Verisval | First week September–first week October | 36–42 | 36–53 | [27,28,29,30,31,32] |
Serbia | Backa, Champion, Kasni rodni, Milko, Macva, Rasna, Tica, Sampion, Sava, Srem | Second week September–first week October | 32–35 | 42–58 | [33,34,35,36] |
Slovakia | Jupiter, Saturn | Second week September–first week October | 32–34 | 42–51 | [22] |
Slovenia | Erjavec, Krka, Sava, Zdole-62 | Third week September–first week October | 29–32 | 41–54 | [37,38] |
Turkey | Ahir Nut, Bilecik, Kaman 1, Kurtulus 100, Maras 18, Sebin, Sutyerez 1, Yalova 1, Yalova 3 | Second week September—first week October | 32–34 | 40–55 | [39,40,41,42] |
Ukraine | Bukovynszky 1, Grozynetsky, Klishkivsky, Tsernivetsky 1 | Second–third week September | 32–35 | 41–55 | [43] |
Polyphenol | Compound Name | Refs |
---|---|---|
Flavonoids | Quercetin, Myricetin, (+)-Catechin, (−)-Epicatechin, Rutin, Taxifolin, isoquercitrin, Kaempferol, 2,5-Dihydroxybenzoic acid, Naringenin | [3,52,54,55,56] |
Phenolic acids | 4-Coumaric, Syringic, Caffeic, Ferulic, Protocatechuic, Sinapic, Quinic, Phtalic, Ellagic, Gallic, Vanillic, 2,5-Dihydroxybenzoic acid, Neochlorogenic, p-Hydroxybenzoic, p-Coumaric | [52,54,57,58,59,60,61,62] |
Stilbenes | Resveratrol, pterostilbene, ε-viniferin, Trans-astringin | [51] |
Lignans | Secoisolariciresinol, Pinoresinol, Lariciresinol, Matairesinol, Enterolactone. | [63,64,65] |
Tannins | 2,3-hexahydroxydiphenoylglucose, Pedunculagin, 2,3,4,6-tetragalloylglucose, Casuarictin, Castalagin | [66,67] |
Quinones | Juglone, Plumbagin, Lawsone, Emodin, Chrysophanol | [54] |
Plant Materials, Place of Study | Extraction Solvent | Methods | Results | Reference |
---|---|---|---|---|
Green husk, Iran | 80% ethanol in bi-distilled water | Total phenolic content by Folin–Ciocalteu spectrophotometric method | 35.2–59.8 mg GAE/g DW | [89] |
Green husk, Hungary | 80% methanol in bi-distilled water | Total phenolic content by Folin–Ciocalteu spectrophotometric method | 44.2–57.4 mg GAE/g DW | [3] |
Kernels, leaves, husk, and bark—Morocco | Methanol | Total phenolic content by Folin–Ciocalteu spectrophotometric method | 306.36 ± 4.74 mg GAE/g dried husk extract | [91] |
Green husk, China | 50% methanol in bi-distilled water | Total phenolic content by Folin–Ciocalteu spectrophotometric method | 0.54–1.33 mg GAE/g FW | [44] |
Green husk, Chile | Methanol, ethanol | Total phenolic content by Folin–Ciocalteu spectrophotometric method | 1862.9 ± 72.4 mg GAE/100 g DW extracted lyophilized green husk by ethanol | [92] |
Green husk, Portugal | Water | Total phenolic content by Folin–Ciocalteu spectrophotometric method | 40.39–84.46 mg GAE/g extract | [81] |
Green husk, Iran | Methanol | Total phenolic content by Folin–Ciocalteu spectrophotometric method | 99.98–122.26 mg GAE/g extract | [93] |
Green husk, Iran | Acetone/water (v/v, 70/30) | Total phenolic content by Folin–Ciocalteu spectrophotometric method | 95.2 ± 6.29 mg GAE/g DW | [94] |
Green husk, Iran | Methanol | Total phenolic content by Folin–Ciocalteu spectrophotometric method | 15.15–108.11 mg GAE/g extract | [95] |
Green husk, Iran | Methanol | Total phenolic content by Folin–Ciocalteu spectrophotometric method | 19.61–36.10 mg GAE/g DW | [96] |
Green husk, Iran | 80% ethanol in bi-distilled water | Antioxidant Activity by DPPH Assay | IC50: 146.8–249.3 µg/mL | [89] |
Kernels, leaves, husk, and bark—Morocco | Methanol | Antioxidant Activity by DPPH Assay | IC50: 32.27 ± 0.69 µg/mL husk extract | [91] |
Green husk, Chile | Methanol, ethanol | Antioxidant Activity by DPPH Assay | 2663.2 ± 154.6 mg Trolox Equivalent/100 g DW extracted lyophilized green husk by ethanol | [92] |
Green husk, Portugal | Methanol, ethanol and 50% aqueous solutions of methanol and ethanol | Antioxidant Activity by DPPH Assay | EC50: 0.33–0.72 mg/mL | [81] |
Green husk, Iran | Methanol | Antioxidant Activity by DPPH Assay | 76.71–89.81% | [93] |
Green husk, Iran | Acetone/water (v/v, 70/30) | Antioxidant Activity by DPPH Assay | 85 ± 1.6 µg/mL | [95] |
Green husk, Iran | Methanol | Antioxidant Activity by DPPH Assay | IC50: 122–302 µg/mL | [95] |
Green husk, Iran | Methanol | Antioxidant Activity by DPPH Assay | EC50: 0.25–0.40 mg/mL | [96] |
Kernels, leaves, husk, and bark—Morocco | Methanol | Total flavonoid content by colorimetric method | 66.07 ± 2.68 mg RE/g dried husk extract | [91] |
Green husk, China | 50% methanol in bi-distilled water | Total flavonoid content by colorimetric method | 0.34–1.01 mg RE/g FW | [44] |
Green husk, Iran | Methanol | Total flavonoid content by colorimetric method | 16.71–49.00 mg CE/g | [94] |
Green husk, Iran | Acetone/water (v/v, 70/30) | Total flavonoid content by colorimetric method | 65.2 ± 5.53 mg CE/g DW | [95] |
Green husk, Iran | Methanol | Total flavonoid content by colorimetric method) | 3.59–22.91 mg QE/g extract | [97] |
Green husk, Iran | Methanol | Total flavonoid content by colorimetric method) | 534–1064 mg CE/100 g DW | [96] |
Kernels, leaves, husk, and bark—Morocco | Methanol | Antioxidant activity ABTS method | IC50: 145.86 ± 1.61µg/mL husk extract | [91] |
Kernels, leaves, husk, and bark—Morocco | Methanol | Ferric ion-reducing power was determined by the FRAP method | IC50: 10.45 ± 0.59 µg/mL husk extract | [91] |
Green husk, Iran | Reaction media containing a free radical molecule called intermediate (M•) | Total Antioxidant Power by PAOT Technology | 256.52–746.88 PAOT score/g dw | [89] |
Green husk, Chile | Methanol, ethanol | Antioxidant capacity by ORAC method | 44,920 ORAC units–μmol Trolox Equivalent/100 g DW extracted lyophilized green husk by ethanol | [92] |
Plant Materials, Place of the Study | Extraction Solvent | Chromatographic Analysis | Results | Reference |
---|---|---|---|---|
Green husk, Iran | 80% ethanol in bi-distilled water | UHPLC-PDA-HRMS/MS, Hichrom Alltima C18 column (150 × 2.1 mm − 5 µm), mobile formic acid (0.1%) in water for A and formic acid (0.1%) in acetonitrile for B, linear gradient, then isocratic | Minoxidil, myricetin, quercetin 4′-glucoside, taxifolin, quercetin pentoside, catechin, abscisic acid, salicylate glucuronide, neochlorogenic acid, taxifolin 7-glucoside, gallic acid derivative | [89] |
Green husk, Hungary | Bi-distilled water/2% acetic acid in methanol, 30/70 | HPLC-ESI-DAD, column: Sphinx 5 μm 250 × 4.6 mm, mobile phase: (A) 0.1% formic acid in bi-distilled water and (B) 0.1% formic acid in acetonitrile in gradient elution mode | Hydroxybenzoic acids, hydroxycinnamic acids, flavonoids, naphthoquinones, juglone | [3] |
Kernels, leaves, husk, and bark—Morocco | Methanol | HPLC-ESI-DAD-MS/MS, The column was a Poroshell 120 EC-C1, C18 (150 × 2.1) mm × 5 µm. The mobile phase was (A) 0.1% formic acid in the water, (B) acetonitrile. The established elution gradient was isocratic | Dihydroxybenzoic acid derivative, acacetin aglycone, caffeoyl-D-glucose, quercetin O hexoside 1, apigenin-7-O-glucoside, caffeoyl derivative, p-coumaroyl derivative, caffeoyl hexose-deoxyhexoside, quercetin pentoside | [91] |
Green husk, China | 50% methanol in bi-distilled water | HPLC, Agilent SB-C18 column (250 × 4.6 mm, 5 μm) the mobile phase consisted of water containing 0.5% acetic acid as eluent A and methanol as eluent B. gradient elution | Gallic acid, neochlorogenic acid, (+)-catechin, p-hydroxybenzoic acid, chlorogenic acid, vanillic acid, caffeic acid, epicatechin, syringic acid, p-coumaric acid, ferulic acid, o-coumaric acid, rutin, myricetin, quercetin and juglone | [44] |
Green husk, Chile | Methanol, ethanol | Juglone by HPLC-PDA, column: Kinetex Evo® C18 100 A 5 μm (250 mm × 4.6 mm). A gradient of solvents was used as the mobile phase: solvent A was 2.0% acetic acid in aqueous solution and solvent B was 0.5% acetic acid in aqueous solution and acetonitrile (1:1 ratio) | 169.1 mg/100 g DW | [92] |
Green husk, Portugal | 80% ethanol in bi-distilled water | HPLC-DAD-ESI/MS | Naphthalene derivatives (including tetralone derivatives), phenolic compounds (hydroxycinnamic acids and flavonols) | [97] |
Green husk, Iran | Methanol | HPLC UV-Vis, column: Eurospher 100-5 C18 column (25 cm × 4.6 mm; 5 µm), mobile phase: purified water with 2% acetic acid (A) and acetonitrile (B), isocratic and linear gradient mode | Ascorbic acid, gallic acid, rutin, caffeic acid, p-hydroxy benzoic acid, vanillic acid, p-cumaric acid, syringic acid, ferulic acid, sinapic acid | [94] |
Green husk, Iran | Methanol | HPLC UV-Vis, column: Eurospher 100-5 C18 column (25 cm × 4.6 mm; 5 µm), mobile phase: purified water with 2% acetic acid (A) and acetonitrile (B), isocratic and linear gradient mode | Vanillic acid, 1-naphthol, caffeic acid, salicylic acid, 8-hydroxyquinoline, tannic acid | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kithi, L.; Lengyel-Kónya, É.; Berki, M.; Bujdosó, G. Role of the Green Husks of Persian Walnut (Juglans regia L.)—A Review. Horticulturae 2023, 9, 782. https://doi.org/10.3390/horticulturae9070782
Kithi L, Lengyel-Kónya É, Berki M, Bujdosó G. Role of the Green Husks of Persian Walnut (Juglans regia L.)—A Review. Horticulturae. 2023; 9(7):782. https://doi.org/10.3390/horticulturae9070782
Chicago/Turabian StyleKithi, Laurine, Éva Lengyel-Kónya, Mária Berki, and Géza Bujdosó. 2023. "Role of the Green Husks of Persian Walnut (Juglans regia L.)—A Review" Horticulturae 9, no. 7: 782. https://doi.org/10.3390/horticulturae9070782
APA StyleKithi, L., Lengyel-Kónya, É., Berki, M., & Bujdosó, G. (2023). Role of the Green Husks of Persian Walnut (Juglans regia L.)—A Review. Horticulturae, 9(7), 782. https://doi.org/10.3390/horticulturae9070782