Propagation Methods and Mulching Modulate the Quantum Yield, Ionic Relations, and Production Components of Sour Passion Fruit under Salt Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Experimental Area
2.2. Plant Material and Experimental Design
2.3. Conduction of the Experiment
2.4. Determination of the Ionic Relations
2.5. Fluorescence Analysis of Chlorophyll a
2.6. Mean Weight and Number of Fruits
2.7. Data Analysis
3. Results
3.1. Ionic Relations
3.2. Quantum Yield
3.3. Mean Weight and Number of Fruits
3.4. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Etikalar, B.; Adimalla, N.; Madhav, S.; Somagouni, S.G.; Kumar, P.L.K.K. Salinity problems in groundwater and management strategies in arid and semi-arid regions. GWMR 2021, 1, 42–56. [Google Scholar] [CrossRef]
- Munir, N.; Hasnain, M.; Roessner, U.; Abideen, Z. Strategies in improving plant salinity resistance and use of salinity resistant plants for economic sustainability. Crit. Rev. Environ. Sci. Technol. 2022, 55, 2150–2196. [Google Scholar] [CrossRef]
- Gangwar, M.M.; Singh, R.; Trivedi, M.; Tiwari, R.K. Sodic soil: Management and reclamation strategies. In Environmental Concerns and Sustainable Development; Shukla, V., Kumar, N., Eds.; Springer: Singapore, 2020; pp. 175–190. [Google Scholar] [CrossRef]
- Mohanavelu, A.; Naganna, S.R.; Al-Ansari, N. Irrigation induced salinity and sodicity hazards on soil and groundwater: An overview of its causes, impacts and mitigation strategies. Agriculture 2021, 11, 983. [Google Scholar] [CrossRef]
- Zörb, C.; Geilfus, C.M.; Dietz, K.J. Salinity and crop yield. Plant Biol. 2019, 21, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Instituto Brasileiro de Geografia e Estatística [IBGE]. Brazilian Production of Passion Fruit; IBGE: Rio de Janeiro, Brazil, 2021.
- Freire, J.L.O.; Dias, T.J.; Cavalcante, L.F.; Fernandes, P.D.; Lima Neto, A.J. Rendimento quântico e trocas gasosas em maracujazeiro amarelo sob salinidade hídrica, biofertilização e cobertura morta. Ciênc. Agron. 2014, 45, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Gondek, M.; Weindorf, D.C.; Thiel, C.; Kleinheinz, G. Soluble salts in compost and their effects on soil and plants: A review. Compost Sci./Land Util. 2020, 28, 59–75. [Google Scholar] [CrossRef]
- Mushtaq, Z.; Faizan, S.; Gulzar, B. Salt stress, its impacts on plants and the strategies plants are employing against it: A review. J. Appl. Biol. Biotechnol. 2020, 8, 81–91. [Google Scholar] [CrossRef]
- Sanwal, S.K.; Mann, A.; Kumar, A.; Kesh, H.; Kaur, G.; Rai, A.K.; Kumar, R.; Sharma, P.C.; Kumar, A.; Bahadur, A.; et al. Salt tolerant eggplant rootstocks modulate sodium partitioning in tomato scion and improve performance under saline conditions. Agriculture 2022, 12, 183. [Google Scholar] [CrossRef]
- Souto, A.G.L.; Cavalcante, L.F.; Melo, E.N.; Cavalcante, Í.H.L.; Silva, R.Í.L.; Lima, G.S.; Gheyi, H.R.; Pereira, W.E.; Paiva Neto, V.B.; Oliveira, C.J.A.; et al. Salinity and mulching effects on nutrition and production of grafted sour passion fruit. Plants 2023, 12, 1035. [Google Scholar] [CrossRef]
- Lucena, C.C.; Siqueira, D.L.; Martinez, H.E.P.; Cecon, P.R. Salt stress change chlorophyll fluorescence in mango. Rev. Bras. Frutic. 2012, 34, 1245–1255. [Google Scholar] [CrossRef] [Green Version]
- Allel, D.; Ben-Amar, A.; Abdelly, C. Leaf photosynthesis, chlorophyll fluorescence and ion content of barley (Hordeum vulgare) in response to salinity. J. Plant Nutr. 2018, 41, 497–508. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Schansker, G.; Brestic, M.; Bussotti, F.; Calatayud, A.; Ferroni, L.; Goltsev, V.; Guidi, L.; Jajoo, A.; Li, P.; et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 2016, 132, 13–66. [Google Scholar] [CrossRef] [Green Version]
- Akhter, M.S.; Noreen, S.; Mahmood, S.; Athar, H.R.; Ashraf, M.; Alsahli, A.A.; Ahmad, P. Influence of salinity stress on PSII in barley (Hordeum vulgare L.) genotypes, probed by chlorophyll-a fluorescence. J. King Saud. Univ. Sci. 2021, 33, 101239. [Google Scholar] [CrossRef]
- Ali, S.; Xu, Y.; Jia, Q.; Ma, X.; Ahmad, I.; Adnan, M.; Gerard, R.; Ren, X.; Zhang, O.; Cai, T.; et al. Interactive effects of plastic film mulching with supplemental irrigation on winter wheat photosynthesis, chlorophyll fluorescence and yield under simulated precipitation conditions. Agric. Water Manag. 2018, 207, 13. [Google Scholar] [CrossRef]
- Niu, G.; Cabrera, R.I. Growth and physiological responses of landscape plants to saline water irrigation: A review. HortScience 2010, 45, 1605–1609. [Google Scholar] [CrossRef]
- Simpson, C.R.; Nelson, S.D.; Melgar, J.C.; Jifon, J.; Schuster, G.; Volder, A. Effects of salinity on physiological parameters of grafted and ungrafted citrus trees. Sci. Hortic. 2015, 197, 483–489. [Google Scholar] [CrossRef]
- Duran-Zuazo, V.H.; Martínez-Raya, A.; Ruiz, J.A. Salt tolerance of mango rootstocks (Magnifera indica L. cv. Osteen). Span. J. Agric. Res. 2003, 1, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Bleda, F.J.; Madrid, R.; García-Torres, A.L.; Gracía-Lidón, Á.; Porras, I. Chlorophyll fluorescence and mineral nutrition in citrus leaves under salinity stress. J. Plant Nutr. 2011, 34, 1579–1592. [Google Scholar] [CrossRef]
- Othman, Y.A.; Hani, M.B.; Ayad, J.Y.; Hilaire, R.S. Salinity level influenced morpho-physiology and nutrient uptake of young citrus rootstocks. Heliyon 2023, 9, e13336. [Google Scholar] [CrossRef] [PubMed]
- Karimi, H.R.; Hassanpour, N. Effects of salinity, rootstock and position of sampling on macro nutrient concentration of pomegranate cv. Gabri. J. Plant Nutr. 2017, 40, 2269–2278. [Google Scholar] [CrossRef]
- Danierhan, S.; Shalamu, A.; Tumaerbai, H.; Guan, D. Effects of emitter discharge rates on soil salinity distribution and cotton (Gossypium hirsutum L.) yield under drip irrigation with plastic mulch in an arid region of Northwest China. J. Arid Land. 2013, 5, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Sedaghati, N.; Alizadeh, A.; Ansari, A.; Hosseinifard, S.J. Study of changes in soil moisture and salinity under plastic mulch and drip irrigation in pistachio trees. J. Nuts 2016, 7, 21–33. [Google Scholar] [CrossRef]
- Dong, Q.; Yang, Y.; Zhang, T.; Zhou, L.; He, J.; Chau, H.W.; Zou, Y.; Feng, H. Impacts of ridge with plastic mulch-furrow irrigation on soil salinity, spring maize yield and water use efficiency in an arid saline area. Agric. Water Manag. 2018, 201, 268–277. [Google Scholar] [CrossRef]
- Amare, G.; Desta, B. Coloured plastic mulches: Impact on soil properties and crop productivity. Chem. Biol. Technol. Agric. 2021, 8, 4. [Google Scholar] [CrossRef]
- Khayyat, M.; Mazhari-Majd, A.; Samadzadeh, A. Alternate bearing, chlorophyll fluorescence performance, vegetative growth and fruit quality of seedless barberry under different mulching treatments. Erwerbs-Obstbau 2022, 65, 171–180. [Google Scholar] [CrossRef]
- Retamal-Salgado, J.; Loor, B.; Hirzel, J.; López, M.D.; Undurraga, P.; Zapata, N.; Vergara-Retamalas, R.; Olivares-Soto, H. Chlorophyll fluorescence and fruit quality response of blueberry to different mulches. Agronomy 2022, 12, 1702. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, B.; Qiao, Y.; Yang, H.; Wang, Y.; Liu, M. Effects of sub soil plastic film mulch on soil water and salt content and water utilization by winter wheat under different soil salinities. Field Crops Res. 2018, 225, 130–140. [Google Scholar] [CrossRef]
- Aragüés, R.; Medina, E.T.; Clavéria, I. Effectiveness of inorganic and organic mulching for soil salinity and sodicity control in a grapevine orchard drip-irrigated with moderately saline waters. Span. J. Agric. Res. 2014, 12, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- US Soil Survey Staff. Keys to Soil Taxonomy; United States Department of Agriculture and Natural Resources Conservation Service: Lincoln, NE, USA, 2014; 332p.
- Silva, F.C. Analysis Manual Soil Chemistry, Plants and Fertilizers, 2nd ed.; Embrapa: Brasília, Brazil, 2009. [Google Scholar]
- Aguiar, A.V.M.; Cavalcante, L.F.; Silva, R.M.; Dantas, T.A.G.; Santos, E.C. Effect of biofertilization on yellow passion fruit production and fruit quality. Rev. Caatinga 2017, 30, 136–148. [Google Scholar] [CrossRef]
- Vianna-Silva, T.; Lima, R.V.; Azevedo, I.G.; Rosa, R.C.C.; Souza, M.S.; Oliveira, J.G. Determinação da maturidade fisiológica de frutos de maracujazeiro-amarelo colhidos na Região Norte do Estado do Rio de Janeiro, Brasil. Rev. Bras Frutic. 2010, 32, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Richards, L.A. Diagnosis and Improvement of Saline Alkali Soils, Agriculture; Handbook 60; US Department of Agriculture: Washington, DC, USA, 1954.
- Freire, J.L.O.; Cavalcante, L.F.; Rebequi, A.M.; Dias, T.J.; Souto, A.G.L. Necessidade hídrica do maracujazeiro amarelo cultivado sob estresse salino, biofertilização e cobertura do solo. Rev. Caatinga 2011, 24, 82–91. [Google Scholar]
- Borges, A.L.; Coelho, E.F. Fertigation in tropical fruit trees. In Portuguese with English Summary, 2nd ed.; Embrapa: Cruz das Almas, Brazil, 2009. [Google Scholar]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Fernández-García, N.; Martínez, V.; Carvajal, M. Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants. J. Plant Nutr. Soil Sci. 2004, 167, 616–622. [Google Scholar] [CrossRef]
- Sobrinho Galvão, T.; Silva, A.A.R.; Lima, G.S.; Lima, V.L.A.; Borges, V.E.; Nunes, K.G.; Soares, L.A.A.; Saboya, L.M.F.; Gheyi, H.R.; Gomes, J.P.; et al. Foliar applications of salicylic acid on boosting salt stress tolerance in sour passion rruit in two cropping cycles. Plants 2023, 12, 2023. [Google Scholar] [CrossRef]
- Jianguo, M.; Zhenwen, Y.; Yu, S. Radiation interception, chlorophyll fluorescence and senescence of flag leave in winter wheat under supplemental irrigation. Sci. Rep. 2017, 7, 7767. [Google Scholar] [CrossRef]
- Zhang, H.; Miles, C.; Gerdeman, B.; LaHue, D.G.; DeVetter, L. Plastic mulch use in perennial fruit cropping systems–A review. Sci. Hortic. 2021, 281, 109975. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Zhao, X.; Chen, B.; Wang, F. Mulching affects photosynthetic and chlorophyll a fluorescence characteristics during stage III of peach fruit growth on the rain-fed semiarid Loess Plateau of China. Sci. Hortic. 2015, 194, 246–254. [Google Scholar] [CrossRef]
- Cavichioli, J.C.; Corrêa, L.S.; Boliani, A.C.; Santos, P.C. Desenvolvimento e produtividade do maracujazeiro-amarelo enxertado em três porta-enxertos. Rev. Bras. Frutic. 2011, 33, 558–566. [Google Scholar] [CrossRef] [Green Version]
- Gomes, M.M.A.; Ramos, M.J.M.; Netto, A.T.; Rosa, R.C.C.; Campostrini, E. Water relations, photosynthetic capacity, and growth in passion fruit (Passiflora edulis Sims f. flavicarpa Deg.): Seedlings and grafted plants. Rev. Ceres 2018, 65, 135–143. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souto, A.G.d.L.; Cavalcante, L.F.; Melo, E.N.d.; Cavalcante, Í.H.L.; Lima, G.S.d.; Mesquita, F.d.O.; Silva, L.d.S.; Silva, B.d.; Rodrigues, L.S.; Mesquita, E.F.d.; et al. Propagation Methods and Mulching Modulate the Quantum Yield, Ionic Relations, and Production Components of Sour Passion Fruit under Salt Stress. Horticulturae 2023, 9, 871. https://doi.org/10.3390/horticulturae9080871
Souto AGdL, Cavalcante LF, Melo ENd, Cavalcante ÍHL, Lima GSd, Mesquita FdO, Silva LdS, Silva Bd, Rodrigues LS, Mesquita EFd, et al. Propagation Methods and Mulching Modulate the Quantum Yield, Ionic Relations, and Production Components of Sour Passion Fruit under Salt Stress. Horticulturae. 2023; 9(8):871. https://doi.org/10.3390/horticulturae9080871
Chicago/Turabian StyleSouto, Antônio Gustavo de Luna, Lourival Ferreira Cavalcante, Edinete Nunes de Melo, Ítalo Herbert Lucena Cavalcante, Geovani Soares de Lima, Francisco de Oliveira Mesquita, Luan dos Santos Silva, Bruno da Silva, Lucas Soares Rodrigues, Evandro Franklin de Mesquita, and et al. 2023. "Propagation Methods and Mulching Modulate the Quantum Yield, Ionic Relations, and Production Components of Sour Passion Fruit under Salt Stress" Horticulturae 9, no. 8: 871. https://doi.org/10.3390/horticulturae9080871
APA StyleSouto, A. G. d. L., Cavalcante, L. F., Melo, E. N. d., Cavalcante, Í. H. L., Lima, G. S. d., Mesquita, F. d. O., Silva, L. d. S., Silva, B. d., Rodrigues, L. S., Mesquita, E. F. d., Gheyi, H. R., & Melo, A. S. d. (2023). Propagation Methods and Mulching Modulate the Quantum Yield, Ionic Relations, and Production Components of Sour Passion Fruit under Salt Stress. Horticulturae, 9(8), 871. https://doi.org/10.3390/horticulturae9080871