Previous Issue
Volume 11, September
 
 

Magnetochemistry, Volume 11, Issue 10 (October 2025) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 4644 KB  
Article
Study of the Magnetohydrodynamic Instability and a New Suppression Method in Liquid Metal Batteries
by Jia-Jun Song, Xiao-Zhong Zuo, En-Qi Zhu, Qi-Guang Li, Bao-Zhi Chen and Ben-Wen Li
Magnetochemistry 2025, 11(10), 84; https://doi.org/10.3390/magnetochemistry11100084 - 25 Sep 2025
Abstract
As a strong candidate for energy storage applications, Liquid Metal Batteries (LMBs) have the advantages of higher current density, longer cycle life, and simpler manufacturing of large-scale storage systems. Owing to the all-liquid construction, various kinds of Magnetohydrodynamic instabilities (MHDIs) are present in [...] Read more.
As a strong candidate for energy storage applications, Liquid Metal Batteries (LMBs) have the advantages of higher current density, longer cycle life, and simpler manufacturing of large-scale storage systems. Owing to the all-liquid construction, various kinds of Magnetohydrodynamic instabilities (MHDIs) are present in LMBs. In this paper, an in-depth study of the evolution process of MHDIs within LMBs has been conducted. By analyzing the characteristic velocity, the growth rate of instabilities γ has been defined so that the critical Hartmann number at which the instability occurs can be ascertained. A new critical parameter, mixed Reynolds number Remix, has been introduced to determine the duration of stable battery operation across varying charging/discharging currents, including those that may surpass the prescribed safe limits. Finally, a method for mitigating magnetohydrodynamic instability in LMBs through the configuration of busbar current is proposed, which can be seamlessly integrated with parallel battery packs. A comparative analysis of LMBs operation with/without bus current configuration reveals that when bus current is appropriately configured, the magnetic field strength within the battery undergoes a notable reduction of 40%, leading to a significant suppression of instability. The conclusions offer theoretical underpinnings for the application of LMBs in large-scale grid-level energy storage systems. Full article
(This article belongs to the Section Magnetic Field)
Show Figures

Figure 1

21 pages, 6518 KB  
Article
Topological Rainbow Trapping in One-Dimensional Magnetoelastic Phononic Crystal Slabs
by Wen Xiao, Fuhao Sui, Jiujiu Chen, Hongbo Huang and Tao Luo
Magnetochemistry 2025, 11(10), 83; https://doi.org/10.3390/magnetochemistry11100083 - 25 Sep 2025
Abstract
We design a one-dimensional magnetoelastic phononic crystal slab composed of the smart magnetostrictive material Terfenol-D and pure tungsten. Band inversion and topological phase transitions are achieved by modifying the geometric parameters of the non-magnetic medium within the unit cell. The emergence of topological [...] Read more.
We design a one-dimensional magnetoelastic phononic crystal slab composed of the smart magnetostrictive material Terfenol-D and pure tungsten. Band inversion and topological phase transitions are achieved by modifying the geometric parameters of the non-magnetic medium within the unit cell. The emergence of topological interface states within overlapping bandgaps, exhibiting distinct topological properties, along with their robustness against interfacial structural defects, is confirmed. The coupling effects between adjacent topological interface states in a sandwich-like supercell configuration are investigated, and their tunability under external magnetic fields is demonstrated. A Su-Schrieffer-Heeger (SSH) phononic crystal slab system under gradient magnetic fields is proposed. Critically, and in stark contrast to previous static or structurally graded designs, we achieve reconfigurable rainbow trapping of topological interface states solely by reprogramming the gradient magnetic field, leaving the physical structure entirely unchanged. This highly localized, compact, and broadband-tunable topological rainbow trapping system design holds significant promise for applications in elastic energy harvesting, wave filtering, and multi-frequency signal processing. Full article
(This article belongs to the Special Issue Advances in Low-Dimensional Magnetic Materials)
Show Figures

Figure 1

25 pages, 4694 KB  
Review
Magnetic-Responsive Material-Mediated Magnetic Stimulation for Tissue Engineering
by Jiayu Gu, Lijuan Gui, Dixin Yan, Xunrong Xia, Zhuoli Xie and Le Xue
Magnetochemistry 2025, 11(10), 82; https://doi.org/10.3390/magnetochemistry11100082 - 23 Sep 2025
Viewed by 52
Abstract
Tissue repair is a significant challenge in biomedical research. Traditional treatments face limitations such as donor shortage, high costs, and immune rejection. Recently, magnetic-responsive materials, particularly magnetic nanoparticles have been introduced into tissue engineering due to their ability to respond to external magnetic [...] Read more.
Tissue repair is a significant challenge in biomedical research. Traditional treatments face limitations such as donor shortage, high costs, and immune rejection. Recently, magnetic-responsive materials, particularly magnetic nanoparticles have been introduced into tissue engineering due to their ability to respond to external magnetic fields, generating electrical, thermal, and mechanical effects. These effects enable precise regulation of cellular behavior and promote tissue regeneration. Compared to traditional physical stimulation, magnetic-responsive material-mediated stimulation offers advantages such as non-invasiveness, deep tissue penetration, and high spatiotemporal precision. This review summarizes the classification, fabrication, magnetic effects and applications of magnetic-responsive materials, focusing on their mechanisms and therapeutic effects in neural and bone tissue engineering, and discusses future directions. Full article
(This article belongs to the Section Applications of Magnetism and Magnetic Materials)
Show Figures

Figure 1

Previous Issue
Back to TopTop