Tetranuclear Hetro-Metal [MnIII2NiII2] Complexes Involving Defective Double-Cubane Structure: Synthesis, Crystal Structures, and Magnetic Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of [Mn2Ni2(L)4(OAc)2] ·H2O (1) and [Mn2Ni2(L)4(NO3)2]·2H2O (2)
2.2. Single Crystal X-ray Diffraction
2.3. Magnetic Property
3. Materials and Methods
3.1. General
3.2. Single Crystal X-ray Diffraction
3.3. Synthesis of [Mn2Ni2(L)4(OAc)2] ·H2O (1)
3.4. Synthesis of [Mn2Ni2(L)4(NO3)2]⋅2H2O (2)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ma, X.-F.; Wang, Z.; Chen, X.-L.; Kurmoo, M.; Zeng, M.-H. Ligand effect on the single-molecule magnetism of tetranuclear Co(II) cubane. Inorg. Chem. 2017, 56, 15178–15186. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Dey, A.; Biswas, S.; Calacio, E.; Chandrasekhar, V. Hydroxide-free cubane-shaped tetranuclear [Ln4] complexes. Inorg. Chem. 2014, 53, 3417–3426. [Google Scholar] [CrossRef]
- Nayak, S.; Aromi, G.; Teat, S.J.; Ribas-Ariño, J.; Gamez, P.; Reedijk, J. Hydrogen bond assisted co-crystallization of a bimetallic MnIII2NiII2 cluster and a NiII2 cluster unit: Synthesis, structure, spectroscopy and magnetism. Dalton Trans. 2010, 39, 4986–4990. [Google Scholar] [CrossRef] [PubMed]
- Oshio, H.; Hoshino, N.; Ito, T.; Nakano, M. Single-molecule of ferrous cubes: Structurally controlled magnetic anisotropy. J. Am. Chem. Soc. 2004, 126, 8805–8812. [Google Scholar] [CrossRef]
- Mahapatra, P.; Drew, G.B.M.; Ghosh, A. Ni(II) Complex of N2O3 donor unsymmetrical ligand and its use for the synthesis of NiII−MnII complexes of diverse nuclearity: Structures, magnetic properties, and catalytic oxidase activities. Inorg. Chem. 2018, 57, 8338–8353. [Google Scholar] [CrossRef] [PubMed]
- Marino, N.; Armentano, D.; Mastropietro, T.F.; Julve, M.; Munno, G.D.; Martínez-Lillo, J. Cubane-type CuII4 and MnII2MnIII2 complexes based on pyridoxine: A versatile ligand for metal assembling. Inorg. Chem. 2013, 52, 11934–11943. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-S.; Song, Y. Conversion of tetranuclear Ni complexes from a defect dicubane core to a [Ni4O4] cubane-like core via addition of 2-hydroxymethylpyridine: Synthesis, crystal structures, and magnetic properties. Inorg. Chem. Comm. 2013, 35, 86–88. [Google Scholar] [CrossRef]
- Nayak, S.; Novitchi, G.; Muche, S.; Luneau, D.; Dehnen, S. Tetranuclear homo- and heterometallic manganese(III) and nickel(II) complexes: Synthesis, structure, and magnetic studies. Zeitschrift für Anorganische und Allgemeine Chemie 2012, 638, 1127–1133. [Google Scholar] [CrossRef]
- Brechin, E.K.; Soler, M.; Christou, G.; Davidson, J.; Hendrickson, D.N.; Parson, S.; Wernsdorfer, W. Magnetization tunneling in an enneanuclear manganese cage. Polyhedron 2003, 22, 1771–1775. [Google Scholar] [CrossRef]
- Nakajima, T.; Seto, K.; Scheurer, A.; Kure, B.; Kajiwara, T.; Tanase, T.; Mikuriya, M.; Sakiyama, H. Tetranuclear nickel and cobalt complexes with an incomplete double-cubane structure—Homo- and heterometallic complexes and their 1D coordination polymers. Eur. J. Inorg. Chem. 2014, 5021–5033. [Google Scholar] [CrossRef]
- Yamashita, H.; Koikawa, M.; Tokii, T. Synthesis, structure, and magnetic properties of tetranuclear copper(II) complexes of tridentate dianionic ligands with an ONO donor set. Mol. Cryst. Liq. Cryst. 2000, 342, 63–68. [Google Scholar] [CrossRef]
- Oshio, H.; Nihei, M.; Koizumi, S.; Shiga, T.; Nojiri, H.; Nakano, M.; Shirakawa, N.; Akatsu, M. A heterometal single-molecule magnet of [MnIII2NiII2Cl2(salpa)2]. J. Am. Chem. Soc. 2005, 127, 4568–4569. [Google Scholar] [CrossRef] [PubMed]
- Modak, R.; Sikdar, Y.; Thuijs, A.E.; Christou, G.; Goswami, S. CoII4, CoII7, and a series of CoII2LnIII (LnIII = NdIII, SmIII, GdIII, TbIII, DyIII) coordination clusters: Search for single molecule magnets. Inorg. Chem. 2016, 55, 10192–10202. [Google Scholar] [CrossRef]
- Nath, M.; Yadav, R. Synthesis, spectral and thermal studies of Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff bases derived from o-aminobenzyl alcohol. Synth. React. Inorg. Met. Org. Chem. 1995, 25, 1529–1547. [Google Scholar] [CrossRef]
- Koikawa, M.; Yamashita, H.; Tokii, T. Crystal structures and magnetic properties of tetranuclear copper(II) complexes of N-(2-hydroxymethylphenyl)salicylideneimine with a defective double-cubane core. Inorg. Chim. Acta 2004, 357, 2635–2642. [Google Scholar] [CrossRef]
- Koikawa, M.; Ohba, M.; Tokii, T. Syntheses, structures, and magnetic properties of tetranuclear NiII4 and NiII2MnIII2 complexes with ONO tridentate ligands. Polyhedron 2005, 24, 2257–2262. [Google Scholar] [CrossRef]
- Yoshitake, M.; Nishihashi, M.; Ogata, Y.; Yoneda, K.; Yamada, Y.; Sakiyama, H.; Mishima, A.; Ohba, M.; Koikawa, M. Syntheses, structures, and magnetic properties of cubane-based cobalt and nickel complexes with ONO-tridentate ligands. Polyhedron 2017, 136, 136–142. [Google Scholar] [CrossRef]
- Brown, I.D. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, 2nd ed.; Oxford University Press: Oxford, UK, 2002; ISBN 9780198742951. [Google Scholar]
- Brown, I.D. Accumulated Table of Bond Valence Parameters. 2016. Available online: http://www.iucr.org/resources/data/datasets/bond-valence-parameters/ (accessed on 18 March 2016).
- Modak, R.; Sikdar, Y.; Mandal, S.; Gómez-García, C.J.; Benmansour, S.; Chatterjee, S.; Goswami, S. Homo and heterometallic rhomb-like Ni4 and Mn2Ni2 complexes. Polyhedron 2014, 70, 155–163. [Google Scholar] [CrossRef]
- Daier, V.; Biava, H.; Palopoli, C.; Shova, S.; Tuchagues, J.-P.; Signorella, S. Synthesis, characterization and catalase-like activity of dimanganese(III) complexes of 1,5-bis(5-X-salicylidenamino)pentan-3-ol (X = nitro and chloro). J. Inorg. Biochem. 2004, 98, 1806–1817. [Google Scholar] [CrossRef] [PubMed]
- Yoshitake, M.; Yoneda, K.; Yamada, Y.; Koikawa, M. Synthesis and crystal structure of a tetranuclear Mn(III)-Ni(II) heterometal complex of N-(2-oxymethylphenyl)salicylideneimine. X-ray Struct. Anal. Online 2016, 32, 1–2. [Google Scholar] [CrossRef]
- Colacio, E.; Ruiz-Sanchez, J.; White, F.J.; Brechin, E.K. Strategy for the rational design of asymmetric triply bridged dinuclear 3d-4f single-molecule magnets. Inorg. Chem. 2011, 50, 7268–7273. [Google Scholar] [CrossRef]
- Nihei, M.; Yoshida, A.; Koizumi, S.; Oshio, H. Hetero-metal Mn–Cu and Mn–Ni clusters with tridentate Schiff-base ligands. Polyhedron 2007, 26, 1997–2007. [Google Scholar] [CrossRef]
- Chilton, N.F.; Anderson, R.P.; Turner, L.D.; Soncini, A.; Murray, K.S. PHI: A powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes. J. Comput. Chem. 2013, 34, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
- Kahn, O. Molecular Magnetism; VCH Publications: New York, NY, USA, 1993; pp. 145–210. ISBN 1-56081-566-3. [Google Scholar]
- Sasmal, S.; Roy, S.; Carrella, L.; Jana, A.; Rentschler, E.; Mohanta, S. Structures and magnetic properties of bis(μ-phenoxido), bis(μ-phenoxido)-μ-carboxylato and bis(μ-phenoxido)bis(μ-carboxylato) FeIIINiII compounds—Magnetostructural correlations. Eur. J. Inorg. Chem. 2015, 680–689. [Google Scholar] [CrossRef]
- Nanda, K.K.; Thompson, L.K.; Bridson, J.N.; Nag, K. Linear dependence of spin exchange coupling constant on bridge angle in phenoxy-bridged dinickel(II) complexes. J. Chem. Soc. Chem. Commun. 1994, 1337–1338. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, J.; Pan, Z.; Zhou, H.; Lou, X. Structure, magnetic property and DNA cleavage ability of heterometal MnIII2NiII2 complex with ONO tridentate ligands Inorg. Chem. Comm. 2012, 22, 40–43. [Google Scholar] [CrossRef]
- Selwood, P.W. Magnetochemistry; Interscience Publishers: New York, NY, USA, 1956; pp. 78–91. [Google Scholar]
- Rigaku Corporation. CrystalClear: Data Collection and Processing Software; Rigaku Corporation: Tokyo, Japan, 1998. [Google Scholar]
- Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. Completion and refinement of crystal structures with SIR92. J. Appl. Cryst. 1993, 26, 343–350. [Google Scholar] [CrossRef]
- Beurskens, P.T.; Admiraal, G.; Beurskens, G.; Bosman, W.P.; Gelder, R.; Israel, R.; Smits, J.M.M. DIRDIF99. Master’s Thesis, Crystallography Laboratory University of Nijmegen, Nijmegen, The Netherlands, 1999. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Rigaku Corporation. CrystalStructure: Crystal Structure Analysis Package (Version 4.3); Rigaku Corporation: Tokyo, Japan, 2000. [Google Scholar]
Bond/Angle | 1 | 2A | 2B |
---|---|---|---|
(Å)/(°) | (Å)/(°) | (Å)/(°) | |
Mn1−O1 | 1.943(7) | 1.956(5) | 1.938(5) |
Mn1−O2 | 1.882(8) | 1.874(5) | 1.871(5) |
Mn1−O3 | 1.907(6) | 1.897(6) | 1.924(7) |
Mn1−O4 * | 2.410(7) | 2.331(6) | 2.250(6) |
Mn1−O5 | 2.135(7) | 2.244(6) | 2.261(6) |
Mn1−N1 | 1.981(9) | 1.980(7) | 1.985(8) |
Ni1−O1 | 2.141(7) | 2.109(6) | 2.117(6) |
Ni1−O1 * | 2.127(6) | 2.107(6) | 2.111(5) |
Ni1−O3 * | 2.005(7) | 1.999(5) | 1.987(5) |
Ni1−O4 * | 1.986(7) | 1.977(5) | 1.976(5) |
Ni1−O6 * | 2.077(7) | 2.129(6) | 2.156(5) |
Ni1−N2 * | 2.028(8) | 2.012(7) | 1.996(8) |
Mn1···Ni1 | 2.928(2) | 2.939(2) | 2.952(2) |
Mn1···Ni1 * | 3.255(2) | 3.193(2) | 3.182(2) |
Mn1···Mn1 * | 5.268(3) | 5.248(3) | 5.244(3) |
Ni1···Ni1 * | 3.253(2) | 3.183(3) | 3.192(2) |
Mn1−O1−Ni1 | 91.5(3) | 92.5(2) | 93.3(2) |
Mn1−O1−Ni1 * | 106.1(3) | 103.6(2) | 103.5(2) |
Ni1−O1−Ni1 * | 99.3(3) | 98.0(2) | 98.0(2) |
Mn1−O3−Ni1 | 96.9(3) | 97.9(3) | 98.0(3) |
Ni1−O4−Mn1 * | 95.0(3) | 95.3(2) | 97.5(2) |
Complex | JMnNi (cm−1) | JMnNi* (cm−1) | JNiNi* (cm−1) | Mn−O−Ni (°) | Mn−O−Ni*(°) | Ni−O−Ni*(°) | References |
---|---|---|---|---|---|---|---|
Type-I: without syn–syn bridging ligand | |||||||
A | 4.5 | 4.3 | –7.9 | 97.3(2) | 95.4(2) | 101.6(2) | [12] |
B | 3.62 | = JMnNi | –7.81 | 98.51(14) | 99.95(14) | 97.85(14) | [24] |
C | 0.75 | = JMnNi | 10 | 96.2(2) | 99.3(2) | 96.1(2) | [16] |
Type-II: with syn–syn bridging carboxylate | |||||||
D | −1.80 | = JMnNi | –3.41 | 94.16(8) | 103.61(8) | 98.19(8) | [24] |
E | –11.85 | –6.44 | 0.34 | 95.7(1) | 105.1(1) | 100.4 av | [29] |
1 | −4.19 | −1.36 | −4.04 | 91.5(3) | 106.1(3) | 99.3(3) | This work |
Type-III: with syn–syn bridging nitrate | |||||||
2 | −0.82 | −0.66 | 0.79 | 92.9(2) av | 103.5(2) av | 98.0(2) av | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suemitsu, Y.; Matsunaga, R.; Toyofuku, T.; Yamada, Y.; Mikuriya, M.; Tokii, T.; Koikawa, M. Tetranuclear Hetro-Metal [MnIII2NiII2] Complexes Involving Defective Double-Cubane Structure: Synthesis, Crystal Structures, and Magnetic Properties. Magnetochemistry 2019, 5, 14. https://doi.org/10.3390/magnetochemistry5010014
Suemitsu Y, Matsunaga R, Toyofuku T, Yamada Y, Mikuriya M, Tokii T, Koikawa M. Tetranuclear Hetro-Metal [MnIII2NiII2] Complexes Involving Defective Double-Cubane Structure: Synthesis, Crystal Structures, and Magnetic Properties. Magnetochemistry. 2019; 5(1):14. https://doi.org/10.3390/magnetochemistry5010014
Chicago/Turabian StyleSuemitsu, Yuki, Ryuji Matsunaga, Takashi Toyofuku, Yasunori Yamada, Masahiro Mikuriya, Tadashi Tokii, and Masayuki Koikawa. 2019. "Tetranuclear Hetro-Metal [MnIII2NiII2] Complexes Involving Defective Double-Cubane Structure: Synthesis, Crystal Structures, and Magnetic Properties" Magnetochemistry 5, no. 1: 14. https://doi.org/10.3390/magnetochemistry5010014
APA StyleSuemitsu, Y., Matsunaga, R., Toyofuku, T., Yamada, Y., Mikuriya, M., Tokii, T., & Koikawa, M. (2019). Tetranuclear Hetro-Metal [MnIII2NiII2] Complexes Involving Defective Double-Cubane Structure: Synthesis, Crystal Structures, and Magnetic Properties. Magnetochemistry, 5(1), 14. https://doi.org/10.3390/magnetochemistry5010014