Enhancing the Catalytic Activity of Layered Double Hydroxide Supported on Graphene for Lithium–Sulfur Redox Reactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Material Synthesis
2.3. Characterization Methods
2.4. Symmetric Cell Test
2.5. Rotating Disk Electrode Test
2.6. Measurement for the Nucleation of Lithium Sulfide
2.7. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yin, Y.X.; Xin, S.; Guo, Y.G.; Wan, L.J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 2013, 52, 13186–13200. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Li, X.Y.; Chen, X.; Li, B.Q.; Kaskel, S.; Zhang, Q.; Huang, J.Q. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium–sulfur batteries. eScience 2021, 1, 44–52. [Google Scholar] [CrossRef]
- Yue, X.Y.; Zhang, J.; Bao, J.; Bai, Y.F.; Li, X.L.; Yang, S.Y.; Fu, Z.W.; Wang, Z.H.; Zhou, Y.N. Sputtered MoN nanolayer as a multifunctional polysulfide catalyst for high-performance lithium–sulfur batteries. eScience 2022, 2, 329–338. [Google Scholar] [CrossRef]
- Manthiram, A.; F, Y.Z.; Su, Y.S. Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 2012, 46, 1125–1134. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhao, X.; Li, Y.; Zeng, P.; Liu, H.; Yu, H.; Wu, M.; Li, Z.; Shao, D.; Miao, C.; et al. Kinetically elevated redox conversion of polysulfides of lithium-sulfur battery using a separator modified with transition metals coordinated g-C3N4 with carbon-conjugated. Chem. Eng. J. 2020, 385, 1385–8947. [Google Scholar] [CrossRef]
- Cheng, C.S.; Chung, S.-H. Nickel-plated sulfur nanocomposites for electrochemically stable high-loading sulfur cathodes in a lean-electrolyte lithium-sulfur cell. Chem. Eng. J. 2022, 429, 132257. [Google Scholar] [CrossRef]
- Cheng, C.S.; Chung, S.H. Rational Design of High-Performance Nickel-Sulfur Nanocomposites by the Electroless Plating Method for Electrochemical Lithium-Sulfur Battery Cathodes. Batter. Supercaps 2022, 5, e202100323. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, W.; Li, J.; Xu, Z.; Guan, L. Encapsulating MWNTs into hollow porous carbon nanotubes: A tube-in-tube carbon nanostructure for high-performance lithium–sulfur batteries. Adv. Mater. 2014, 26, 5113–5118. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, G.; Wu, N.; Zhang, Y.; Xiang, M.; Wang, B.; Liu, H.; Wu, H. Efficient synthesis of graphene nanoscrolls for fabricating sulfur-loaded cathode and flexible hybrid interlayer toward high-performance Li-S batteries. ACS Appl. Mater. Interfaces 2016, 8, 34185–34193. [Google Scholar] [CrossRef]
- Gao, T.T.; Zhou, Z.; Yu, J.Y.; Zhao, J.; Wang, G.L.; Cao, D.X.; Ding, B.; Li, Y.J. 3D printing of tunable energy storage devices with both high areal and volumetric energy densities. Adv. Energy Mater. 2019, 9, 10. [Google Scholar] [CrossRef]
- Wu, F.; Li, J.; Su, Y.; Wang, J.; Yang, W.; Li, N.; Chen, L.; Chen, S.; Chen, R.; Bao, L. Layer-by-layer assembled architecture of polyelectrolyte multilayers and graphene sheets on hollow carbon spheres/sulfur composite for high-performance lithium–sulfur batteries. Nano Lett. 2016, 16, 5488–5494. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Lee, K.T.; Nazar, L.F. A highly ordered nanostructured carbon-sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.M.; Y, L.C.; Wang, D.W.; Li, L.; P, S.F.; Gentle, I.R.; Li, F.; Cheng, H.M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano 2013, 7, 5367–5375. [Google Scholar] [CrossRef]
- Jin, S.; Xin, S.; Wang, L.; Du, Z.; Cao, L.; Chen, J.; Kong, X.; Gong, M.; Lu, J.; Zhu, Y.; et al. Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li-S batteries. Adv. Mater. 2016, 28, 9094–9102. [Google Scholar] [CrossRef]
- Wu, F.; Zhao, E.; Gordon, D.; Xiao, Y.; Hu, C.; Yushin, G. Infiltrated porous polymer sheets as free-standing flexible lithium–sulfur battery electrodes. Adv. Mater. 2016, 28, 6365–6371. [Google Scholar] [CrossRef]
- Su, D.; Cortie, M.; Wang, G. Fabrication of N-doped graphene–carbon nanotube hybrids from prussian blue for lithium–sulfur batteries. Adv. Energy Mater. 2016, 7, 1602014. [Google Scholar] [CrossRef]
- Laverde, J.; Rosero-Navarro, N.C.; Miura, A.; Buitrago-Sierra, R.; Tadanaga, K.; López, D. Impact of Sulfur Infiltration Time and Its Content in an N-doped Mesoporous Carbon for Application in Li-S Batteries. Batteries 2022, 8, 58. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, Y.; Li, H.; Zhao, Z.; Wu, H.B.; Hao, C.; Liu, S.; Qiu, J.; Lou, X.W. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 2014, 5, 5002. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.; Zheng, G.; Hsu, P.C.; Kong, D.; Cha, J.J.; Li, W.; Seh, Z.W.; McDowell, M.T.; Yan, K.; Liang, Z.; et al. Improving lithium-sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nat. Commun. 2014, 5, 3943. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Sun, Z.; Shi, C.; Fang, R.; Chen, J.; Hou, P.; Liu, C.; Cheng, H.M.; Li, F. A sulfur-rich copolymer@CNT hybrid cathode with dual-confinement of polysulfides for high-performance lithium-sulfur batteries. Adv. Mater. 2017, 29, 1603835. [Google Scholar] [CrossRef]
- Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 2015, 5, 1500408. [Google Scholar] [CrossRef]
- Peng, L.; Wei, Z.; Wan, C.; Li, J.; Chen, Z.; Zhu, D.; Baumann, D.; Liu, H.; Allen, C.S.; Xu, X.; et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 2020, 3, 762–770. [Google Scholar] [CrossRef]
- Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L.F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 2014, 5, 4759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Salem, H.; Babu, G.; Rao, C.V.; Arava, L.M. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries. J. Am. Chem. Soc. 2015, 137, 11542–11545. [Google Scholar] [CrossRef] [PubMed]
- Marangon, V.; Scaduti, E.; Vinci, V.F.; Hassoun, J. Scalable Composites Benefiting from Transition-Metal Oxides as Cathode Materials for Efficient Lithium-Sulfur Batteries. ChemElectroChem 2022, 9, e202200374. [Google Scholar] [CrossRef]
- Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L.F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Xu, W.; Jamil, S.; Jiang, S.; Huang, C.; Wang, X.; Wang, Y.; Shu, H.; Xiang, K.; Zeng, P. Multifunctional heterostructures for polysulfide suppression in high-performance Lithium-Sulfur cathode. Small 2018, 14, 1803134. [Google Scholar] [CrossRef]
- Li, M.C.; Liu, Z.; Tan, L.; Zhou, Q.Y.; Zhang, J.J.; Hou, P.P.; Jin, X.J.; Lv, T.B.; Zhao, Z.Q.; Zeng, Z.; et al. Fabrication of Cubic and Porous Carbon Cages with In-Situ-Grown Carbon Nanotube Networks and Cobalt Phosphide for High-Capacity and Stable Lithium–Sulfur Batteries. ACS Sustain. Chem. Eng. 2022, 10, 10223–10233. [Google Scholar] [CrossRef]
- Zhang, D.; Luo, Y.; Liu, J.; Dong, Y.; Xiang, C.; Zhao, C.; Shu, H.; Hou, J.; Wang, X.; Chen, M. ZnFe2O4-Ni5P4 mott-schottky heterojunctions to promote kinetics for advanced Li-S batteries. ACS Appl. Mater. Interfaces 2022, 14, 23546–23557. [Google Scholar] [CrossRef]
- Du, Z.; Chen, X.; Hu, W.; Chuang, C.; Xie, S.; Hu, A.; Yan, W.; Kong, X.; Wu, X.; Ji, H.; et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985. [Google Scholar] [CrossRef]
- Adan-Mas, A.; Arévalo-Cid, P.; Moura e Silva, T.; Crespo, J.; Montemor, M.d.F. From Bench-Scale to Prototype: Case Study on a Nickel Hydroxide—Activated Carbon Hybrid Energy Storage Device. Batteries 2019, 5, 65. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Jiao, Q.; Chen, W.; Dang, Y.; Dai, Z.; Suib, S.L.; Zhang, J.; Zhao, Y.; Li, H.; Feng, C. Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution. Appl. Catal. B 2021, 286, 119869. [Google Scholar] [CrossRef]
- Bodhankar, P.M.; Sarawade, P.B.; Singh, G.; Vinu, A.; Dhawale, D.S. Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting. J. Mater. Chem. A 2021, 9, 3180–3208. [Google Scholar] [CrossRef]
- Yang, M.; Sun, J.; Qin, Y.; Yang, H.; Zhang, S.; Liu, X.; Luo, J. Hollow CoFe-layered double hydroxide polyhedrons for highly efficient CO2 electrolysis. Sci. China Mater. 2021, 65, 536–542. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Chen, Y.; Gao, S.; Lou, X.W.D. Nickel-Iron Layered Double Hydroxide Hollow Polyhedrons as a Superior Sulfur Host for Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2018, 57, 10944–10948. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, H.; Li, Z.; Lou, X.W. Double-Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2016, 55, 3982–3986. [Google Scholar] [CrossRef]
- Lan, F.; Zhang, H.; Fan, J.; Xu, Q.; Li, H.; Min, Y. Electrospun Polymer Nanofibers with TiO2@NiCo-LDH as Efficient Polysulfide Barriers for Wide-Temperature-Range Li–S Batteries. ACS Appl. Mater. Interfaces 2021, 13, 2734–2744. [Google Scholar] [CrossRef]
- Zubair, M.; Daud, M.; McKay, G.; Shehzad, F.; Al-Harthi, M.A. Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Appl. Clay Sci. 2017, 143, 279–292. [Google Scholar] [CrossRef]
- Chen, G.; Wang, T.; Zhang, J.; Liu, P.; Sun, H.; Zhuang, X.; Chen, M.; Feng, X. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 2018, 30, 1706279. [Google Scholar] [CrossRef]
- Anantharaj, S.; Karthick, K.; Venkatesh, M.; Simha, T.V.S.V.; Salunke, A.S.; Ma, L.; Liang, H.; Kundu, S. Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces. Nano Energy 2017, 39, 30–43. [Google Scholar] [CrossRef]
- Xie, S.; Chen, X.; Wang, C.; Lu, Y.R.; Chan, T.S.; Chuang, C.H.; Zhang, J.; Yan, W.; Jin, S.; Jin, H.; et al. Role of the Metal Atom in a Carbon-Based Single-Atom Electrocatalyst for Li-S Redox Reactions. Small 2022, 18, 2200395. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Tang, R.; Liu, M.; Xie, S.; Zhang, D.; Kong, X.; Jin, S.; Ji, H.; Zhang, T. Enhancing the Catalytic Activity of Layered Double Hydroxide Supported on Graphene for Lithium–Sulfur Redox Reactions. Batteries 2022, 8, 200. https://doi.org/10.3390/batteries8110200
Xu J, Tang R, Liu M, Xie S, Zhang D, Kong X, Jin S, Ji H, Zhang T. Enhancing the Catalytic Activity of Layered Double Hydroxide Supported on Graphene for Lithium–Sulfur Redox Reactions. Batteries. 2022; 8(11):200. https://doi.org/10.3390/batteries8110200
Chicago/Turabian StyleXu, Junjie, Rui Tang, Minghui Liu, Shuai Xie, Dawei Zhang, Xianghua Kong, Song Jin, Hengxing Ji, and Tierui Zhang. 2022. "Enhancing the Catalytic Activity of Layered Double Hydroxide Supported on Graphene for Lithium–Sulfur Redox Reactions" Batteries 8, no. 11: 200. https://doi.org/10.3390/batteries8110200
APA StyleXu, J., Tang, R., Liu, M., Xie, S., Zhang, D., Kong, X., Jin, S., Ji, H., & Zhang, T. (2022). Enhancing the Catalytic Activity of Layered Double Hydroxide Supported on Graphene for Lithium–Sulfur Redox Reactions. Batteries, 8(11), 200. https://doi.org/10.3390/batteries8110200