Microwave-Assisted Recovery of Spent LiCoO2 Battery from the Corresponding Black Mass
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masias, A.; Marcicki, J.; Paxton, W.A. Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications. ACS Energy Lett. 2021, 6, 621–630. [Google Scholar] [CrossRef]
- Thompson, D.L.; Hartley, J.M.; Lambert, S.M.; Shiref, M.; Harper, G.D.J.; Kendrick, E.; Anderson, P.; Ryder, K.S.; Gaines, L.; Abbott, A.P. The Importance of Design in Lithium Ion Battery Recycling—A Critical Review. Green Chem. 2020, 22, 7585–7603. [Google Scholar] [CrossRef]
- Liang, Z.; Cai, C.; Peng, G.; Hu, J.; Hou, H.; Liu, B.; Liang, S.; Xiao, K.; Yuan, S.; Yang, J. Hydrometallurgical Recovery of Spent Lithium Ion Batteries: Environmental Strategies and Sustainability Evaluation. ACS Sustain. Chem. Eng. 2021, 9, 5750–5767. [Google Scholar] [CrossRef]
- Baum, Z.J.; Bird, R.E.; Yu, X.; Ma, J. Lithium-Ion Battery Recycling—Overview of Techniques and Trends. ACS Energy Lett. 2022, 7, 712–719. [Google Scholar] [CrossRef]
- Wagner-Wenz, R.; van Zuilichem, A.J.; Göllner-Völker, L.; Berberich, K.; Weidenkaff, A.; Schebek, L. Recycling Routes of Lithium-Ion Batteries: A Critical Review of the Development Status, the Process Performance, and Life-Cycle Environmental Impacts. MRS Energy Sustain. 2023, 10, 1–34. [Google Scholar] [CrossRef]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling Lithium-Ion Batteries from Electric Vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef]
- Lv, W.; Wang, Z.; Cao, H.; Sun, Y.; Zhang, Y.; Sun, Z. A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2018, 6, 1504–1521. [Google Scholar] [CrossRef]
- Woollacott, E. Electric Cars: What Will Happen to All the Dead Batteries? Available online: https://www.bbc.com/news/business-56574779 (accessed on 22 September 2023).
- Maisch, M. Lithium-Ion Recycling Rates Far Higher than Some Statistics Suggest. Available online: https://www.pv-magazine.com/2019/07/12/lithium-ion-recycling-rates-far-higher-than-some-statistics-suggest/ (accessed on 22 September 2023).
- Gao, Y.; Zhang, J.; Jin, H.; Liang, G.; Ma, L.; Chen, Y.; Wang, C. Regenerating Spent Graphite from Scrapped Lithium-Ion Battery by High-Temperature Treatment. Carbon 2022, 189, 493–502. [Google Scholar] [CrossRef]
- Li, T.; Tao, L.; Xu, L.; Meng, T.; Clifford, B.C.; Li, S.; Zhao, X.; Rao, J.; Lin, F.; Hu, L. Direct and Rapid High-Temperature Upcycling of Degraded Graphite. Adv. Funct. Mater. 2023, 33, 2302951. [Google Scholar] [CrossRef]
- Nkuna, R.; Ijoma, G.N.; Matambo, T.S.; Chimwani, N. Accessing Metals from Low-Grade Ores and the Environmental Impact Considerations: A Review of the Perspectives of Conventional versus Bioleaching Strategies. Minerals 2022, 12, 506. [Google Scholar] [CrossRef]
- Makuza, B.; Tian, Q.; Guo, X.; Chattopadhyay, K.; Yu, D. Pyrometallurgical Options for Recycling Spent Lithium-Ion Batteries: A Comprehensive Review. J. Power Sources 2021, 491, 1–21. [Google Scholar] [CrossRef]
- Kaya, M. State-of-the-Art Lithium-Ion Battery Recycling Technologies. Circ. Econ. 2022, 1, 100015. [Google Scholar] [CrossRef]
- Mao, J.K.; Li, J.; Xu, Z. Coupling Reactions and Collapsing Model in the Roasting Process of Recycling Metals from LiCoO2 Batteries. J. Clean. Prod. 2018, 205, 923–929. [Google Scholar] [CrossRef]
- Tang, Y.; Xie, H.; Zhang, B.; Chen, X.; Zhao, Z.; Qu, J.; Xing, P.; Yin, H. Recovery and Regeneration of LiCoO2-Based Spent Lithium-Ion Batteries by a Carbothermic Reduction Vacuum Pyrolysis Approach: Controlling the Recovery of CoO or Co. Waste Manag. 2019, 97, 140–148. [Google Scholar] [CrossRef]
- Lombardo, G.; Ebin, B.; St Foreman, M.R.J.; Steenari, B.M.; Petranikova, M. Chemical Transformations in Li-Ion Battery Electrode Materials by Carbothermic Reduction. ACS Sustain. Chem. Eng. 2019, 7, 13668–13679. [Google Scholar] [CrossRef]
- Vishvakarma, S.; Dhawan, N. Recovery of Cobalt and Lithium Values from Discarded Li-Ion Batteries. J. Sustain. Metall. 2019, 5, 204–209. [Google Scholar] [CrossRef]
- Kwon, O.; Sohn, I. Fundamental Thermokinetic Study of a Sustainable Lithium-Ion Battery Pyrometallurgical Recycling Process. Resour. Conserv. Recycl. 2020, 158, 1–12. [Google Scholar] [CrossRef]
- Holzer, A.; Windisch-Kern, S.; Ponak, C.; Raupenstrauch, H. A Novel Pyrometallurgical Recycling Process for Lithium-Ion Batteries and Its Application to the Recycling of LCO and LFP. Metals 2021, 11, 149. [Google Scholar] [CrossRef]
- Li, J.; Lai, Y.; Zhu, X.; Liao, Q.; Xia, A.; Huang, Y.; Zhu, X. Pyrolysis Kinetics and Reaction Mechanism of the Electrode Materials during the Spent LiCoO2 Batteries Recovery Process. J. Hazard. Mater. 2020, 398, 1–9. [Google Scholar] [CrossRef]
- Fahimi, A.; Alessandri, I.; Cornelio, A.; Frontera, P.; Malara, A.; Mousa, E.; Ye, G.; Valentim, B.; Bontempi, E. A Microwave-Enhanced Method Able to Substitute Traditional Pyrometallurgy for the Future of Metals Supply from Spent Lithium-Ion Batteries. Resour. Conserv. Recycl. 2023, 194, 1–10. [Google Scholar] [CrossRef]
- Zhong, X.; Liu, W.; Han, J.; Jiao, F.; Qin, W.; Liu, T. Pretreatment for the Recovery of Spent Lithium Ion Batteries: Theoretical and Practical Aspects. J. Clean. Prod. 2020, 263, 1–10. [Google Scholar] [CrossRef]
- Gomez-Moreno, L.A.; Klemettinen, A.; Serna-Guerrero, R. A Simple Methodology for the Quantification of Graphite in End-of-Life Lithium-Ion Batteries Using Thermogravimetric Analysis. iScience 2023, 26, 107782. [Google Scholar] [CrossRef]
- She, X.F.; Zhu, K.; Wang, J.S.; Xue, Q.G. Product Control and a Study of the Structural Change Process during the Recycling of Lithium-Ion Batteries Based on the Carbothermic Reduction Method. J. Chem. Res. 2022, 46, 17475198211066533. [Google Scholar] [CrossRef]
- Nuraeni, B.A.; Avarmaa, K.; Prentice, L.H.; Rankin, W.J.; Rhamdhani, M.A. Carbothermic Reduction of LiCoO2 Cathode Material: Thermodynamic Analysis, Microstructure and Mechanisms. Sustain. Mater. Technol. 2022, 34, 1–17. [Google Scholar] [CrossRef]
- Wang, H.; Liu, C.; Qu, G.; Zhou, S.; Li, B.; Wei, Y. Study on Pyrolysis Pretreatment Characteristics of Spent Lithium-Ion Batteries. Separations 2023, 10, 259. [Google Scholar] [CrossRef]
- Chen, S.; Xie, D.; Liu, G.; Mwizerwa, J.P.; Zhang, Q.; Zhao, Y.; Xu, X.; Yao, X. Sulfide Solid Electrolytes for All-Solid-State Lithium Batteries: Structure, Conductivity, Stability and Application. Energy Storage Mater. 2018, 14, 58–74. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature Effect and Thermal Impact in Lithium-Ion Batteries: A Review. Prog. Nat. Sci. Mater. Int. 2018, 28, 653–666. [Google Scholar] [CrossRef]
Reductant | Temperature (°C) | Time (min) | Atmospheric Condition | Product | Recovery of Li2CO3 (%) * | Ref. |
---|---|---|---|---|---|---|
Graphite | 1000 | 30 | N2 | Co, Li2CO3 | n.a. | [14] |
Graphite | 900 | 30 | Vacuum | Co, Li2CO3 | n.a. | [15] |
Graphite | 700 | 45 | Vacuum | Regenerated LiCoO2 | n.a. | [16] |
Graphite | 700 | 90 | N2 | Co, CoO, Ni, NiO, Mn, Mn3O4, Li2O, Li2CO3 | n.a. | [17] |
Graphite | 900 | 15 | Air | Co, Li2CO3 | >95 | [18] |
Graphite | 1500 | 180 | Ar | Co, Li2CO3 | n.a. | [19] |
Graphite | 1700 | 55 | Ar | Co, Li2CO3 | 81.7–97.3 | [20] |
Graphite | 500–1000 | 50 | N2 | Co, CoO, Li2CO3 | >80 | [21] |
Temperature Range (°C) | Thermal Ramp (°C/min) | Atmospheric Condition |
---|---|---|
30–300 | 40 | N2 |
300–400 | 10 | Air |
400–800 | 5 | Air |
800–1000 | 15 | Air |
Element | g/kg | ||
---|---|---|---|
Li * | 38.4 | ± | 0.6 |
Co | 288 | ± | 18 |
Mn | 5.2 | ± | 1.5 |
Ni | 49 | ± | 3 |
Cu | 4.8 | ± | 1.4 |
Zn | 2.1 | ± | 1.6 |
Sample | Li g/kg | ||
---|---|---|---|
LCO as-received | 24.4 | ± | 0.4 |
LCO treated at 600 W for 5 min | 32.6 | ± | 0.5 |
LCO treated at 1000 W for 10 min | 6.9 | ± | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scaglia, M.; Cornelio, A.; Zanoletti, A.; La Corte, D.; Biava, G.; Alessandri, I.; Forestan, A.; Alba, C.; Depero, L.E.; Bontempi, E. Microwave-Assisted Recovery of Spent LiCoO2 Battery from the Corresponding Black Mass. Batteries 2023, 9, 536. https://doi.org/10.3390/batteries9110536
Scaglia M, Cornelio A, Zanoletti A, La Corte D, Biava G, Alessandri I, Forestan A, Alba C, Depero LE, Bontempi E. Microwave-Assisted Recovery of Spent LiCoO2 Battery from the Corresponding Black Mass. Batteries. 2023; 9(11):536. https://doi.org/10.3390/batteries9110536
Chicago/Turabian StyleScaglia, Matteo, Antonella Cornelio, Alessandra Zanoletti, Daniele La Corte, Giada Biava, Ivano Alessandri, Angelo Forestan, Catya Alba, Laura Eleonora Depero, and Elza Bontempi. 2023. "Microwave-Assisted Recovery of Spent LiCoO2 Battery from the Corresponding Black Mass" Batteries 9, no. 11: 536. https://doi.org/10.3390/batteries9110536
APA StyleScaglia, M., Cornelio, A., Zanoletti, A., La Corte, D., Biava, G., Alessandri, I., Forestan, A., Alba, C., Depero, L. E., & Bontempi, E. (2023). Microwave-Assisted Recovery of Spent LiCoO2 Battery from the Corresponding Black Mass. Batteries, 9(11), 536. https://doi.org/10.3390/batteries9110536