Evaluating Plastic Waste Management Strategies: Logistic Regression Insights on Pyrolysis vs. Recycling
Abstract
:1. Introduction
1.1. Background of Study
1.1.1. Challenges in Plastic Waste Recycling
1.1.2. The Need for a Comprehensive Framework
1.2. The State of the Art
- Pyrolysis as a plastic waste management solution
- Recycling: Challenges and Advancements
- The Need for a Hybrid Approach
1.3. Research Gaps and Objectives
- Identify key drivers: the determination of the critical environmental (e.g., CO2 emissions, energy output), economic (e.g., operational costs, revenue potential), and logistical (e.g., transportation emissions, processing times) factors influencing scenario selection.
- Quantify trade-offs: the comparison of the environmental and economic trade-offs between pyrolysis and recycling to highlight the strengths and weaknesses of each approach.
- Predictive scenario selection: the development of a predictive model using logistic regression to estimate whether to choose pyrolysis or recycling under different conditions.
- Inform policy and practice: the provision of evidence-based recommendations for policymakers and industry leaders to optimize plastic waste management strategies in line with sustainability goals.
2. Results
2.1. Data Analysis
2.1.1. Analysis Approach
2.1.2. Data Preprocessing
2.2. Model Fit
2.3. Logistic Regression Results
2.4. Visualizations and Insights
- Environmental Factors:
- Economic Factors:
- Energy Metrics:
- Logistical Strengths:
- Overall accuracy = 97%;
- Sensitivity (pyrolysis detection) = 94%;
- Specificity (recycling detection) = 98%.
3. Materials and Methods
3.1. Data Sources
- Reports from Plastics Europe on waste production, recycling rates, and energy recovery.
- European Commission datasets related to emissions and waste management efficiency.
3.2. Methodology
3.2.1. Data Interpretation
3.2.2. Hypotheses Development
- Environmental Factors
- Economic Factors
- Energy Efficiency Factors
- Logistical Factors
3.2.3. Conceptual Framework
- Logistic Regression
3.3. Validation Steps
- (a)
- The training and testing split;
- (b)
- The classification metrics;
- (c)
- The Hosmer–Lemeshow goodness-of-fit test;
- (d)
- The cross-validation method;
- (e)
- The multicollinearity diagnostics method.
- Limitations
4. Conclusions
4.1. Comparative Conclusions
- The benefits of pyrolysis are as follows:
- The benefits of recycling are as follows:
4.2. Policy Recommendations
- Extended Producer Responsibility (EPR) programs:
- Subsidies for pyrolysis technologies:
- Carbon emission regulations:
- Waste segregation policies:
4.3. Comparison with Existing Research
4.3.1. Areas for Future Research
- Longitudinal studies, including the evaluation of the long-term performance and the potential for scalability of the pyrolysis plants in various regions.
- Hybrid systems, specifically applied studies about the combination of pyrolysis and recycling technologies to enhance waste management systems.
- Economic modeling, including cost–benefit analyses for market dynamics and policy changes.
- Technological innovations, including assessing the role of present technologies and the role of emerging technologies, like artificial intelligence-based sorting and renewable energy, in improving pyrolysis’s efficiency [26].
4.3.2. Limitations
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Plastics Europe. Plastics—The Facts 2021: An Analysis of European Plastics Production, Demand, and Waste Data. 2021. Available online: https://plasticseurope.org (accessed on 31 December 2024).
- Rochman, C.M.; Hoh, E.; Kurobe, T.; Teh, S.J. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 2013, 3, 3263. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 2019, 9, 374–378. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Antelava, A.; Constantinou, A.; Manos, G.; Dutta, A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manag. 2017, 197, 177–198. [Google Scholar] [CrossRef] [PubMed]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef]
- Gasde, J.; Woidasky, J.; Moesslein, J.; Lang-Koetz, C. Plastics Recycling with Tracer-Based-Sorting: Challenges of a Potential Radical Technology. Sustainability 2020, 13, 258. [Google Scholar] [CrossRef]
- Maitlo, G.; Ali, I.; Maitlo, H.A.; Ali, S.; Unar, I.N.; Ahmad, M.B.; Bhutto, D.K.; Karmani, R.K.; Naich, S.U.R.; Sajjad, R.U.; et al. Plastic Waste Recycling, Applications, and Future Prospects for a Sustainable Environment. Sustainability 2022, 14, 11637. [Google Scholar] [CrossRef]
- Oke, A.; McDonald, S.; Korobilis-Magas, E.; Osobajo, O.A.; Awuzie, B.O. Reframing Recycling Behaviour through Consumers’ Perceptions: An Exploratory Investigation. Sustainability 2021, 13, 13849. [Google Scholar] [CrossRef]
- Gao, P.; Krantz, J.; Ferki, O.; Nieduzak, Z.; Perry, S.; Sobkowicz, M.J.; Masato, D. Thermo-mechanical recycling via ultrahigh-speed extrusion of film-grade recycled LDPE and injection molding. Sustain. Mater. Technol. 2023, 38, e00719. [Google Scholar] [CrossRef]
- Ziani, K.; Ioniță-Mîndrican, C.-B.; Mititelu, M.; Neacșu, S.M.; Negrei, C.; Moroșan, E.; Drăgănescu, D.; Preda, O.-T. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients 2023, 15, 617. [Google Scholar] [CrossRef]
- Ravikumar, D.; Keoleian, G.A.; Walzberg, J.; Heath, G.; Heller, M.C. Advancing environmental assessment of the circular economy: Challenges and opportunities. Resour. Conserv. Recycl. Adv. 2024, 21, 200203. [Google Scholar] [CrossRef]
- Xayachak, T.; Haque, N.; Parthasarathy, R.; King, S.; Emami, N.; Lau, D.; Pramanik, B.K. Pyrolysis for plastic waste management: An engineering perspective. J. Environ. Chem. Eng. 2022, 10, 108865. [Google Scholar] [CrossRef]
- Kalmykova, Y.; Sadagopan, M.; Rosado, L. Circular economy—From review of theories and practices to development of implementation tools. Resour. Conserv. Recycl. 2018, 135, 190–201. [Google Scholar] [CrossRef]
- Zaman, A.U.; Lehmann, S. The zero waste index: A performance measurement tool for waste management systems in a ‘zero waste city’. J. Clean. Prod. 2013, 50, 123–132. [Google Scholar] [CrossRef]
- Anuar Sharuddin, S.D.; Abnisa, F.; Wan Daud, W.M.A.; Aroua, M.K. A review on pyrolysis of plastic wastes. Energy Convers. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- European Commission. A European Green Deal: Striving to Be the First Climate-Neutral Continent. 2020. Available online: https://ec.europa.eu (accessed on 31 December 2024).
- Rajmohan, K.V.S.; Ramya, C.; Viswanathan, M.R.; Varjani, S. Plastic pollutants: Waste management for pollution control and abatement. Curr. Opin. Environ. Sci. Health 2019, 12, 72–84. [Google Scholar] [CrossRef]
- Rahimi, A.; García, J.M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 0046. [Google Scholar] [CrossRef]
- United Nations. The 17 Goals. United Nations Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 4 February 2025).
- Lopez, G.; Artetxe, M.; Amutio, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Recent advances in the gasification of waste plastics. A critical overview. Renew. Sustain. Energy Rev. 2018, 82, 576–596. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Iacovidou, E. An overview of the challenges and trade-offs in closing the loop of post-consumer plastic waste (PCPW): Focus on recycling. J. Hazard. Mater. 2019, 380, 120887. [Google Scholar] [CrossRef]
- Lazarevic, D.; Aoustin, E.; Buclet, N.; Brandt, N. Plastic waste management in the context of a European recycling society: Comparing results and uncertainties in a life cycle perspective. Resour. Conserv. Recycl. 2010, 55, 246–259. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Wang, Y.-C.; Lu, S.-C.; Hsieh, Y.-F.; Chien, C.-H.; Tsai, S.-B.; Dong, W. An empirical research on customer satisfaction study: A consideration of different levels of performance. SpringerPlus 2016, 5, 1577. [Google Scholar] [CrossRef] [PubMed]
- Almeida, D.; Marques, M.F. Thermal and catalytic pyrolysis of plastic waste. Polímeros 2016, 26, 44–51. [Google Scholar] [CrossRef]
- Faraca, G.; Astrup, T. Plastic waste from recycling centres: Characterisation and evaluation of plastic recyclability. Waste Manag. 2019, 95, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Laner, D. The environmental performance of plastic packaging waste management in Germany: Current and future key factors. J. Ind. Ecol. 2023, 27, 1447–1460. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef]
- Vlachokostas, C. Closing the loop between energy production and waste management: A conceptual approach towards sustainable development. Sustainability 2020, 12, 5995. [Google Scholar] [CrossRef]
Variable | Scenario_Numeric | Mean | Std. Deviation |
---|---|---|---|
CO2 emissions, kg/ton | 1 | 329.990 | 12.6737 |
2 | 279.864 | 14.0369 | |
CH4 emissions, kg/ton | 1 | 9.504 | 0.627 |
2 | 7.560 | 0.433 | |
NOx emissions, kg/ton | 1 | 4.577 | 0.312 |
2 | 5.597 | 0.328 | |
SOx emissions, kg/ton | 1 | 3.688 | 0.388 |
2 | 2.619 | 0.337 | |
VOC emissions, kg/ton | 1 | 1.458 | 0.117 |
2 | 1.908 | 0.122 | |
Energy consumption, kWh/ton | 1 | 473.551 | 19.383 |
2 | 430.557 | 16.487 | |
Energy output, kWh/ton | 1 | 311.858 | 12.528 |
2 | 0.000 | 0.000 | |
Transportation emissions, kgCO2/km | 1 | 48.845 | 2.257 |
2 | 117.300 | 5.133 | |
Operational costs/ton | 1 | 384.656 | 12.941 |
2 | 481.422 | 13.520 | |
Revenue from outputs/ton | 1 | 275.404 | 16.251 |
2 | 0.000 | 0.000 | |
Contaminated handling efficiency | 1 | 83.081 | 2.213 |
2 | 37.726 | 2.197 | |
Average processing time hours/ton | 1 | 3.122 | 0.201 |
2 | 4.100 | 0.221 | |
Waste conversion efficiency | 1 | 88.438 | 1.338 |
2 | 58.340 | 1.588 |
Comparison Group | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | |
---|---|---|---|---|---|
B | Std. Error | Beta | |||
(Constant) | 2.100 | 0.097 | 2 < 1.566 | <0.001 | |
CO2 emissions, kg/ton | −0.001 | 0.000 | −0.050 | −3.098 | 0.003 |
CH4 emissions, kg/ton | 0.000 | 0.004 | 0.001 | 0.114 | 0.910 |
NOx emissions, kg/ton | 0.008 | 0.006 | 0.009 | 1.286 | 0.203 |
SOx emissions, kg/ton | −0.006 | 0.005 | −0.007 | −1.037 | 0.304 |
VOC emissions, kg/ton | −0.0005 | 0.019 | −0.002 | −0.239 | 0.812 |
Energy consumption, kWh/ton | −2.784 × 10−5 | 0.000 | −0.002 | −0.216 | 0.830 |
Energy output, kWh/ton | −0.001 | 0.000 | −0.311 | −4.930 | <0.001 |
Transportation emissions, kgCO2/km | 0.002 | 0.000 | 0.155 | 4.553 | <0.001 |
Operational costs/ton | 0.000 | 0.000 | 0.032 | 1.753 | 0.084 |
Revenue from outputs/ton | 0.000 | 0.000 | −0.123 | −2.238 | 0.029 |
Contaminated handling efficiency | −0.004 | 0.001 | −0.165 | −4.273 | <0.001 |
Average processing time, hours/ton | 0.028 | 0.013 | 0.029 | 2.196 | 0.032 |
Waste conversion efficiency | −0.004 | 0.002 | −0.134 | −2.628 | 0.011 |
Predictor | B (Coefficient) | Exp(B) (Odds Ratio) | p-Value | Interpretation |
---|---|---|---|---|
CO2 emissions (kg/ton) | −0.001 | 0.999 | 0.003 | The CO2 emissions generated by pyrolysis impact negatively on it, although advanced carbon capture methods can help. |
Transportation emissions | 0.002 | 1.002 | <0.001 | The transportation logistics favor centralized pyrolysis infrastructure. |
Energy output (kWh/ton) | 0.002 | 1.002 | <0.001 | The high energy output shows pyrolysis’ energy efficiency. |
Operational costs (EUR) | −0.005 | 0.995 | 0.029 | It is demonstrated that pyrolysis has advantages in large-scale applications. |
Waste conversion efficiency | 0.015 | 1.015 | 0.011 | Pyrolysis benefits contaminated or mixed waste feedstock. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koumpakis, D.-A.; Vlachokostas, C.; Tsakirakis, A.; Petridis, S. Evaluating Plastic Waste Management Strategies: Logistic Regression Insights on Pyrolysis vs. Recycling. Recycling 2025, 10, 33. https://doi.org/10.3390/recycling10020033
Koumpakis D-A, Vlachokostas C, Tsakirakis A, Petridis S. Evaluating Plastic Waste Management Strategies: Logistic Regression Insights on Pyrolysis vs. Recycling. Recycling. 2025; 10(2):33. https://doi.org/10.3390/recycling10020033
Chicago/Turabian StyleKoumpakis, Dimitrios-Aristotelis, Christos Vlachokostas, Apostolos Tsakirakis, and Savvas Petridis. 2025. "Evaluating Plastic Waste Management Strategies: Logistic Regression Insights on Pyrolysis vs. Recycling" Recycling 10, no. 2: 33. https://doi.org/10.3390/recycling10020033
APA StyleKoumpakis, D.-A., Vlachokostas, C., Tsakirakis, A., & Petridis, S. (2025). Evaluating Plastic Waste Management Strategies: Logistic Regression Insights on Pyrolysis vs. Recycling. Recycling, 10(2), 33. https://doi.org/10.3390/recycling10020033