Converting food waste into biofuel resources is considered a promising approach to address the rapid increase in energy demand, reduce dependence on fossil fuels, and decrease environmental hazards. In Egypt, large quantities of fried tilapia fish waste are produced in restaurants and households,
[...] Read more.
Converting food waste into biofuel resources is considered a promising approach to address the rapid increase in energy demand, reduce dependence on fossil fuels, and decrease environmental hazards. In Egypt, large quantities of fried tilapia fish waste are produced in restaurants and households, posing challenges for proper waste management due to its decaying nature. The current study investigates the kinetic triplet and thermodynamic parameters of fried tilapia fish waste (FTFW) pyrolysis. Kinetic analysis was carried out using four iso-conversional models, Friedman, Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO), and Starink, at heating rates of 10, 15, and 20 °C/min. The study findings indicate that FTFW decomposes within the temperature range of 382–407 °C. The estimated activation energy using the Friedman, FWO, KAS, and Starink methods ranged from 43.2 to 208.2, 31.3 to 148.3, 22.3 to 179.3, and 24.1 to 181.3 kJ/mol, respectively, with average values of 118.4, 96.7, 109.7, and 100.5 kJ/mol, respectively. The average enthalpy change determined using the Friedman, FWO, KAS, and Starink methods was 113.45, 91.78, 95.58, and 104.73 kJ/mol, respectively. The average values of Gibbs free energy change for the Friedman, KAS, FWO, and Starink, methods were 192.71, 171.04, 174.83, and 183.99 kJ/mol, respectively.
Full article