Pyrometallurgical Process to Recover Lead and Silver from Zinc Leaching Residue
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparations
2.2. Roasting Treatment
2.3. Methods
2.4. Characterization
2.5. Thermodynamic Modeling
3. Results and Discussion
3.1. Results of the Reduction Experiments
3.2. Leaching Results
4. Conclusions
- -
- The mineralogical species of the Pb-Ag residue were plumbojarosite, gypsum, and blende, which transformed into anhydrite and franklinite after the roasting process at 700 °C.
- -
- There is a critical amount of reducing agent (CaSi) to obtain a metallic phase containing lead. Beyond this level, lead and silver were almost completely recovered in this process, while zinc and iron remained in the slag.
- -
- The silver content was reduced from 1700 ppm in the roasting residue to 32 ppm in the final slag in test 5 at 1300 °C and to 280 ppm in test 6 at 1400 °C. This means that the silver content in the residue was reduced by 98% and 86% in tests 5 and 6, respectively.
- -
- The slags resulting from the reduction mainly consist of sodium sulfate (Na2SO4), sodium zinc silicate (Na2ZnSiO4), and calcium and iron silicates (Ca3SiO5 and FeSiO3). This final slag meets the Mexican environmental norm; however, long-term durability tests will be necessary to fully evaluate the slag’s environmental stability.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sinclair, R.J. The Extractive Metallurgy of Zinc; The Australasian Institute of Mining and Metallurgy: Carlton, Australia, 2005; p. 57. [Google Scholar]
- Ge, H.; Pan, Z.; Xie, F.; Lu, D.; Wang, W.; Wu, S. Recovery of valuable metals by roasting of jarosite in cement kiln. Metals 2023, 13, 250. [Google Scholar] [CrossRef]
- Kamberović, Z.; Gajić, N.; Korać, M.; Jevtić, S.; Sokić, M.; Stojanović, J. Technologically Sustainable Route for Metals Valorization from Jarosite-PbAg Sludge. Minerals 2021, 11, 255. [Google Scholar] [CrossRef]
- Sari, Z.A. Greener and Sustainable Production: Production of Industrial Zinc (II) Acetate Solution and Recovery of Some Metals (Zn, Pb, Ag) from Zinc Plant Residue by Ultrasound-Assisted Leaching. J. Sustain. Metall. 2024, 10, 1484–1506. [Google Scholar] [CrossRef]
- Tang, L.; Tang, C.; Xiao, J.; Zeng, P.; Tang, M. A cleaner process for valuable metals recovery from hydrometallurgical zinc residue. J. Clean. Prod. 2018, 20, 764–773. [Google Scholar] [CrossRef]
- Rodriguez, N.; Onghena, B.; Binnemans, K. Recovery of Lead and Silver from Zinc Leaching Residue Using Methanesulfonic Acid. ACS Sustain. Chem. Eng. 2019, 7, 19807–19815. [Google Scholar] [CrossRef]
- Janošević, M.; Conić, V.; Božić, D.; Avramović, L.; Jovanović, I.; Kamberović, Z.; Marjanović, S. Indium Recovery from Jarosite Pb–Ag Tailings Waste (Part 1). Minerals 2023, 13, 540. [Google Scholar] [CrossRef]
- Rämä, M.; Klemettinen, L.; Rinne, M.; Taskinen, P.; Michallik, R.M.; Salminen, J.; Jokilaakso, A. Processing of a Zinc Leach Residue by a Non-Fossil Reductant. ACS Omega 2023, 8, 21450–21463. [Google Scholar] [CrossRef] [PubMed]
- Ju, S.; Zhang, Y.; Zhang, Y.; Xue, P.; Wang, Y. Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy. J. Hazard. Mater. 2011, 192, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, M.; Pons, M.N.; Ricoux, Q.; Issa, S.; Goettmann, F.; Lapicque, F. New pathway for utilization of jarosite, an industrial waste of zinc hydrometallurgy. Miner. Eng. 2021, 170, 107030. [Google Scholar] [CrossRef]
- Hellgren, S.; Engstrom, F.; Oqvist, L.S. The Characterization of Residues Related to the Roasting–Leaching–Electrowinning Zinc Production Route for Further Metal Extraction. Metals 2024, 14, 73. [Google Scholar] [CrossRef]
- Jiang, G.; Peng, B.; Liang, Y.; Chai, L.I.; Wang, Q.; Li, Q.; Hu, M. Recovery of valuable metals from zinc leaching residue by sulfate roasting and water leaching. Trans. Nonferrous Met. Soc. China 2017, 27, 1180–1187. [Google Scholar] [CrossRef]
- Wang, R.; Yan, Q.; Su, P.; Shu, J.; Chen, M.; Xiao, Z.; Han, Y.; Cheng, Z. Metal mobility and toxicity of zinc hydrometallurgical residues. Process Saf. Environ. 2020, 144, 366–371. [Google Scholar] [CrossRef]
- Du, Y.; Tong, X.; Xie, X.; Zhang, W.; Yang, H.; Song, Q. Recovery of zinc and silver from zinc acid-leaching residues with reduction of their environmental impact using a novel water leaching-flotation process. Minerals 2021, 11, 586. [Google Scholar] [CrossRef]
- Turan, M.D.; Assemi, S.; Nadirov, R.K.; Karamyrzayev, G.A.; Baigenzhenov, O.; Toro, N. Selective Hydrochloric Acid Leaching of Zinc, Lead and Silver from Mechanically Activated Zinc Plant Residue. Russ. J. Non Ferr. Met. 2022, 63, 490–499. [Google Scholar] [CrossRef]
- Xing, P.; Ma, B.; Zeng, P.; Wang, C.; Wang, L.; Zhang, Y.; Chen, Y.; Wang, S.; Wang, Q. Deep cleaning of a metallurgical zinc leaching residue and recovery of valuable metals. Int. J. Min. Met. Mater. 2017, 24, 1217. [Google Scholar] [CrossRef]
- Wang, R.; Yang, Y.; Liu, C.; Zhou, J.; Fang, Z.; Yan, K.; Tian, L.; Xu, Z. Recovery of lead and silver from zinc acid-leaching residue via a sulfation roasting and oxygen-rich chlorination leaching method. J. Cent. South. Univ. 2020, 27, 3567–3580. [Google Scholar] [CrossRef]
- Zheng, Y.; Lv, J.; Liu, W.; Qin, W.; Wen, S. An Innovative technology for recovery of zinc, lead and silver from zinc leaching residue. Physicochem. Probl. Miner. Process. 2016, 52, 943–954. [Google Scholar]
- Jiménez-Lugos, C.; Flores-Favela, M.; Romero-Serrano, A.; Hernández-Ramírez, A.; López-Rodríguez, J.; Cruz-Ramírez, A.; Colin-García, E. Pyrometallurgical treatment of jarosite residue with a mixture of CaO, SiO2, and CaSi. J. Min. Metall. Sect. B Metall. 2024, 60, 205–214. [Google Scholar] [CrossRef]
- Jiménez-Lugos, C.; Flores-Favela, M.; Romero-Serrano, A.; Hernández-Ramírez, A.; López-Rodríguez, J.; Cuéllar-Herrera, L.; Colin-García, E. Recovery of Silver and Lead from Jarosite Residues by Roasting and Reducing Pyrometallurgical Processes. Metals 2024, 14, 954. [Google Scholar] [CrossRef]
- NOM-053-ECOL; Mexican Official Norms. Diario Oficial de la Federación: Mexico City, Mexico, 1993. Available online: http://www.semarnat.gob.mx (accessed on 10 February 2025).
- C702/C702M-11; Standard Practice for Reducing Samples of Aggregate to Testing Size. Designation. ASTM International: West Conshohocken, PA, USA, 2018.
- Zhu, D.; Yang, C.; Pan, J.; Guo, Z.; Li, S. New pyrometallurgical route for separation and recovery of Fe, Zn, In, Ga and S from jarosite residues. J. Clean. Prod. 2018, 205, 781–788. [Google Scholar] [CrossRef]
- Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Gheribi, A.E.; Hack, K.; Jung, I.H.; Kang, Y.B.; Melançon, J.; et al. FactSage Thermochemical Software and Databases, 2010–2016. Calphad 2016, 54, 35–53. [Google Scholar] [CrossRef]
- Muan, A.; Osborn, E.F. Phase Equilibria Among Oxides in Steelmaking; Addison-Wesley: Reading, MA, USA, 1965; p. 114. [Google Scholar]
- Karakaya, I.; Thompson, W.T. The Ag-Pb (Silver-Lead) system. Bull. Alloy Phase Diagr. 1987, 8, 326–334. [Google Scholar] [CrossRef]
Element | O | Ca | Zn | Fe | S | Si | Na | Mg | Pb | As | Cd | Ag | Others |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Before roasting | 42.99 | 15.76 | 6.04 | 9.89 | 16.23 | 2.86 | 0.99 | 0.18 | 3.24 | 0.12 | 0.17 | 0.15 | 1.38 |
After roasting | 39.56 | 19.70 | 7.1 | 11.4 | 13.03 | 3.2 | 0.01 | 0.24 | 4.01 | 0.14 | 0.09 | 0.17 | 1.35 |
Test | Reduction Time (min) | Temperature (°C) | Mass of CaSi (g) |
---|---|---|---|
1 | 120 | 1300 | 1 |
2 | 120 | 1300 | 2 |
3 | 120 | 1300 | 3 |
4 | 120 | 1300 | 4 |
5 | 120 | 1300 | 5 |
6 | 120 | 1400 | 2 |
7 | 120 | 1400 | 4 |
Test | Ag Bullion | Zn Bullion | Fe Bullion | Ag Slag | Zn Slag | Fe Slag | Pb Slag | CD Slag | As Slag |
---|---|---|---|---|---|---|---|---|---|
1 | --- | --- | --- | --- | --- | --- | --- | --- | --- |
2 | 0.72 | 0.305 | 0.43 | 0.0184 | 1.72 | 5.20 | 0.57 | 0.06 | 0.05 |
3 | 1.06 | 0.230 | 0.35 | 0.0074 | 1.71 | 4.58 | 0.56 | 0.04 | 0.05 |
4 | 1.58 | 0.127 | 0.27 | 0.0039 | 1.66 | 4.52 | 0.43 | 0.02 | 0.03 |
5 | 1.59 | 0.103 | 0.31 | 0.0032 | 1.46 | 4.68 | 0.45 | 0.02 | 0.03 |
6 | 0.59 | 0.298 | 0.28 | 0.0028 | 1.65 | 4.96 | 0.46 | 0.03 | 0.04 |
7 | 0.92 | 0.216 | 0.095 | 0.0095 | 1.58 | 5.31 | 0.41 | 0.01 | 0.03 |
Ag | Pb | As | Cd | Zn | |
---|---|---|---|---|---|
NOM-053-SEMARNAT-1993 | 5 max. | 5 max. | 5 max. | 1 | 100 |
Pb-Ag residue | 7.5 | 27.3 | 2.6 | 3.2 | 210 |
Slag (Test No. 5) | 0.16 | 1.2 | 0.32 | 0.5 | 35.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Lugos, C.; Flores-Favela, M.; Romero-Serrano, A.; Hernández-Ramírez, A.; Cruz-Ramírez, A.; Sanchez-Vite, E.; Ortiz-Landeros, J.; Colin-García, E. Pyrometallurgical Process to Recover Lead and Silver from Zinc Leaching Residue. Recycling 2025, 10, 167. https://doi.org/10.3390/recycling10050167
Jiménez-Lugos C, Flores-Favela M, Romero-Serrano A, Hernández-Ramírez A, Cruz-Ramírez A, Sanchez-Vite E, Ortiz-Landeros J, Colin-García E. Pyrometallurgical Process to Recover Lead and Silver from Zinc Leaching Residue. Recycling. 2025; 10(5):167. https://doi.org/10.3390/recycling10050167
Chicago/Turabian StyleJiménez-Lugos, Cancio, Manuel Flores-Favela, Antonio Romero-Serrano, Aurelio Hernández-Ramírez, Alejandro Cruz-Ramírez, Enrique Sanchez-Vite, José Ortiz-Landeros, and Eduardo Colin-García. 2025. "Pyrometallurgical Process to Recover Lead and Silver from Zinc Leaching Residue" Recycling 10, no. 5: 167. https://doi.org/10.3390/recycling10050167
APA StyleJiménez-Lugos, C., Flores-Favela, M., Romero-Serrano, A., Hernández-Ramírez, A., Cruz-Ramírez, A., Sanchez-Vite, E., Ortiz-Landeros, J., & Colin-García, E. (2025). Pyrometallurgical Process to Recover Lead and Silver from Zinc Leaching Residue. Recycling, 10(5), 167. https://doi.org/10.3390/recycling10050167