Toward Closing the Loop in Image-to-Image Conversion in Radiotherapy: A Quality Control Tool to Predict Synthetic Computed Tomography Hounsfield Unit Accuracy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. General Pipeline
2.3. Output Visualization
2.4. Pipeline Details
2.5. DL Architecture and Training
2.6. Experiments
- Models trained only with as input (named ),
- Models trained only with as input (),
- Models trained with both and as input ().
- is used to predict the MAE only for data
- is used to predict the MAE only for data
- is used to predict the MAE only for data
- is used to predict the MAE only for data
2.7. Prediction Pipeline Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Prediction Deviation (PD) | |||||
---|---|---|---|---|---|
Experiment | 5th Percentile [HU] | 25th Percentile [HU] | Median [HU] | 75th Percentile [HU] | 95th Percentile [HU] |
predicting on | −10 | −4 | 0 | 5 | 20 |
predicting on | −12 | −4 | 1 | 7 | 16 |
predicting on | −23 | −6 | −1 | 4 | 21 |
predicting on | −11 | −3 | 4 | 15 | 32 |
Absolute Prediction Deviation (APD) | |||||
---|---|---|---|---|---|
Experiment | 5th Percentile [HU] | 25th Percentile [HU] | Median [HU] | 75th Percentile [HU] | 95th Percentile [HU] |
predicting on | 0 | 2 | 4 | 8 | 21 |
predicting on | 1 | 3 | 6 | 10 | 17 |
predicting on | 0 | 3 | 5 | 11 | 29 |
predicting on | 1 | 4 | 8 | 16 | 32 |
References
- Arabi, H.; Dowling, J.A.; Burgos, N.; Han, X.; Greer, P.B.; Koutsouvelis, N.; Zaidi, H. Comparative study of algorithms for synthetic CT generation from MRI: Consequences for MRI-guided radiation planning in the pelvic region. Med. Phys. 2018, 45, 5218–5233. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, E.; Wyatt, J.J.; Henry, A.M.; Short, S.C.; Sebag-Montefiore, D.; Murray, L.; Kelly, C.G.; McCallum, H.M.; Speight, R. Systematic review of synthetic computed tomography generation methodologies for use in magnetic resonance imaging–only radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 199–217. [Google Scholar] [CrossRef] [PubMed]
- Spadea, M.F.; Maspero, M.; Zaffino, P.; Seco, J. Deep learning based synthetic-CT generation in radiotherapy and PET: A review. Med. Phys. 2021, 48, 6537–6566. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, M.; Nunes, J.C.; Chourak, H.; Largent, A.; Tahri, S.; Acosta, O.; De Crevoisier, R.; Lafond, C.; Barateau, A. Deep learning methods to generate synthetic CT from MRI in radiotherapy: A literature review. Phys. Medica 2021, 89, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Dinkla, A.M.; Florkow, M.C.; Maspero, M.; Savenije, M.H.; Zijlstra, F.; Doornaert, P.A.; van Stralen, M.; Philippens, M.E.; van den Berg, C.A.; Seevinck, P.R. Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch-based three-dimensional convolutional neural network. Med. Phys. 2019, 46, 4095–4104. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, Y.; Wang, Y.; Wang, T.; Ren, L.; Lin, L.; McDonald, M.; Curran, W.J.; Liu, T.; Zhou, J.; et al. MRI-based treatment planning for proton radiotherapy: Dosimetric validation of a deep learning-based liver synthetic CT generation method. Phys. Med. Biol. 2019, 64, 145015. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, Y.; Wang, T.; Fu, Y.; Tang, X.; Curran, W.J.; Liu, T.; Patel, P.; Yang, X. CBCT-based synthetic CT generation using deep-attention cycleGAN for pancreatic adaptive radiotherapy. Med. Phys. 2020, 47, 2472–2483. [Google Scholar] [CrossRef]
- Maspero, M.; Savenije, M.H.; Dinkla, A.M.; Seevinck, P.R.; Intven, M.P.; Jurgenliemk-Schulz, I.M.; Kerkmeijer, L.G.; Van Den Berg, C.A. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy. Phys. Med. Biol. 2018, 63, 185001. [Google Scholar] [CrossRef]
- Maspero, M.; Bentvelzen, L.G.; Savenije, M.H.; Guerreiro, F.; Seravalli, E.; Janssens, G.O.; van den Berg, C.A.; Philippens, M.E. Deep learning-based synthetic CT generation for paediatric brain MR-only photon and proton radiotherapy. Radiother. Oncol. 2020, 153, 197–204. [Google Scholar] [CrossRef]
- Dai, X.; Lei, Y.; Wynne, J.; Janopaul-Naylor, J.; Wang, T.; Roper, J.; Curran, W.J.; Liu, T.; Patel, P.; Yang, X. Synthetic CT-aided multiorgan segmentation for CBCT-guided adaptive pancreatic radiotherapy. Med. Phys. 2021, 48, 7063–7073. [Google Scholar] [CrossRef]
- Gao, L.; Xie, K.; Wu, X.; Lu, Z.; Li, C.; Sun, J.; Lin, T.; Sui, J.; Ni, X. Generating synthetic CT from low-dose cone-beam CT by using generative adversarial networks for adaptive radiotherapy. Radiat. Oncol. 2021, 16, 202. [Google Scholar] [CrossRef] [PubMed]
- Kazemifar, S.; McGuire, S.; Timmerman, R.; Wardak, Z.; Nguyen, D.; Park, Y.; Jiang, S.; Owrangi, A. MRI-only brain radiotherapy: Assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approach. Radiother. Oncol. 2019, 136, 56–63. [Google Scholar] [CrossRef] [PubMed]
- van Elmpt, W.; Taasti, V.T.; Redalen, K.R. Current and future developments of synthetic computed tomography generation for radiotherapy. Phys. Imaging Radiat. Oncol. 2023, 28, 100521. [Google Scholar] [CrossRef]
- Hemsley, M.; Chugh, B.; Ruschin, M.; Lee, Y.; Tseng, C.L.; Stanisz, G.; Lau, A. Deep generative model for synthetic-CT generation with uncertainty predictions. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, 4–8 October 2020; Proceedings, Part I 23. Springer: Cham, Switzerland, 2020; pp. 834–844. [Google Scholar]
- Li, X.; Bellotti, R.; Meier, G.; Bachtiary, B.; Weber, D.; Lomax, A.; Buhmann, J.; Zhang, Y. Uncertainty-aware MR-based CT synthesis for robust proton therapy planning of brain tumour. Radiother. Oncol. 2024, 191, 110056. [Google Scholar] [CrossRef] [PubMed]
- Galapon, A.V., Jr.; Thummerer, A.; Langendijk, J.A.; Wagenaar, D.; Both, S. Feasibility of Monte Carlo dropout-based uncertainty maps to evaluate deep learning-based synthetic CTs for adaptive proton therapy. Med. Phys. 2024, 51, 2499–2509. [Google Scholar] [CrossRef]
- Thummerer, A.; Zaffino, P.; Meijers, A.; Marmitt, G.G.; Seco, J.; Steenbakkers, R.J.; Langendijk, J.A.; Both, S.; Spadea, M.F.; Knopf, A.C. Comparison of CBCT based synthetic CT methods suitable for proton dose calculations in adaptive proton therapy. Phys. Med. Biol. 2020, 65, 095002. [Google Scholar] [CrossRef]
- Thummerer, A.; De Jong, B.A.; Zaffino, P.; Meijers, A.; Marmitt, G.G.; Seco, J.; Steenbakkers, R.J.; Langendijk, J.A.; Both, S.; Spadea, M.F.; et al. Comparison of the suitability of CBCT-and MR-based synthetic CTs for daily adaptive proton therapy in head and neck patients. Phys. Med. Biol. 2020, 65, 235036. [Google Scholar] [CrossRef]
- Spadea, M.F.; Pileggi, G.; Zaffino, P.; Salome, P.; Catana, C.; Izquierdo-Garcia, D.; Amato, F.; Seco, J. Deep convolution neural network (DCNN) multiplane approach to synthetic CT generation from MR images—Application in brain proton therapy. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 495–503. [Google Scholar] [CrossRef]
- Zaffino, P.; Ciardo, D.; Raudaschl, P.; Fritscher, K.; Ricotti, R.; Alterio, D.; Marvaso, G.; Fodor, C.; Baroni, G.; Amato, F.; et al. Multi atlas based segmentation: Should we prefer the best atlas group over the group of best atlases? Phys. Med. Biol. 2018, 63, 12NT01. [Google Scholar] [CrossRef]
- Simonyan, K. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2016; pp. 770–778. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 8–14 December 2019; pp. 8026–8037. [Google Scholar]
- Hoffmann, A.; Oborn, B.; Moteabbed, M.; Yan, S.; Bortfeld, T.; Knopf, A.; Fuchs, H.; Georg, D.; Seco, J.; Spadea, M.F.; et al. MR-guided proton therapy: A review and a preview. Radiat. Oncol. 2020, 15, 129. [Google Scholar] [CrossRef] [PubMed]
Pipeline | Low MAE | Medium-Low MAE | Medium-High MAE | High MAE |
---|---|---|---|---|
MR | 0–47 (classification) | 47–54 (classification) | 54–68 (classification) | 68–100 (classification) |
0–52 (regression) | 42–59 (regression) | 49–73 (regression) | 63–100 (regression) | |
CBCT | 0–27 (classification) | 27–32 (classification) | 32–42 (classification) | 42–70 (classification) |
0–32 (regression) | 22–37 (regression) | 27–47 (regression) | 37–70 (regression) | |
MIXED | 0–32 (classification) | 32–44 (classification) | 44–56 (classification) | 56–90 (classification) |
0–37 (regression) | 27–49 (regression) | 39–61 (regression) | 51–90 (regression) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaffino, P.; Raggio, C.B.; Thummerer, A.; Marmitt, G.G.; Langendijk, J.A.; Procopio, A.; Cosentino, C.; Seco, J.; Knopf, A.C.; Both, S.; et al. Toward Closing the Loop in Image-to-Image Conversion in Radiotherapy: A Quality Control Tool to Predict Synthetic Computed Tomography Hounsfield Unit Accuracy. J. Imaging 2024, 10, 316. https://doi.org/10.3390/jimaging10120316
Zaffino P, Raggio CB, Thummerer A, Marmitt GG, Langendijk JA, Procopio A, Cosentino C, Seco J, Knopf AC, Both S, et al. Toward Closing the Loop in Image-to-Image Conversion in Radiotherapy: A Quality Control Tool to Predict Synthetic Computed Tomography Hounsfield Unit Accuracy. Journal of Imaging. 2024; 10(12):316. https://doi.org/10.3390/jimaging10120316
Chicago/Turabian StyleZaffino, Paolo, Ciro Benito Raggio, Adrian Thummerer, Gabriel Guterres Marmitt, Johannes Albertus Langendijk, Anna Procopio, Carlo Cosentino, Joao Seco, Antje Christin Knopf, Stefan Both, and et al. 2024. "Toward Closing the Loop in Image-to-Image Conversion in Radiotherapy: A Quality Control Tool to Predict Synthetic Computed Tomography Hounsfield Unit Accuracy" Journal of Imaging 10, no. 12: 316. https://doi.org/10.3390/jimaging10120316
APA StyleZaffino, P., Raggio, C. B., Thummerer, A., Marmitt, G. G., Langendijk, J. A., Procopio, A., Cosentino, C., Seco, J., Knopf, A. C., Both, S., & Spadea, M. F. (2024). Toward Closing the Loop in Image-to-Image Conversion in Radiotherapy: A Quality Control Tool to Predict Synthetic Computed Tomography Hounsfield Unit Accuracy. Journal of Imaging, 10(12), 316. https://doi.org/10.3390/jimaging10120316