An Efficient CNN-Based Method for Intracranial Hemorrhage Segmentation from Computerized Tomography Imaging
Abstract
:1. Introduction
1.1. Introduction to Traumatic Brain Injury
1.2. Diagnostic Approaches to Traumatic Brain Injury
1.3. Advanced Imaging Techniques and the Role of Deep Learning
2. Proposed Method
2.1. Overview of the Proposed Method
2.2. Dataset
2.3. Deep-Learning-Based Intracranial Hemorrhage Segmentation
2.4. Data Augmentation
3. Experimental Results
3.1. Performance Measurement Metrics
3.2. Experimental Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nolan, S. Traumatic brain injury: A review. Crit. Care Nurs. Q. 2005, 28, 188–194. [Google Scholar] [CrossRef]
- Rao, V.; Lyketsos, C. Neuropsychiatric sequelae of traumatic brain injury. Psychosomatics 2000, 41, 95–103. [Google Scholar] [CrossRef]
- Ayaz, H.; Izzetoglu, M.; Izzetoglu, K.; Onaral, B.; Dor, B.B. Early diagnosis of traumatic intracranial hematomas. J. Biomed. Opt. 2019, 24, 051411. [Google Scholar] [CrossRef]
- Ho, M.-L.; Rojas, R.; Eisenberg, R.L. Cerebral edema. Am. J. Roentgenol. 2012, 199, W258–W273. [Google Scholar] [CrossRef]
- Rehder, D. Idiopathic intracranial hypertension: A review of clinical syndrome, imaging findings, and treatment. Curr. Probl. Diagn. Radiol. 2020, 49, 205–214. [Google Scholar] [CrossRef]
- Fisher, C.M. Brain herniation: A revision of classical concepts. Can. J. Neurol. Sci. 1995, 22, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Konstas, A.-A.; Bateman, B.; Ortolano, G.A.; Spellman, J.P. Reperfusion injury following cerebral ischemia: Pathophysiology, MR imaging, and potential therapies. Neuroradiology 2007, 49, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, A.; Vijayakumar, P.; Nappi, M.; Sadiq, S.; Umer, M. COVID-19: Automatic detection of the novel coronavirus disease from CT images using an optimized convolutional neural network. IEEE Trans. Ind. Inform. 2021, 17, 6480–6488. [Google Scholar] [CrossRef] [PubMed]
- Vasilakakis, M.; Iosifidou, V.; Fragkaki, P.; Iakovidis, D. Bone fracture identification in X-ray images using fuzzy wavelet features. In Proceedings of the 19th IEEE International Conference on Bioinformatics and Bioengineering (BIBE), Athens, Greece, 28–30 October 2019; pp. 726–730. [Google Scholar]
- Nguyen, D.T.; Pham, T.D.; Batchuluun, G.; Yoon, H.; Park, K.R. Artificial intelligence-based thyroid nodule classification using information from spatial and frequency domains. J. Clin. Med. 2019, 8, 1976. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, W.H.; Osman, A.; Mohamed, Y.I. MRI brain image classification using neural networks. In Proceedings of the International Conference on Computing, Electrical and Electronics Engineering, Khartoum, Sudan, 26–28 August 2013; pp. 253–258. [Google Scholar]
- Jacobs, B.; Beems, T.; Stulemeijer, M.; van Vugt, A.B.; van der Vliet, T.M.; Borm, G.F.; Vos, P.E. Outcome prediction in mild traumatic brain injury: Age and clinical variables are stronger predictors than CT abnormalities. J. Neurotrauma 2010, 27, 655–668. [Google Scholar] [CrossRef] [PubMed]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef]
- Kuo, W.; Häne, C.; Mukherjee, P.; Malik, J.; Yuh, E.L. Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proc. Natl. Acad. Sci. USA 2019, 116, 22737–22745. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Li, Z.; Tu, W.; Zhu, Y. Computed tomography image segmentation of irregular cerebral hemorrhage lesions based on improved U-Net. J. Radiat. Res. Appl. Sci. 2023, 16, 100638. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Van den Heuvel, T.; van der Eerden, A.; Manniesing, R.; Ghafoorian, M.; Tan, T.; Andriessen, T.; Vyvere, T.V.; Hauwe, L.v.D.; Romeny, B.t.H.; Goraj, B.; et al. Automated detection of cerebral microbleeds in patients with traumatic brain injury. NeuroImage Clin. 2016, 12, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Hssayeni, M.; Croock, M.; Salman, A.; Al-khafaji, H.; Yahya, Z.; Ghoraani, B. Computed tomography images for intracranial hemorrhage detection and segmentation. Intracranial Hemorrhage Segmentation Using a Deep Convolutional Model. Data 2020, 5, 14. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; U-net, T.B. Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI), Singapore, 18–22 September 2022. [Google Scholar]
- Elpeltagy, M.; Sallam, H. Automatic prediction of COVID-19 from chest images using modified ResNet50. Multimed. Tools Appl. 2021, 80, 26451–26463. [Google Scholar] [CrossRef] [PubMed]
- Yap, M.H.; Pons, G.; Marti, J.; Ganau, S.; Sentis, M.; Zwiggelaar, R.; Davison, A.K.; Marti, R. Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J. Biomed. Health Inform. 2017, 22, 1218–1226. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Yu, F.; Wang, D.; Shelhamer, E.; Darrell, T. Deep layer aggregation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2403–2412. [Google Scholar]
- Hoang, Q.T.; Pham, X.H.; Le, A.V.; Bui, T.T. Artificial Intelligence-Based Breast Nodule Segmentation Using Multi-Scale Images and Convolutional Network. KSII Trans. Internet Inf. Syst. 2023, 17, 678–699. [Google Scholar]
- Malhotra, R.; Meena, S. Empirical validation of cross-version and 10-fold cross-validation for defect prediction. In Proceedings of the 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 4–6 August 2021; IEEE: New York, NY, USA, 2021; pp. 431–438. [Google Scholar]
- Prabakaran, V.; Le, A.V.; Kyaw, P.T.; Kandasamy, P.; Paing, A.; Mohan, R.E. sTetro-D: A deep learning based autonomous descending-stair cleaning robot. Eng. Appl. Artif. Intell. 2023, 120, 105844. [Google Scholar] [CrossRef]
- Gollapudi, S.; Gollapudi, S. OpenCV with Python. In Learn Computer Vision Using OpenCV: With Deep Learning CNNs and RNNs; Apress: Berkeley, CA, USA, 2019; pp. 31–50. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Liang, J. Image classification based on RESNET. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; Volume 1634, p. 012110. [Google Scholar]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. arXiv 2018, arXiv:1807.10165. Available online: https://arxiv.org/abs/1807.10165 (accessed on 2 March 2023).
- HYU-ICH-SEGNET. Available online: http://fme.utehy.edu.vn/AI_lab (accessed on 20 December 2023).
Number of Patients (Number of CT Scans) | Number of Cases Diagnosed with Intracerebral Hemorrhage | Number of Cases Diagnosed with Skull Fracture | Total Number of Slices | CT Scan’s Average Slices |
---|---|---|---|---|
75 | 36 | 22 | 2814 | 30 |
Method | Subtype | |||||
---|---|---|---|---|---|---|
Epidural | Intraparenchymal | Intraventricular | Subarachnoid | Subdural | Total | |
Original | 173 | 73 | 24 | 18 | 56 | 318 |
Horizontal flip | 24 | 18 | ||||
Vertical flip | 24 | 18 | ||||
Increase brightness 10% | 73 | 24 | 18 | 56 | ||
Decrease brightness 10% | 24 | 18 | 56 | |||
Rotation 10 degrees | 73 | 24 | 18 | 56 | ||
Rotation −5 degrees | 24 | 18 | ||||
Total | 173 | 219 | 168 | 126 | 224 | 832 |
Method | Recall | Precision | F1-Score |
---|---|---|---|
Residual U-Net [19] | 98.75 ± 0.20 | 94.31 ± 8.86 | 96.42 ± 5.14 |
FCN-AlexNet [21] | 90.81 ± 3.68 | 86.03 ± 3.77 | 88.35 ± 3.73 |
FRCNN [21] | 91.40 ± 3.68 | 93.72 ± 3.80 | 92.56 ± 3.74 |
UNet++ [30] | 98.69 ± 0.08 | 92.51 ± 6.38 | 95.43 ± 5.34 |
Ours | 99.32 ± 0.02 | 94.35 ± 4.40 | 96.72 ± 2.46 |
Method | IOU Score | Specificity | Accuracy |
---|---|---|---|
Residual U-Net [19] | 74.56 ± 5.35 | 98.00 ± 0.71 | 95.76 ± 0.26 |
UNet++ [30] | 68.04 ± 3.02 | 96.41 ± 0.89 | 95.07 ± 0.68 |
Ours | 80.75 ± 3.05 | 98.17 ± 0.78 | 96.06 ± 0.04 |
Method | IOU-0.9 | Specificity | Accuracy |
---|---|---|---|
Year > 18 | 77.30 | 98.00 | 95.63 |
Year < 18 | 90.48 | 98.41 | 96.76 |
Male | 80.00 | 98.72 | 95.26 |
Female | 80.75 | 98.17 | 96.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang, Q.T.; Pham, X.H.; Trinh, X.T.; Le, A.V.; Bui, M.V.; Bui, T.T. An Efficient CNN-Based Method for Intracranial Hemorrhage Segmentation from Computerized Tomography Imaging. J. Imaging 2024, 10, 77. https://doi.org/10.3390/jimaging10040077
Hoang QT, Pham XH, Trinh XT, Le AV, Bui MV, Bui TT. An Efficient CNN-Based Method for Intracranial Hemorrhage Segmentation from Computerized Tomography Imaging. Journal of Imaging. 2024; 10(4):77. https://doi.org/10.3390/jimaging10040077
Chicago/Turabian StyleHoang, Quoc Tuan, Xuan Hien Pham, Xuan Thang Trinh, Anh Vu Le, Minh V. Bui, and Trung Thanh Bui. 2024. "An Efficient CNN-Based Method for Intracranial Hemorrhage Segmentation from Computerized Tomography Imaging" Journal of Imaging 10, no. 4: 77. https://doi.org/10.3390/jimaging10040077
APA StyleHoang, Q. T., Pham, X. H., Trinh, X. T., Le, A. V., Bui, M. V., & Bui, T. T. (2024). An Efficient CNN-Based Method for Intracranial Hemorrhage Segmentation from Computerized Tomography Imaging. Journal of Imaging, 10(4), 77. https://doi.org/10.3390/jimaging10040077