An Arduino-Powered Device for the Study of White Perception beyond the Visual Chromatic Critical Flicker Fusion Frequency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chromatic Critical Flicker Fusion Frequency Device
2.2. Ocular Wavefront
2.3. Photo-Stress Recovery Time
2.4. Chromatic Critical Flicker Fusion Frequency
2.5. Participants and Experimental Protocol
2.6. Statistical Analysis
3. Results
3.1. Chromatic Critical Flicker Fusion Frequency
3.2. cCFF and Photo-Stress Recovery Time
3.3. Influence of the Optical Quality of the Eye on cCFF
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Snow, Z.E. Visual Acuity as a Measurement of Visual Function. Methods Mol. Biol. 2023, 2560, 141–144. [Google Scholar] [PubMed]
- Bennett, C.R.; Bex, P.J.; Bauer, C.M.; Merabet, L.B. The Assessment of Visual Function and Functional Vision. Semin. Pediatr. Neurol. 2019, 31, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Lennie, P. The physiological basis of variations in visual latency. Vis. Res. 1981, 21, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Coltheart, M. The persistences of vision. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1980, 290, 57–69. [Google Scholar]
- Wutz, A.; Muschter, E.; van Koningsbruggen, M.G.; Weisz, N.; Melcher, D. Temporal Integration Windows in Neural Processing and Perception Aligned to Saccadic Eye Movements. Curr. Biol. 2016, 26, 1659–1668. [Google Scholar] [CrossRef] [PubMed]
- Borghuis, B.G.; Tadin, D.; Lankheet, M.J.M.; Lappin, J.S.; van de Grind, W.A. Temporal Limits of Visual Motion Processing: Psychophysics and Neurophysiology. Vision 2019, 3, 5. [Google Scholar] [CrossRef]
- Bowling, A.; Lovegrove, W. Two components to visible persistence: Effects of orientation and contrast. Vis. Res. 1981, 21, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Yeonan-Kim, J.; Francis, G. Retinal spatiotemporal dynamics on emergence of visual persistence and afterimages. Psychol. Rev. 2019, 126, 374–394. [Google Scholar] [CrossRef]
- Gibbon, J.; Malapani, C.; Dale, C.L.; Gallistel, C.R. Toward a neurobiology of temporal cognition: Advances and challenges. Curr. Opin. Neurobiol. 1997, 7, 170–184. [Google Scholar] [CrossRef]
- Melcher, D.; Wutz, A.; Drewes, J.; Fairhall, S. The role of temporal integration windows in visual perception. Procedia-Soc. Behav. Sci. 2014, 126, 92–93. [Google Scholar] [CrossRef]
- Chokron, S.; Kovarski, K.; Dutton, G.N. Cortical Visual Impairments and Learning Disabilities. Front. Hum. Neurosci. 2021, 15, 713316. [Google Scholar] [CrossRef] [PubMed]
- Muth, T.; Schipke, J.D.; Brebeck, A.K.; Dreyer, S. Assessing Critical Flicker Fusion Frequency: Which Confounders? A Narrative Review. Medicina 2023, 59, 800. [Google Scholar] [CrossRef] [PubMed]
- Brenton, R.S.; Thompson, H.S.; Maxner, C. Critical flicker frequency: A new look at an old test. In New Methods of Sensory Visual Testing; Springer: New York, NY, USA, 1989; pp. 29–52. [Google Scholar]
- Titcombe, A.F.; Willison, R.G. Flicker fusion in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 1961, 24, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Daley, M.L.; Swank, R.L.; Ellison, C.M. Flicker fusion thresholds in multiple sclerosis: A functional measure of neurological damage. Arch. Neurol. 1979, 36, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Brandt, A.U.; Martinez-Lapiscina, E.H.; Nolan, R.; Saidha, S. Monitoring the course of MS with optical coherence tomography. Curr. Treat. Options Neurol. 2017, 19, 15. [Google Scholar] [CrossRef] [PubMed]
- Galvin, R.J.; Regan, D.; Heron, H.R. Impaired temporal resolution of vision after acute retrobulbar neuritis. Brain 1976, 99, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Wang, Y.; Tan, S.; Xu, G.; Zhou, H.; Xu, Q.; Wei, S. The clinical application of critical flicker fusion frequency in demyelinating optic neuritis. Adv. Opthalamol. Pract. Res. 2021, 1, 100011. [Google Scholar] [CrossRef] [PubMed]
- Prabu, K.; Omprakash, A.; Kuppusamy, M.; Maruthy, K.N.; Sathiyasekaran, B.W.C.; Vijayaraghavan, P.V.; Ramaswamy, P. How does cognitive function measured by the reaction time and critical flicker fusion frequency correlate with the academic performance of students? BMC Med. Educ. 2020, 20, 507. [Google Scholar]
- Piispanen, W.W.; Lundell, R.V.; Tuominen, L.J.; Räisänen-Sokolowski, A.K. Assessment of Alertness and Cognitive Performance of Closed Circuit Rebreather Divers With the Critical Flicker Fusion Frequency Test in Arctic Diving Conditions. Front. Physiol. 2021, 12, 722915. [Google Scholar] [CrossRef]
- Gegenfurtner, K.R. Cortical mechanisms of colour vision. Nat. Rev. Neurosci. 2003, 4, 563–572. [Google Scholar] [CrossRef]
- Lee, B.B. Paths to colour in the retina. Clin. Exp. Optom. 2004, 87, 239–248. [Google Scholar] [CrossRef]
- McKeefry, D.J.; Murray, I.J.; Kulikowski, J.J. Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation. Vis. Res. 2001, 41, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Gregori, B.; Papazachariadis, O.; Farruggia, A.; Accornero, N. A differential color flicker test for detecting acquired color vision impairment in multiple sclerosis and diabetic retinopathy. J. Neurol. Sci. 2011, 300, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Luo, Y.; Qi, H.; Liu, S.; Fu, J.; Ye, Z.; Li, Z. Trichromatic critical flicker frequency as potential visual test in cataract and macula disease patients. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 262, 2171–2179. [Google Scholar] [CrossRef]
- Teikari, P.; Najjar, R.P.; Malkki, H.; Knoblauch, K.; Dumortier, D.; Gronfier, C.; Cooper, H.M. An inexpensive Arduino-based LED stimulator system for vision research. J. Neurosci. Methods 2012, 211, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.D.; Lane, K.; Hollander, D.A.; Shapiro, A.; Saigal, S.; Hertsenberg, A.J.; Wallstrom, G.; Narayanan, D.; Angjeli, E.; Abelson, M.B. Cone photoreceptor macular function and recovery after photostress in early non-exudative age-related macular degeneration. Clin. Ophthalmol. 2018, 12, 1325–1335. [Google Scholar] [CrossRef]
- Avila, F.; Casado, P. Optical instrument for the study of time recovery from total disability glare. Appl. Opt. 2022, 61, 2348–2443. [Google Scholar]
- Nelson, T.M.; Bartley, S.H. The Talbot-Plateau law and the brightness of restricted numbers of photic repetitions at CFF. Vision Res. 1964, 4, 403–411. [Google Scholar] [CrossRef]
- Greene, E.; Morrison, J. Evaluating the Talbot-Plateau law. Front. Neurosci. 2023, 27, 1169162. [Google Scholar] [CrossRef]
- Eisen-Enosh, A.; Farah, N.; Burgansky-Eliash, Z.; Polat, U.; Mandel, Y. Evaluation of Critical Flicker-Fusion Frequency Measurement Methods for the Investigation of Visual Temporal Resolution. Sci. Rep. 2017, 7, 15621. [Google Scholar] [CrossRef]
- Liu, M.; Yan, Y.; Xue, Q.; Gong, L. The research and analysis factors affecting critical flicker frequency. Procedia Manuf. 2015, 3, 4279–4286. [Google Scholar] [CrossRef]
- Wokwi. Arduino (8-Bit AVR) Simulator, 2024, Github Repository. Available online: https://github.com/wokwi/avr8js (accessed on 17 May 2024).
- Sullivan, G.M.; Feinn, R. Using Effect Size-or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.B.; Martin, P.R.; Grünert, U. Retinal connectivity and primate vision. Prog. Retin. Eye Res. 2010, 29, 622–639. [Google Scholar] [CrossRef] [PubMed]
- Hugrass, L.; Verhellen, T.; Morrall-Earney, E.; Mallon, C.; Crewther, D.P. The effects of red surrounds on visual magnocellular and parvocellular cortical processing and perception. J. Vis. 2018, 18, 8. [Google Scholar] [CrossRef] [PubMed]
- Davison, P.; Akkali, M.; Loughman, J.; Scanlon, G.; Nolan, J.; Beatty, S. Macular Pigment: Its Associations with Color Discrimination and Matching. Optom. Vis. Sci. 2011, 88, 816–822. [Google Scholar] [CrossRef] [PubMed]
- D’Ausilio, A. Arduino: A low-cost multipurpose lab equipment. Behav. Res. Methods 2012, 44, 305–313. [Google Scholar] [CrossRef]
- Solomon, S.G.; Lee, B.B.; White, A.J.; Rüttiger, L.; Martin, P.R. Chromatic organization of ganglion cell receptive fields in the peripheral retina. J. Neurosci. 2005, 25, 4527–4539. [Google Scholar] [CrossRef] [PubMed]
- Skottun, B.C. On using very high temporal frequencies to isolate magnocellular contributions to psychophysical tasks. Neuropsychologia 2013, 51, 1556–1560. [Google Scholar] [CrossRef] [PubMed]
- Skottun, B.C. A few words on differentiating magno- and parvocellular contributions to vision on the basis of temporal frequency. Neurosci. Biobehav. Rev. 2016, 71, 756–760. [Google Scholar] [CrossRef]
- Stringham, J.M.; Garcia, P.V.; Smith, P.A.; McLin, L.N.; Foutch, B.K. Macular Pigment and Visual Performance in Glare: Benefits for Photostress Recovery, Disability Glare, and Visual Discomfort. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7406–7415. [Google Scholar] [CrossRef]
- Chande, P.K.; Raman, R.; John, P.; Srinivasan, S. Contrast-Sensitivity Function and Photo Stress-Recovery Time in Prediabetes. Clin. Optom. 2020, 12, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Aleci, C.; Belcastro, E. Parallel convergences: A glimpse to the magno- and parvocellular pathways in visual perception. World J. Res. Rev. 2015, 3, 34–42. [Google Scholar]
- Stringham, J.M.; Garcia, P.V.; Smith, P.A.; Hiers, P.L.; McLin, L.N.; Kuyk, T.K.; Foutch, B.K. Macular Pigment and Visual Performance in Low-Light Conditions. Investig. Ophthalmol. Vis. Sci. 2015, 56, 2459–2468. [Google Scholar] [CrossRef] [PubMed]
- Shneor, E.; Piñero, D.; Doron, R. Contrast sensitivity and higher-order aberrations in Keratoconus subjects. Sci. Rep. 2021, 11, 12971. [Google Scholar] [CrossRef]
- Zhao, J.; Xiao, F.; Zhao, H.; Dai, Y.; Zhang, Y. Effect of higher-order aberrations and intraocular scatter on contrast sensitivity measured with a single instrument. Biomed. Opt. Express 2017, 8, 2138–2147. [Google Scholar] [CrossRef] [PubMed]
- Peñaloza, B.; Ogmen, H. Effects of spatial attention on spatial and temporal acuity: A computational account. Atten. Percept. Psychophys. 2022, 84, 1886–1900. [Google Scholar] [CrossRef] [PubMed]
- Mankowska, N.D.; Marcinkowska, A.B.; Waskow, M.; Sharma, R.I.; Kot, J.; Winklewski, P.J. Critical Flicker Fusion Frequency: A Narrative Review. Medicina 2021, 57, 1096. [Google Scholar] [CrossRef]
- Sheer, D.E. Focused arousal and the cognitive 40-hz event-related potentials: Differential diagnosis of Alzheimer’s disease. Progress Clin. Biol. Res. 1989, 317, 79–94. [Google Scholar]
- Agger, M.P.; Danielsen, E.R.; Carstensen, M.S.; Nguyen, N.M.; Horning, M.; Henney, M.A.; Jensen, C.B.R.; Baandrup, A.O.; Kjær, T.W.; Madsen, K.H.; et al. Safety, Feasibility, and Potential Clinical Efficacy of 40 Hz Invisible Spectral Flicker versus Placebo in Patients with Mild-to-Moderate Alzheimer’s Disease: A Randomized, Placebo-Controlled, Double-Blinded, Pilot Study. J. Alzheimers Dis. 2023, 92, 653–665. [Google Scholar] [CrossRef] [PubMed]
Arduino Sketch |
---|
int redPin = 9; |
int redPin = 10; |
int redPin = 10; |
void setup () { |
pinMode (redPin, OUTPUT); |
pinMode (greenPin, OUTPUT); |
pinMode (bluePin, OUTPUT); |
Serial. Begin(9600); |
} |
void loop () { |
int sensorValue (analogRead(A0)); |
Serial.println (sensorValue); |
SetColor (0,0,0); |
SetColor (255,0,0); |
delay (analogRead(A0)); |
SetColor (0,0,0); |
SetColor (0,255,0); |
delay (analogRead(A0)); |
SetColor (0,0,0); |
SetColor (0,0,255); |
delay (analogRead(A0)); |
} |
void SetColor (int Red, int Green, int Blue) |
{ |
analogWrite (redPin, red); |
analogWrite (greenPin, green); |
analogWrite (bluePin, blue); |
Parameter | Measure |
---|---|
Luminous intensity [red] | 2600 mcd |
Luminous intensity [green] | 2000 mcd |
Luminous intensity [blue] | 1800 mcd |
Viewing distance | 600 mm |
Ambient illumination | 200 Lux |
Eccentricity | Foveal vision |
CFF red | CFF for red stimulus (Hz) |
CFF green | CFF for green stimulus (Hz) |
CFF blue | CFF for blue stimulus (Hz) |
CFF achromatic | CFF for white light stimulus (Hz) |
Chromatic CFF (cCFF) | CFF for mixed red, green and blue lights |
Compared Stimuli | EVT | F | p | Cohen’s d |
---|---|---|---|---|
Achromatic vs. chromatic | 1 | 10.84 | 0.004 | 0.75 |
Red vs. green | 1 | 10.31 | 0.002 | 0.75 |
Red vs. chromatic | 1 | 15.74 | 0.003 | 0.92 |
Blue vs. chromatic | 1 | 9.46 | 0.021 | 0.76 |
Achromatic | RED | GREEN | BLUE | RGB | R/G | |
---|---|---|---|---|---|---|
PRT | p = 0.836 | p = 0.812 | p = 0.506 | p = 0.772 | p = 0.731 | p = 0.008 |
LOA RMS | HOA RMS | Coma | SA | Trefoil |
---|---|---|---|---|
2.12 ± 2.52 μm | 0.36 ± 0.17 μm | 0.21 ± 0.14 μm | 0.10 ± 0.07 μm | 0.18 ± 0.11 μm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ávila, F.J. An Arduino-Powered Device for the Study of White Perception beyond the Visual Chromatic Critical Flicker Fusion Frequency. J. Imaging 2024, 10, 163. https://doi.org/10.3390/jimaging10070163
Ávila FJ. An Arduino-Powered Device for the Study of White Perception beyond the Visual Chromatic Critical Flicker Fusion Frequency. Journal of Imaging. 2024; 10(7):163. https://doi.org/10.3390/jimaging10070163
Chicago/Turabian StyleÁvila, Francisco J. 2024. "An Arduino-Powered Device for the Study of White Perception beyond the Visual Chromatic Critical Flicker Fusion Frequency" Journal of Imaging 10, no. 7: 163. https://doi.org/10.3390/jimaging10070163
APA StyleÁvila, F. J. (2024). An Arduino-Powered Device for the Study of White Perception beyond the Visual Chromatic Critical Flicker Fusion Frequency. Journal of Imaging, 10(7), 163. https://doi.org/10.3390/jimaging10070163