Accurate Prostate Segmentation in Large-Scale Magnetic Resonance Imaging Datasets via First-in-First-Out Feature Memory and Multi-Scale Context Modeling
Abstract
:1. Introduction
- We introduce a novel multi-scale context modeling (MCM) module specifically designed for MRI prostate segmentation. This innovative module enhances pixel representation in boundary areas by minimizing the influence of irrelevant features, thereby improving segmentation results [33];
- We employed a first-in-first-out (FIFO) strategy to dynamically adjust the dataset-level feature vectors and select the optimal ones. This strategy enhances the segmentation accuracy, especially in the challenging apex and base regions of the prostate;
- We compiled data on 2175 prostate cases from 14 different local hospitals, constituting the largest private prostate dataset to date. The novelty, effectiveness, and robustness of the proposed model was validated using this dataset.
2. Dataset and Methods
2.1. Dataset
2.2. Methods
2.2.1. Architecture Overview
2.2.2. Context Modeling Module
2.2.3. First-in-First-Out Feature Update Strategy
2.2.4. Loss Function
2.2.5. Evaluation Metrics
3. Experiments and Results
3.1. Implementation Details
3.2. Result Visualization
3.3. Comparative Experiment
3.3.1. Quantitative Analysis
3.3.2. Qualitative Evaluation
3.4. Ablation Study
3.4.1. Hyper-Parameter Ablation Study
3.4.2. Network Structure Ablation Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DRE | Digital Rectal Examination |
PSA | Prostate-Specific Antigen |
T2W | T2-Weighted |
MRI | Magnetic Resonance Imaging |
DWI | Diffusion-Weighted Imaging |
DCE | Dynamic Contrast-Enhanced |
EBRT | External Beam Radiation Therapy |
CNN | Convolutional Neural Networks |
FCN | Fully Convolutional Network |
ResNet | Residual Network |
ViT | Vision Transformer |
PMF-Net | Multi-Scale Fusion Network |
CC | Correlation Coefficient |
T1W | T1-Weighted |
UI | User Interface |
PACS | Picture Archiving and Communication Systems |
References
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef] [PubMed]
- James, N.D.; Tannock, I.; N’Dow, J.; Feng, F.; Gillessen, S.; Ali, S.A.; Trujillo, B.; Al-Lazikani, B.; Attard, G.; Bray, F.; et al. The Lancet Commission on prostate cancer: Planning for the surge in cases. Lancet 2024, 403, 1683–1722. [Google Scholar] [CrossRef] [PubMed]
- Bergengren, O.; Pekala, K.R.; Matsoukas, K.; Fainberg, J.; Mungovan, S.F.; Bratt, O.; Bray, F.; Brawley, O.; Luckenbaugh, A.N.; Mucci, L.; et al. 2022 Update on Prostate Cancer Epidemiology and Risk Factors—A Systematic Review. Eur. Urol. 2023, 84, 191–206. [Google Scholar] [CrossRef]
- Vikal, S.; Haker, S.; Tempany, C.; Fichtinger, G. Prostate contouring in MRI guided biopsy. Proc. SPIE Int. Soc. Opt. Eng. 2009, 7259, 72594a. [Google Scholar]
- Daly, T. Evolution of definitive external beam radiation therapy in the treatment of prostate cancer. World J. Urol. 2020, 38, 565–591. [Google Scholar] [CrossRef]
- D’Amico, A.V.; Whittington, R.; Malkowicz, S.B.; Schultz, D.; Blank, K.; Broderick, G.A.; Tomaszewski, J.E.; Renshaw, A.A.; Kaplan, I.; Beard, C.J.; et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998, 280, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Lemaître, G.; Martí, R.; Freixenet, J.; Vilanova, J.C.; Walker, P.M.; Meriaudeau, F. Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review. Comput. Biol. Med. 2015, 60, 8–31. [Google Scholar] [CrossRef] [PubMed]
- Hung, A.L.Y.; Zheng, H.; Miao, Q.; Raman, S.S.; Terzopoulos, D.; Sung, K. CAT-Net: A Cross-Slice Attention Transformer Model for Prostate Zonal Segmentation in MRI. IEEE Trans. Med. Imaging 2023, 42, 291–303. [Google Scholar] [CrossRef]
- Li, C.; Qiang, Y.; Sultan, R.I.; Bagher-Ebadian, H.; Khanduri, P.; Chetty, I.J.; Zhu, D. FocalUNETR: A Focal Transformer for Boundary-Aware Prostate Segmentation Using CT Images. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2023, Proceedings of the 26th International Conference, Vancouver, BC, Canada, 8–12 October 2023; Greenspan, H., Madabhushi, A., Mousavi, P., Salcudean, S., Duncan, J., Syeda-Mahmood, T., Taylor, R., Eds.; Springer: Cham, Switzerland, 2023; pp. 592–602. [Google Scholar]
- Gao, Q.; Rueckert, D.; Edwards, E. An Automatic Multi-Atlas Based Prostate Segmentation Using Local Appearance-Speci(cid:28)c Atlases and Patch-Based Voxel Weighting. In Proceedings of the MICCAI Grand Challenge: Prostate MR Image Segmentation, Nice, France, 1 October 2012; Available online: https://api.semanticscholar.org/CorpusID:12598986 (accessed on 9 February 2025).
- Chen, X.; Udupa, J.K.; Bagci, U.; Zhuge, Y.; Yao, J. Medical Image Segmentation by Combining Graph Cuts and Oriented Active Appearance Models. IEEE Trans. Image Process. 2012, 21, 2035–2046. [Google Scholar] [CrossRef] [PubMed]
- Grau, V.; Mewes, A.; Alcaniz, M.; Kikinis, R.; Warfield, S. Improved watershed transform for medical image segmentation using prior information. IEEE Trans. Med. Imaging 2004, 23, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Cairone, L.; Benfante, V.; Bignardi, S.; Marinozzi, F.; Yezzi, A.; Tuttolomondo, A.; Salvaggio, G.; Bini, F.; Comelli, A. Robustness of Radiomics Features to Varying Segmentation Algorithms in Magnetic Resonance Images. In Image Analysis and Processing. ICIAP 2022 Workshops, Proceedings of the ICIAP International Workshops, Lecce, Italy, 23–27 May 2022; Revised Selected Papers, Part I; Springer: Berlin/Heidelberg, Germany, 2022; pp. 462–472. [Google Scholar] [CrossRef]
- Ali, M.; Benfante, V.; Cutaia, G.; Salvaggio, L.; Rubino, S.; Portoghese, M.; Ferraro, M.; Corso, R.; Piraino, G.; Ingrassia, T.; et al. Prostate Cancer Detection: Performance of Radiomics Analysis in Multiparametric MRI. In Image Analysis and Processing-ICIAP 2023 Workshops, Proceedings of the ICIAP International Workshops, Udine, Italy, 11–15 September 2023; Foresti, G.L., Fusiello, A., Hancock, E., Eds.; Springer: Cham, Switzerland, 2024; pp. 83–92. [Google Scholar]
- Vieira, J.P.A.; Moura, R.S. An analysis of convolutional neural networks for sentence classification. In Proceedings of the 2017 XLIII Latin American Computer Conference (CLEI), Cordoba, Argentina, 4–8 September 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Chenarlogh, V.A.; Hassanpour, A.; Grolinger, K.; Parsa, V. Performance Analysis of Dilated One-to-Many U-Net Model for Medical Image Segmentation. IEEE Access 2024, 12, 197259–197274. [Google Scholar] [CrossRef]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef]
- Zaridis, D.I.; Mylona, E.; Tachos, N.; Kalantzopoulos, C.; Pezoulas, V.C.; Koutsouris, D.D.; Matsopoulos, G.K.; Marias, K.; Tsiknakis, M.; Fotiadis, D.I. Assessing the Robustness of nnU-Net in the Detection of Prostate Lesions via Bi-Parametric MRI. In Proceedings of the 2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology, St. Julians, Malta, 7–9 December 2023; pp. 33–34. [Google Scholar] [CrossRef]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2018 and 8th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2018 Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018; Stoyanov, D., Taylor, Z., Carneiro, G., Syeda-Mahmood, T., Martel, A., Maier-Hein, L., Tavares, J.M.R., Bradley, A., Papa, J.P., Belagiannis, V., et al., Eds.; Springer: Cham, Switzerland, 2018; pp. 3–11. [Google Scholar]
- Yu, M.; Pei, K.; Li, X.; Wei, X.; Wang, C.; Gao, J. FBCU-Net: A fine-grained context modeling network using boundary semantic features for medical image segmentation. Comput. Biol. Med. 2022, 150, 106161. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Müller, M.; Rios, A.; Sennrich, R. Why Self-Attention? A Targeted Evaluation of Neural Machine Translation Architectures. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J., Eds.; Association for Computational Linguistics: Brussels, Belgium, 2018; pp. 4263–4272. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems-NIPS’17, Red Hook, NY, USA, 4–7 December 2017; pp. 6000–6010. [Google Scholar]
- Santhirasekaram, A.; Winkler, M.; Rockall, A.; Glocker, B. Robust prostate disease classification using transformers with discrete representations. Int. J. CARS 2024, 20, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Yang, D.; Li, W.; Roth, H.; Landman, B.; Xu, D.; Nath, V.; Hatamizadeh, A. Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image Analysis. arXiv 2022, arXiv:2111.14791. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. arXiv 2021, arXiv:2103.14030. [Google Scholar]
- Zabihollahy, F.; Schieda, N.; Krishna Jeyaraj, S.; Ukwatta, E. Automated segmentation of prostate zonal anatomy on T2-weighted (T2W) and apparent diffusion coefficient (ADC) map MR images using U-Nets. Med. Phys. 2019, 46, 3078–3090. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Huang, M.; Zhang, Y.; Bai, Z. Automatic prostate and peri-prostatic fat segmentation based on pyramid mechanism fusion network for T2-weighted MRI. Comput. Methods Prog. Biomed. 2022, 223, 106918. [Google Scholar] [CrossRef] [PubMed]
- Donati, O.F.; Jung, S.I.; Vargas, H.A.; Gultekin, D.H.; Zheng, J.; Moskowitz, C.S.; Hricak, H.; Zelefsky, M.J.; Akin, O. Multiparametric Prostate MR Imaging with T2-weighted, Diffusion-weighted, and Dynamic Contrast-enhanced Sequences: Are All Pulse Sequences Necessary to Detect Locally Recurrent Prostate Cancer after Radiation Therapy? Radiology 2013, 268, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Su, J.; Wang, C.; Ci, H.; Wang, Y. Context Modeling in 3D Human Pose Estimation: A Unified Perspective. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 6234–6243. [Google Scholar] [CrossRef]
- Litjens, G.; Toth, R.; van de Ven, W.; Hoeks, C.; Kerkstra, S.; van Ginneken, B.; Vincent, G.; Guillard, G.; Birbeck, N.; Zhang, J.; et al. Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge. Med. Image Anal. 2014, 18, 359–373. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016, Proceedings of the 19th International Conference, Athens, Greece, 17–21 October 2016; Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W., Eds.; Springer: Cham, Switzerland, 2016; pp. 424–432. [Google Scholar]
Muticentre | MR Scanner | Shape | Spacing (mm3) | FOV (mm3) | Training Set | External Test Set | Total Cases |
---|---|---|---|---|---|---|---|
Center-1 * | GE SIGNA EXCITE | 512 × 512 × 16 | 0.625 × 0.625 × 6 | 320 × 320 × 96 | 1386 | 154 | 1540 |
GE Signa HDxt | 512 × 512 × 16 | 0.586 × 0.586 × 7 | 300 × 300 × 112 | ||||
GE Discovery MR750 | 512 × 512 × 16 | 0.547 × 0.547 × 4 | 280 × 280 × 64 | ||||
SIEMENS Verio | 256 × 256 × 20 | 0.781 × 0.781 × 3.6 | 200 × 200 × 72 | ||||
Center-2 | SIEMENS Skyra | 640 × 640 × 20 | 0.312 × 0.312 × 3.6 | 200 × 200 × 72 | 48 | 6 | 54 |
Center-3 | Philips Ingenia | 480 × 480 × 25 | 0.375 × 0.375 × 3.85 | 180 × 180 × 96 | 47 | 5 | 52 |
SIEMENS Avanto | 512 × 488 × 25 | 0.429 × 0.429 × 3.6 | 220 × 210 × 90 | ||||
Center-4 | SIEMENS Skyra | 640 × 640 × 24 | 0.359 × 0.359 × 5.5 | 230 × 230 × 132 | 60 | 7 | 67 |
Center-5 | SIEMENS Skyra | 640 × 640 × 20 | 0.375 × 0.375 × 4.2 | 240 × 240 × 84 | 84 | 9 | 93 |
Center-6 | GE Signa HDxt | 512 × 512 × 17 | 0.586 × 0.586 × 4.3 | 300 × 300 × 73 | 43 | 5 | 48 |
Philips Ingenia | 480 × 480 × 20 | 0.437 × 0.437 × 3.3 | 210 × 210 × 66 | ||||
Center-7 | UIH uMR uMR560 | 384 × 384 × 21 | 0.52 × 0.52 × 3.6 | 200 × 200 × 76 | 16 | 2 | 18 |
Center-8 | GE Signa | 512 × 512 × 22 | 0.391 × 0.391 × 3.5 | 200 × 200 × 77 | 48 | 6 | 54 |
GE Discovery MR750w | 512 × 512 × 24 | 0.469 × 0.469 × 3.5 | 240 × 240 × 84 | ||||
Center-9 | GE Discovery MR750w | 512 × 512 × 12 | 0.391 × 0.391 × 4.8 | 200 × 200 × 58 | 46 | 5 | 51 |
SIEMENS TrioTim | 320 × 320 × 16 | 0.719 × 0.719 × 4.4 | 230 × 230 × 70 | ||||
Center-10 | GE Signa HDxt | 512 × 512 × 20 | 0.566 × 0.566 × 4.4 | 290 × 290 × 88 | 12 | 2 | 14 |
Center-11 | GE Signa HDxt | 512 × 512 × 24 | 0.508 × 0.508 × 6.0 | 260 × 260 × 144 | 47 | 6 | 53 |
Center-12 | GE Signa HDxt | 512 × 512 × 20 | 0.469 × 0.469 × 4.0 | 240 × 240 × 80 | 44 | 5 | 49 |
Center-13 | SIEMENS Skyra | 320 × 320 × 20 | 0.75 × 0.75 × 3.85 | 240 × 240 × 77 | 57 | 6 | 63 |
Center-14 | SIEMENS Prisma | 320 × 320 × 30 | 0.812 × 0.812 × 5.2 | 260 × 260 × 156 | 17 | 2 | 19 |
UIH uMR 770 | 576 × 576 × 24 | 0.417 × 0.417 × 6 | 240 × 240 × 144 |
Method | Private | PROMISE12 | ||||||
---|---|---|---|---|---|---|---|---|
ASSD (voxel) | HD95 (voxel) | Jaccard (%) | DSC (%) | ASSD (voxel) | HD95 (voxel) | Jaccard (%) | DSC (%) | |
U-Net [17] | 5.07 | 18.86 | 61.85 | 76.43 | 2.61 | 7.89 | 70.45 | 81.34 |
U-Net++ [22] | 0.81 | 2.82 | 64.79 | 78.63 | 1.71 | 6.76 | 69.62 | 80.20 |
3D U-Net [36] | 0.79 | 1.41 | 68.37 | 81.21 | 1.95 | 6.68 | 71.51 | 82.91 |
Swin-UNet [28] | 0.85 | 2.23 | 75.24 | 85.87 | 1.32 | 4.73 | 70.89 | 82.43 |
Trans-UNet [25] | 0.83 | 3.31 | 71.01 | 83.05 | 1.51 | 6.86 | 72.74 | 83.72 |
nnU-Net [20,21] | 1.01 | 1.73 | 78.79 | 88.13 | 2.05 | 5.74 | 78.20 | 89.32 |
MCM-UNet | 0.58 | 1.80 | 83.17 | 91.71 | 1.07 | 3.02 | 81.58 | 90.47 |
Parameters | Prostate Segmentation | |||
---|---|---|---|---|
m | n | HD95 (voxel) | DSC (%) | Times (epoch/s) |
1 | 32 | 3.86 | 89.27 | 33.1 |
6 | 32 | 1.98 | 91.24 | 35.3 |
1 | 64 | 3.52 | 90.32 | 34.2 |
6 | 64 | 1.80 | 91.71 | 37.6 |
1 | 128 | 3.14 | 90.25 | 36.4 |
6 | 128 | 2.82 | 91.42 | 40.5 |
Backbone | CM | MB | DSC (%) |
---|---|---|---|
nnU-Net | 88.13 | ||
nnU-Net | ✔ | 88.62 | |
nnU-Net | ✔ | 89.21 | |
nnU-Net | ✔ | ✔ | 91.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Zhang, X.; Luo, X.; Zheng, Z.; Zhou, K.; Kang, Y.; Li, H.; Geng, D. Accurate Prostate Segmentation in Large-Scale Magnetic Resonance Imaging Datasets via First-in-First-Out Feature Memory and Multi-Scale Context Modeling. J. Imaging 2025, 11, 61. https://doi.org/10.3390/jimaging11020061
Zhu J, Zhang X, Luo X, Zheng Z, Zhou K, Kang Y, Li H, Geng D. Accurate Prostate Segmentation in Large-Scale Magnetic Resonance Imaging Datasets via First-in-First-Out Feature Memory and Multi-Scale Context Modeling. Journal of Imaging. 2025; 11(2):61. https://doi.org/10.3390/jimaging11020061
Chicago/Turabian StyleZhu, Jingyi, Xukun Zhang, Xiao Luo, Zhiji Zheng, Kun Zhou, Yanlan Kang, Haiqing Li, and Daoying Geng. 2025. "Accurate Prostate Segmentation in Large-Scale Magnetic Resonance Imaging Datasets via First-in-First-Out Feature Memory and Multi-Scale Context Modeling" Journal of Imaging 11, no. 2: 61. https://doi.org/10.3390/jimaging11020061
APA StyleZhu, J., Zhang, X., Luo, X., Zheng, Z., Zhou, K., Kang, Y., Li, H., & Geng, D. (2025). Accurate Prostate Segmentation in Large-Scale Magnetic Resonance Imaging Datasets via First-in-First-Out Feature Memory and Multi-Scale Context Modeling. Journal of Imaging, 11(2), 61. https://doi.org/10.3390/jimaging11020061