Recurrence Quantification Analysis for Scene Change Detection and Foreground/Background Segmentation in Videos
Abstract
:1. Introduction
2. Recurrence Quantification Analysis: Theoretical Framework
RQA for Image Analysis
3. Proposed Methodology
3.1. RQA for Foreground/Background Segmentation in Videos
3.2. RQA for Scene Change Detection
3.3. Parameter Settings
3.3.1. Tuning the Threshold
3.3.2. Selection of the Dimensionality D
3.3.3. Estimating the Time Delay
3.3.4. Tuning the Patch Size
4. Experimental Results
4.1. Dataset for Scene Change Detection
4.2. Results for Scene Change Detection
4.3. Dataset for Adaptive Foreground/Background Segmentation
4.4. Results for Adaptive Foreground/Background Segmentation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- 53 Important Statistics About How Much Data Is Created Every Day in 2024. Available online: https://financesonline.com/how-much-data-is-created-every-day/ (accessed on 24 December 2024).
- How Much Data is Generated Every Day (2024). Available online: https://whatsthebigdata.com/data-generated-every-day/ (accessed on 14 May 2024).
- Chakravarthi, B.; Verma, A.A.; Daniilidis, K.; Fermuller, C.; Yang, Y. Recent Event Camera Innovations: A Survey. arXiv 2024, arXiv:cs.CV/2408.13627. [Google Scholar]
- Gonzalez, H.A.; Huang, J.; Kelber, F.; Nazeer, K.K.; Langer, T.; Liu, C.; Lohrmann, M.; Rostami, A.; Schöne, M.; Vogginger, B.; et al. SpiNNaker2: A Large-Scale Neuromorphic System for Event-Based and Asynchronous Machine Learning. arXiv 2024, arXiv:cs.ET/2401.04491. [Google Scholar]
- Kundu, S.; Zhu, R.J.; Jaiswal, A.; Beerel, P.A. Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking Neural Networks: From Algorithms to Technology. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 13256–13260. [Google Scholar] [CrossRef]
- Kyprianidi, T.; Doutsi, E.; Tzagkarakis, G.; Tsakalides, P. Exploring the Potential of Recurrence Quantification Analysis for Video Analysis and Motion Detection. In Proceedings of the 2024 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 27–30 October 2024; pp. 2606–2612. [Google Scholar] [CrossRef]
- Kowdle, A.; Chen, T. Learning to segment a video to clips based on scene and camera motion. In Proceedings of the 12th European Conference on Computer Vision—Volume Part III; ECCV’12; Springer: Berlin/Heidelberg, Germany, 2012; pp. 272–286. [Google Scholar] [CrossRef]
- Salih, Y.; George, L.E. Dynamic Scene Change Detection in Video Coding. Int. J. Eng. 2020, 33, 966–974. [Google Scholar] [CrossRef]
- Rascioni, G.; Spinsante, S.; Gambi, E. An Optimized Dynamic Scene Change Detection Algorithm for H.264/AVC Encoded Video Sequences. Int. J. Digit. Multim. Broadcast. 2010, 2010, 864123:1–864123:9. [Google Scholar]
- Gangopadhyay, A.; Tripathi, S.M.; Jindal, I.; Raman, S. SA-CNN: Dynamic Scene Classification using Convolutional Neural Networks. arXiv 2015, arXiv:cs.CV/1502.05243. [Google Scholar]
- Peng, X.; Bouzerdoum, A.; Phung, S.L. A Trajectory-Based Method for Dynamic Scene Recognition. Int. J. Pattern Recognit. Artif. Intell. 2021, 35, 2150029. [Google Scholar] [CrossRef]
- Trinh, L.; Anwar, A.; Mercelis, S. SeaDSC: A video-based unsupervised method for dynamic scene change detection in unmanned surface vehicles. arXiv 2023, arXiv:cs.CV/2311.11580. [Google Scholar]
- Takens, F. Dynamical Systems and Turbulence, Warwick 1980; Springer: Berlin/Heidelberg, Germany, 1981; pp. 366–381. [Google Scholar]
- Eckmann, J.P.; Kamphorst, S.O.; Ruelle, D. Recurrence plots of dynamical systems. World Sci. Ser. Nonlinear Sci. Ser. A 1995, 16, 441–446. [Google Scholar]
- Marwan, N.; Webber, C.L., Jr. Mathematical and computational foundations of recurrence quantifications. In Recurrence Quantification Analysis: Theory and Best Practices; Springer: Cham, Switzerland, 2014; pp. 3–43. [Google Scholar]
- Zbilut, J.P.; Webber, C.L., Jr. Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 1992, 171, 199–203. [Google Scholar]
- Webber, C.L., Jr.; Zbilut, J.P. Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 1994, 76, 965–973. [Google Scholar] [PubMed]
- Marwan, N.; Wessel, N.; Meyerfeldt, U.; Schirdewan, A.; Kurths, J. Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys. Rev. E 2002, 66, 026702. [Google Scholar] [CrossRef] [PubMed]
- Marwan, N.; Kurths, J.; Saparin, P. Generalised recurrence plot analysis for spatial data. Phys. Lett. A 2007, 360, 545–551. [Google Scholar] [CrossRef]
- Wallot, S.; Roepstorff, A.; Mønster, D. Multidimensional Recurrence Quantification Analysis (MdRQA) for the analysis of multidimensional time-series: A software implementation in MATLAB and its application to group-level data in joint action. Front. Psychol. 2016, 7, 1835. [Google Scholar] [CrossRef] [PubMed]
- Zervou, M.A.; Tzagkarakis, G.; Tsakalides, P. Automated screening of dyslexia via dynamical recurrence analysis of wearable sensor data. In Proceedings of the 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), Athens, Greece, 28–30 October 2019; pp. 770–774. [Google Scholar]
- Chomiak, T. Recurrence quantification analysis statistics for image feature extraction and classification. Data-Enabled Discov. Appl. 2020, 4, 1–9. [Google Scholar]
- Kennel, M.B.; Brown, R.; Abarbanel, H.D. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403. [Google Scholar] [CrossRef] [PubMed]
- Vlachos, I.; Kugiumtzis, D. State Space Reconstruction from Multiple Time Series. In Topics on Chaotic Systems; World Scientific Publishing: Singapore, 2009; pp. 378–387. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, Y.; Xie, X.; Liu, W.; Deng, J.; Zhang, D.; Wang, Z.; Liu, J. Autoshot: A short video dataset and state-of-the-art shot boundary detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 2238–2247. [Google Scholar]
- Available online: http://imagelab.ing.unimore.it (accessed on 30 January 2025).
- Available online: https://www.bbc.co.uk/programmes/b006mywy (accessed on 30 January 2025).
- Tang, S.; Feng, L.; Kuang, Z.; Chen, Y.; Zhang, W. Fast video shot transition localization with deep structured models. In Proceedings of the Asian Conference on Computer Vision; Springer: Cham, Switzerland, 2018; pp. 577–592. [Google Scholar]
- Hassanien, A.; Elgharib, M.; Selim, A.; Bae, S.H.; Hefeeda, M.; Matusik, W. Large-scale, fast and accurate shot boundary detection through spatio-temporal convolutional neural networks. arXiv 2017, arXiv:1705.03281. [Google Scholar]
- Lokoč, J.; Kovalčík, G.; Souček, T.; Moravec, J.; Čech, P. A framework for effective known-item search in video. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 1777–1785. [Google Scholar]
- Soucek, T.; Lokoc, J. Transnet v2: An effective deep network architecture for fast shot transition detection. In Proceedings of the 32nd ACM International Conference on Multimedia, Melbourne, VIC, Australia, 28 October–1 November 2024; pp. 11218–11221. [Google Scholar]
- Baraldi, L.; Grana, C.; Cucchiara, R. Shot and scene detection via hierarchical clustering for re-using broadcast video. In Proceedings of the Computer Analysis of Images and Patterns: 16th International Conference, CAIP 2015, Valletta, Malta, 2–4 September 2015; Proceedings, Part I 16. Springer: Cham, Switzerland, 2015; pp. 801–811. [Google Scholar]
- Baraldi, L.; Grana, C.; Cucchiara, R. A deep siamese network for scene detection in broadcast videos. In Proceedings of the 23rd ACM international conference on Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 1199–1202. [Google Scholar]
- Soomro, K.; Roshan Zamir, A.; Shah, M. UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild. In Technical Report CRCV-TR-12-01; Center for Research and Computer Vision (CRCV) at University of Central Florida: Orlando, FL, USA, 2012. [Google Scholar]
- Perazzi, F.; Pont-Tuset, J.; McWilliams, B.; Gool, L.V.; Gross, M.; Sorkine-Hornung, A. A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation. In Proceedings of the The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
RAI | Autoshot | BBC | |||||||
---|---|---|---|---|---|---|---|---|---|
F1 | PRE | REC | F1 | PRE | REC | F1 | PRE | REC | |
mask9 | 0.823 | 0.961 | 0.719 | 0.750 | 0.789 | 0.714 | 0.778 | 0.982 | 0.645 |
mask7 | 0.832 | 0.948 | 0.741 | 0.762 | 0.790 | 0.737 | 0.781 | 0.981 | 0.648 |
mask5 | 0.835 | 0.939 | 0.752 | 0.757 | 0.750 | 0.765 | 0.783 | 0.972 | 0.655 |
mask3 | 0.829 | 0.912 | 0.760 | 0.747 | 0.709 | 0.790 | 0.776 | 0.935 | 0.662 |
mask2 | 0.588 | 0.475 | 0.719 | 0.529 | 0.393 | 0.809 | 0.547 | 0.464 | 0.664 |
(a) | |||
---|---|---|---|
Autoshot | RAI | BBC | |
15 | 15 | 15 | |
TP | 1894 | 740 | 4100 |
FP | 632 | 48 | 521 |
FN | 581 | 244 | 747 |
PRE | 0.749 | 0.939 | 0.887 |
REC | 0.765 | 0.752 | 0.846 |
F1 | 0.757 | 0.835 | 0.866 |
(b) | |||
Autoshot | RAI | BBC | |
15 | 15 | 18 | |
TP | 1748 | 782 | 4043 |
FP | 632 | 48 | 521 |
FN | 350 | 38 | 668 |
PRE | 0.734 | 0.934 | 0.885 |
REC | 0.833 | 0.947 | 0.858 |
F1 | 0.781 | 0.941 | 0.872 |
Method | Autoshot | RAI | BBC |
---|---|---|---|
Autoshot (2023) | 0.841 | 0.971 | 0.955 |
DSMs (2018) | 0.893 | 0.939 | |
ST ConvNets (2017) | 0.926 | 0.939 | |
TransNet (2019) | 0.929 | 0.943 | |
TransNetV2 (2024) | 0.962 | 0.939 | |
RQA | 0.781 | 0.941 | 0.872 |
Hierarchical clustering (2015) | 0.720 | ||
Deep Siamese Network (2015) | 0.620 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyprianidi, T.; Doutsi, E.; Tsakalides, P. Recurrence Quantification Analysis for Scene Change Detection and Foreground/Background Segmentation in Videos. J. Imaging 2025, 11, 113. https://doi.org/10.3390/jimaging11040113
Kyprianidi T, Doutsi E, Tsakalides P. Recurrence Quantification Analysis for Scene Change Detection and Foreground/Background Segmentation in Videos. Journal of Imaging. 2025; 11(4):113. https://doi.org/10.3390/jimaging11040113
Chicago/Turabian StyleKyprianidi, Theodora, Effrosyni Doutsi, and Panagiotis Tsakalides. 2025. "Recurrence Quantification Analysis for Scene Change Detection and Foreground/Background Segmentation in Videos" Journal of Imaging 11, no. 4: 113. https://doi.org/10.3390/jimaging11040113
APA StyleKyprianidi, T., Doutsi, E., & Tsakalides, P. (2025). Recurrence Quantification Analysis for Scene Change Detection and Foreground/Background Segmentation in Videos. Journal of Imaging, 11(4), 113. https://doi.org/10.3390/jimaging11040113