Face Anti-Spoofing Based on Adaptive Channel Enhancement and Intra-Class Constraint
Abstract
:1. Introduction
- (1)
- We propose a novel face anti-spoofing detection framework that integrates a dual strategy of feature enhancement and constraint optimization. This framework incorporates the Enhanced Channel Attention (ECA) module and the Intra-Class Differentiator (ICD) module, which dynamically adjust the importance of channel features and optimize sample distribution in the feature space, thereby enhancing the model’s discriminative power.
- (2)
- The ECA module integrates deep convolution with the Bottleneck Reconstruction Module (BRM) and a channel attention mechanism. By leveraging deep convolution to extract local spatial features and refining channel features through the BRM, the ECA module further enhances the representation of critical channels. The attention mechanism dynamically adjusts feature importance, enabling the model to distinguish live and spoofed samples more accurately.
- (3)
- The ICD module introduces intra-class compactness constraints and inter-class separability constraints to dynamically optimize sample distribution in the feature space. By minimizing intra-class variations and maximizing inter-class feature distances, the ICD module effectively refines classification boundaries. This significantly enhances the clustering of live samples and improves the model’s discriminative ability for spoofed samples.
2. Related Works
2.1. Face Anti-Spoofing
2.2. FAS Based on Global Feature Fusion
2.3. Feature Representation Learning
3. Method
3.1. The Overall Structure
3.2. The Enhanced Channel Attention ResNeXt Structure
3.3. Feature Constraint
Algorithm 1: Training Algorithm for the ECN Network Model |
Input: |
Dataset: Mixed dataset containing live and spoofed samples. |
Model: Network architecture with ECA and ICD modules. |
Optimizer: SGD (momentum = 0.9, weight decay = 0.005). |
Hyperparameters: |
Output: The trained model parameters ΦF. |
Training Process: |
1. Initialize Training |
Set initial learning rate ηinit. |
2. Outer Training Loop (Rounds 1 to 10) |
Decay learning rate: ηt = ηinit × 0.95round. |
3. Inner Training Loop (Epochs 1 to 50) |
Iterate through the train dataset in mini-batches. |
4. Batch Processing |
a. Randomly shuffle live and spoofed samples. |
b. Input live samples and compute the representation loss distPos as (9) |
c. Input spoofed samples and compute the representation loss distNeg as (10) |
d. Compute the basic loss LCE and constrained loss Ldist_all as (11) and (13) |
e. Compute the overall loss Lall as (14) |
f. Perform backpropagation and update the model parameters. |
5. Validation and Evaluation |
- Evaluate the model on the validation set. |
- Compute ACER. |
6. Repeat Steps 2–5 until all rounds are completed. |
7. End of Training: The final model ΦF is obtained. |
4. Experiments
4.1. Datasets
4.2. Metric
4.3. Implementation Details
5. Results Analysis
5.1. Comparison Results
5.1.1. CASIA-SURF Dataset
5.1.2. CASIA-SURF CeFA Dataset
5.1.3. CASIA-FASD Dataset
5.1.4. OULU-NPU Dataset
5.2. Ablation Analysis
5.2.1. The Impact of the ECA Module
5.2.2. The Impact of the ICD Module
5.3. Visualization and Analysis
5.3.1. Significance Analysis
5.3.2. t-SNE Visualization
5.3.3. Attention Visualization
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keresh, A.; Shamoi, P. Liveness Detection in Computer Vision: Transformer-Based Self-Supervised Learning for Face Anti-Spoofing. arXiv 2024, arXiv:2406.13860. [Google Scholar] [CrossRef]
- Almeida, W.R.; Andaló, F.A.; Padilha, R.; Bertocco, G.; Dias, W.; Torres, R.D.S.; Wainer, J.; Rocha, A. Detecting face presentation attacks in mobile devices with a patch-based CNN and a sensor-aware loss function. PLoS ONE 2020, 15, e0238058. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, W.R.; Rocha, A.; Pedrini, H. Face spoofing detection through partial least squares and low-level descriptors. In Proceedings of the 2011 International Joint Conference on Biometrics (IJCB), Washington, DC, USA, 11–13 October 2011; pp. 1–8. [Google Scholar]
- Wang, Z.; Yu, Z.; Zhao, C.; Zhu, X.; Qin, Y.; Zhou, Q.; Zhou, F.; Lei, Z. Deep spatial gradient and temporal depth learning for face anti-spoofing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 5042–5051. [Google Scholar]
- Liu, A.; Tan, Z.; Yu, Z.; Zhao, C.; Wan, J.; Liang, Y.; Lei, Z.; Zhang, D.; Li, S.Z.; Guo, G. Fm-vit: Flexible modal vision transformers for face anti-spoofing. IEEE Trans. Inf. Forensics Secur. 2023, 18, 4775–4786. [Google Scholar] [CrossRef]
- Liao, C.H.; Chen, W.C.; Liu, H.T.; Yeh, Y.R.; Hu, M.C.; Chen, C.S. Domain invariant vision transformer learning for face anti-spoofing. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–7 January 2023; pp. 6098–6107. [Google Scholar]
- Liu, A.; Liang, Y. Ma-vit: Modality-agnostic vision transformers for face anti-spoofing. arXiv 2023, arXiv:2304.07549. [Google Scholar]
- Yu, Z.; Qin, Y.; Li, X.; Zhao, C.; Lei, Z.; Zhao, G. Deep learning for face anti-spoofing: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 5609–5631. [Google Scholar] [CrossRef]
- Pan, G.; Sun, L.; Wu, Z.; Lao, S. Eyeblink-based anti-spoofing in face recognition from a generic webcamera. In Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007; pp. 1–8. [Google Scholar]
- Patel, K.; Han, H.; Jain, A.K. Secure face unlock: Spoof detection on smartphones. IEEE Trans. Inf. Forensics Secur. 2016, 11, 2268–2283. [Google Scholar] [CrossRef]
- Komulainen, J.; Hadid, A.; Pietikäinen, M. Context based face anti-spoofing. In Proceedings of the 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), Washington, DC, USA, 29 September–2 October 2013; pp. 1–8. [Google Scholar]
- Freitas, P.T.; Anjos, A.; De Martino, J.M.; Marcel, S. LBP−TOP based countermeasure against face spoofing attacks. In Proceedings of the Asian Conference on Computer Vision (ACCV 2012), Daejeon, Republic of Korea, 5–9 November 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 121–132. [Google Scholar]
- Boulkenafet, Z.; Komulainen, J.; Hadid, A. Face antispoofng using speeded-up robust features and fisher vector encoding. IEEE Signal Process. Lett. 2016, 24, 141–145. [Google Scholar]
- Zhang, Z.; Yan, J.; Liu, S.; Lei, Z.; Yi, D.; Li, S.Z. A face antispoofing database with diverse attacks. In Proceedings of the 2012 5th IAPR International Conference on Biometrics (ICB), New Delhi, India, 29 March–1 April 2012; pp. 26–31. [Google Scholar]
- Menotti, D.; Chiachia, G.; Pinto, A.; Schwartz, W.R.; Pedrini, H.; Falcao, A.X.; Rocha, A. Deep representations for iris, face, and fingerprint spoofing detection. IEEE Trans. Inf. Forensics Secur. 2015, 10, 864–879. [Google Scholar] [CrossRef]
- Wang, C.Y.; Lu, Y.D.; Yang, S.T.; Lai, S.H. Patchnet: A simple face anti-spoofing framework via fine-grained patch recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 20281–20290. [Google Scholar]
- Wang, W.; Wen, F.; Zheng, H.; Ying, R.; Liu, P. Conv-MLP: A convolution and MLP mixed model for multimodal face anti-spoofing. IEEE Trans. Inf. Forensics Secur. 2022, 17, 2284–2297. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Park, J. Bam: Bottleneck attention module. arXiv 2018, arXiv:1807.06514. [Google Scholar]
- Dosovitskiy, A. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- George, A.; Marcel, S. On the effectiveness of vision transformers for zero-shot face anti-spoofing. In Proceedings of the IEEE International Joint Conference on Biometrics (IJCB), Shenzhen, China, 4–7 August 2021; pp. 1–8. [Google Scholar]
- Chen, B.; Yang, W.; Li, H.; Wang, S.; Kwong, S. Camera invariant feature learning for generalized face anti-spoofing. IEEE Trans. Inf. Forensics Secur. 2021, 16, 2477–2492. [Google Scholar] [CrossRef]
- George, A.; Marcel, S. Learning one class representations for face presentation attack detection using multi-channel convolutional neural networks. IEEE Trans. Inf. Forensics Secur. 2020, 16, 361–375. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, Z.; Wang, X.; Qin, Y.; Li, J.; Zhao, C.; Lei, Z.; Liu, X.; Li, S.; Wang, Z. Consistency regularization for deep face anti-spoofing. IEEE Trans. Inf. Forensics Secur. 2023, 18, 1127–1140. [Google Scholar] [CrossRef]
- Li, W.; Liu, X.; Yuan, Y. Sigma: Semantic-complete graph matching for domain adaptive object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5291–5300. [Google Scholar]
- Yue, C.; Jha, N.K. CTRL: Clustering training losses for label error detection. IEEE Trans. Artif. Intell. 2024, 5, 4121–4135. [Google Scholar] [CrossRef]
- Dai, Z.; Wang, G.; Yuan, W.; Zhu, S.; Tan, P. Cluster contrast for unsupervised person re-identification. In Proceedings of the Asian Conference on Computer Vision, Macao, China, 4–8 December 2022; pp. 1142–1160. [Google Scholar]
- Jiang, F.; Li, Q.; Liu, P.; Zhou, X.D.; Sun, Z. Adversarial learning domain-invariant conditional features for robust face anti-spoofing. Int. J. Comput. Vis. 2023, 131, 1680–1703. [Google Scholar] [CrossRef]
- Li, C.; Liu, X.; Li, W.; Wang, C.; Liu, H.; Liu, Y.; Chen, Z.; Yuan, Y. U-kan makes strong backbone for medical image segmentation and generation. arXiv 2024, arXiv:2406.02918. [Google Scholar]
- Jianwei, Y.; Zhen, L.; Stan, L.Z. Learn convolutional neural network for face anti-spoofing. arXiv 2014, arXiv:1408.5601. [Google Scholar]
- Zhang, S.; Wang, X.; Liu, A.; Zhao, C.; Wan, J.; Escalera, S.; Shi, H.; Wang, Z.; Li, S.Z. A dataset and benchmark for large-scale multi-modal face anti-spoofing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 919–928. [Google Scholar]
- Liu, A.; Tan, Z.; Wan, J.; Li, X.; Escalera, S.; Guo, G.; Li, S.Z. Casia-surf cefa: A benchmark for multi-modal cross-ethnicity face anti-spoofing. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Virtual, 5–9 January 2021; pp. 1179–1187. [Google Scholar]
- Boulkenafet, Z.; Komulainen, J.; Li, L.; Feng, X.; Hadid, A. OULU-NPU: A mobile face presentation attack database with real-world variations. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; pp. 612–618. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Shi, L.; Zhou, Z.; Guo, Z. Face anti-spoofing using spatial pyramid pooling. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 2126–2133. [Google Scholar]
- Wang, G.; Lan, C.; Han, H.; Shan, S.; Chen, X. Multi-modal face presentation attack detection via spatial and channel attentions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Wang, Z.; Wang, Q.; Deng, W.; Guo, G. Learning multi-granularity temporal characteristics for face anti-spoofing. IEEE Trans. Inf. Forensics Secur. 2022, 17, 1254–1269. [Google Scholar] [CrossRef]
- Kong, Y.; Li, X.; Hao, G.; Liu, C. Face anti-spoofing method based on residual network with channel attention mechanism. Electronics 2022, 11, 3056. [Google Scholar] [CrossRef]
- Liu, A.; Li, X.; Wan, J.; Escalera, S.; Escalante, H.J.; Madadi, M.; Jin, Y.; Wu, Z.; Yu, X.; Tan, Z.; et al. Cross-ethnicity face anti-spoofing recognition challenge: A review. IET Biom. 2021, 10, 24–43. [Google Scholar] [CrossRef]
- Yu, Z.; Qin, Y.; Li, X.; Wang, Z.; Zhao, C.; Lei, Z.; Zhao, G. Multi-modal face anti-spoofing based on central difference networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 650–651. [Google Scholar]
- Khammari, M. Robust face anti-spoofing using CNN with LBP and WLD. IET Image Process. 2019, 13, 1880–1884. [Google Scholar] [CrossRef]
- Boulkenafet, Z.; Komulainen, J.; Akhtar, Z.; Benlamoudi, A.; Samai, D.; Bekhouche, S.E.; Ouafi, A.; Dornaika, F.; Taleb-Ahmed, A.; Qin, L.; et al. A competition on generalized software-based face presentation attack detection in mobile scenarios. In Proceedings of the 2017 IEEE International Joint Conference on Biometrics (IJCB), Denver, CO, USA, 1–4 October 2017; pp. 688–696. [Google Scholar]
- Lin HY, S.; Su, Y.W. Convolutional neural networks for face anti-spoofing and liveness detection. In Proceedings of the 2019 6th International Conference on Systems and Informatics (ICSAI), Shanghai, China, 2–4 November 2019; pp. 1233–1237. [Google Scholar]
- Atoum, Y.; Liu, Y.; Jourabloo, A.; Liu, X. Face anti-spoofing using patch and depth-based CNNs. In Proceedings of the 2017 IEEE International Joint Conference on Biometrics (IJCB), Denver, CO, USA, 1–4 October 2017; pp. 319–328. [Google Scholar]
- Liu, Y.; Jourabloo, A.; Liu, X. Learning deep models for face anti-spoofing: Binary or auxiliary supervision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 389–398. [Google Scholar]
- Jourabloo, A.; Liu, Y.; Liu, X. Face de-spoofing: Anti-spoofing via noise modeling. In Lecture Notes in Computer; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11217, pp. 297–315. [Google Scholar]
- George, A.; Marcel, S. Deep pixel-wise binary supervision for face presentation attack detection. In Proceedings of the 2019 International Conference on Biometrics (ICB), Crete, Greece, 4–7 June 2019; pp. 1–8. [Google Scholar]
- Chen, Y.; Dai, X.; Chen, D.; Liu, M.; Dong, X.; Yuan, L.; Liu, Z. Mobile-former: Bridging mobilenet and transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5270–5279. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning (PMLR), Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Gradcam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
Layer Name | ECA-ResNeXt | Block |
---|---|---|
Layer1 | Conv 7 × 7.64, stride 2 MaxPool 3 × 3 | 1 |
Layer2 | Conv1 × 1.128 Conv3 × 3.128, stride 2 Conv1 × 1.256 Dw_conv3 × 3.256 pw_conv 1 × 1.16 pw_conv 1 × 1.256 | 2 |
Layer3 | Conv1 × 1.256 Conv3 × 3.256, stride 2 Conv1 × 1.512 Dw_conv3 × 3.512 pw_conv 1 × 1.32 pw_conv 1 × 1.512 | 2 |
Layer4 | Conv1 × 1.512 Conv3 × 3.512, stride 2 Conv1 × 1.1024 Dw_conv3 × 3.1024 pw_conv 1 × 1.64 pw_conv 1 × 1.1024 | 2 |
Layer5 | Conv1 × 1.1024 Conv3 × 3.1024, stride 2 Conv1 × 1.2048 Dw_conv3 × 3.2048 pw_conv 1 × 1.128 pw_conv 1 × 1.2048 | 2 |
Avg_Pool 7 × 7 |
Subset | Subjects | Video | Original Image | Processed Image |
---|---|---|---|---|
Train | 300 | 6300 | 1,563,919 | 148,089 |
Valid | 100 | 2100 | 501,886 | 48,789 |
Test | 600 | 12,600 | 3,109,985 | 295,644 |
Subset | Ethnicity | Subjects | PAIs | Image Number | ||||
---|---|---|---|---|---|---|---|---|
4_1 | 4_2 | 4_3 | 4_1 | 4_2 | 4_3 | |||
Train | A | C | E | 1–200 | Replay | 33,713 | 34,367 | 33,152 |
Valid | A | C | E | 201–300 | Replay | 17,008 | 17,693 | 17,109 |
Test | C&E | A&E | A&C | 301–500 | 105,457 | 102,207 | 103,420 |
Dataset | Resolution | Live Faces | Print Attacks | Cut Attacks | Replay Attacks |
---|---|---|---|---|---|
CASIA-FASD | 480 × 640 | 8437 | 9811 | 9715 | 7581 |
640 × 480 | 8027 | 9768 | 7828 | 9720 | |
720 × 1280 | 10,355 | 12,435 | 6687 | 10,009 |
Protocol | Subset | Phones | User | PAIs | Real Videos | Attack Videos | All Videos |
---|---|---|---|---|---|---|---|
Protocol I | Train | 6 Phones | 1–20 | Print; Display | 240 | 960 | 1200 |
Dev | 6 Phones | 21–35 | Print; Display | 180 | 720 | 900 | |
Test | 6 Phones | 36–55 | Print; Display | 120 | 480 | 600 | |
Protocol II | Train | 6 Phones | 1–20 | Print; Display | 360 | 720 | 1080 |
Dev | 6 Phones | 21–35 | Print; Display | 270 | 540 | 810 | |
Test | 6 Phones | 36–55 | Print; Display | 360 | 720 | 1080 | |
Protocol III | Train | 6 Phones | 1–20 | Print; Display | 300 | 1200 | 1500 |
Dev | 6 Phones | 21–35 | Print; Display | 225 | 900 | 1125 | |
Test | 6 Phones | 36–55 | Print; Display | 60 | 240 | 300 | |
Protocol Ⅳ | Train | 6 Phones | 1–20 | Print; Display | 200 | 400 | 600 |
Dev | 6 Phones | 21–35 | Print; Display | 150 | 300 | 450 | |
Test | 6 Phones | 36–55 | Print; Display | 20 | 40 | 60 |
Method | Patch Size | APCER (%) | NPCER (%) | ACER (%) |
---|---|---|---|---|
ResNeXt-50 [35] | Full image | 21.76 | 15.06 | 18.41 |
Large-scale multimodal [32] | Full image | 8.0 | 14.5 | 11.3 |
SPP [36] | Full image | -- | -- | 6.4 |
Spatial andchannel Attention [37] | Full image | 5.2 | 2.6 | 3.9 |
TTN-S [38] | 16 × 16 | 3.8 | 3.2 | 3.5 |
ResNeXt-SE [39] | 48 × 48 | 2.62 | 2.42 | 2.52 |
Our | 16 × 16 | 2.3 | 3.43 | 2.87 |
Our | 32 × 32 | 2.1 | 3.54 | 2.82 |
Our | 48 × 48 | 3.84 | 1.06 | 2.45 |
Our | Full image | 5.57 | 0.65 | 3.11 |
Protocol | Method | APCER (%) | NPCER (%) | ACER (%) |
---|---|---|---|---|
Protocol 4_1 | PSMM-Net [33] | 5.0 | 3.3 | 4.2 |
3D-ResNet [40] | 38.67 | 5.25 | 21.96 | |
SD-Net [40] | 5.72 | 18.5 | 12.11 | |
ResNet_face [40] | 1.72 | 12.0 | 6.86 | |
CDCN [41] | 11.17 | 2.5 | 6.83 | |
Our | 7.59 | 1.16 | 4.3 | |
Protocol 4_2 | PSMM-Net [33] | 7.7 | 9.0 | 8.4 |
3D-ResNet [40] | 33.67 | 6.5 | 20.08 | |
SD-Net [40] | 7.33 | 11.25 | 9.29 | |
ResNet_face [40] | 6.44 | 12.75 | 9.6 | |
CDCN [41] | 6.67 | 2.0 | 4.33 | |
Our | 3.23 | 2.33 | 2.78 | |
Protocol 4_3 | PSMM-Net [33] | 10.8 | 4.3 | 7.6 |
3D-ResNet [40] | 27.17 | 6.5 | 16.83 | |
SD-Net [40] | 3.17 | 27.0 | 15.08 | |
ResNet_face [40] | 6.06 | 16.75 | 11.4 | |
CDCN [41] | 3.72 | 3.0 | 3.36 | |
Our | 1.21 | 1.12 | 1.16 |
Method | ACER (%) | EER (%) |
---|---|---|
Fourier-based method [42] | 31.24 | 19.41 |
CNN [43] | 7.31 | 4.88 |
DPCNN [44] | 6.10 | 2.90 |
Patch- and Depth-Based CNN [45] | 2.27 | 2.67 |
CNN and SWLD [42] | 2.14 | 2.62 |
Ours | 1.74 | 2.27 |
Protocol | Method | APCER (%) | NPCER (%) | ACER (%) |
---|---|---|---|---|
Protocol 1 | GRADIANT [43] | 1.3 | 12.5 | 6.9 |
Auxiliary [46] | 1.6 | 1.6 | 1.6 | |
FaceDs [47] | 1.2 | 1.7 | 1.5 | |
DeepPixBis [48] | 0.8 | 0.0 | 0.4 | |
Ours | 0.64 | 2.37 | 1.5 | |
Protocol 2 | GRADIANT [43] | 3.1 | 1.9 | 2.5 |
Auxiliary [46] | 2.7 | 2.7 | 2.7 | |
FaceDs [47] | 4.2 | 4.4 | 4.3 | |
DeepPixBis [48] | 11.4 | 0.6 | 6.0 | |
Ours | 2.67 | 1.67 | 2.17 | |
Protocol 3 | GRADIANT [43] | 2.6 ± 3.9 | 5.0 ± 5.3 | 3.8 ± 2.4 |
Auxiliary [46] | 2.7 ± 1.3 | 3.1 ± 1.7 | 2.9 ± 1.5 | |
FaceDs [47] | 4.0 ± 1.8 | 3.8 ± 1.2 | 3.6 ± 1.6 | |
DeepPixBis [48] | 11.7 ± 19.6 | 10.6 ± 14.1 | 11.1 ± 9.4 | |
Ours | 2.43 ± 1.19 | 2.86 ± 2.0 | 2.65 ± 1.23 | |
Protocol 4 | GRADIANT [43] | 5.0 ± 4.5 | 15.0 ± 7.1 | 10.0 ± 5.0 |
Auxiliary [46] | 9.3 ± 5.6 | 10.4 ± 6.0 | 9.5 ± 6.0 | |
FaceDs [47] | 1.2 ± 6.3 | 6.1 ± 5.1 | 5.6 ± 5.7 | |
DeepPixBis [48] | 36.7 ± 29.7 | 13.3 ± 14.1 | 25.0 ± 12.7 | |
Ours | 3.13 ± 4.31 | 6.81 ± 13.54 | 5.05 ± 7.07 |
Patch Size | Method | APCER (%) | NPCER (%) | ACER (%) |
---|---|---|---|---|
32 × 32 | ResNeXt-50 [24] | 7.19 | 2.16 | 4.90 |
ResNeXt-50+ECA | 2.55 | 3.97 | 3.26 | |
ResNeXt-50+ICD | 6.35 | 2.19 | 4.27 | |
MobileNet [49] | 3.63 | 4.31 | 3.97 | |
Efficientnet [50] | 5.51 | 4.07 | 4.79 | |
Xception Net [51] | 4.36 | 4.96 | 4.66 | |
48 × 48 | ResNeXt-50 [24] | 6.97 | 2.47 | 4.72 |
ResNeXt-50+ECA | 3.64 | 1.9 | 2.77 | |
ResNeXt-50+ICD | 6.56 | 2.46 | 4.51 | |
MobileNet [49] | 6.06 | 2.17 | 4.12 | |
Efficientnet [50] | 2.2 | 7.27 | 4.73 | |
Xception Net [51] | 2.92 | 5.92 | 4.41 | |
Full image | ResNeXt-50 [24] | 12.46 | 11.92 | 12.19 |
ResNeXt-50+ECA | 3.64 | 2.44 | 3.04 | |
ResNeXt-50+ICD | 7.69 | 3.87 | 5.78 | |
MobileNet [49] | 6.06 | 3.17 | 4.61 | |
Efficientnet [50] | 5.23 | 3.78 | 4.56 | |
Xception Net [51] | 4.89 | 4.12 | 4.45 |
Patch Size | Method | APCER (%) | NPCER (%) | ACER (%) |
---|---|---|---|---|
32 × 32 | ResNeXt-50 [24] | 3.7 | 2.9 | 3.3 |
ResNeXt-50+ECA | 4.05 | 2.23 | 2.23 | |
ResNeXt-50+ICD | 6.1 | 0.29 | 3.19 | |
MobileNet [49] | 3.12 | 2.75 | 2.93 | |
Efficientnet [50] | 2.98 | 3.21 | 3.1 | |
Xception Net [51] | 3.45 | 2.95 | 3.2 | |
48 × 48 | ResNeXt-50 [24] | 0.99 | 3.72 | 2.35 |
ResNeXt-50+ECA | 1.54 | 2.71 | 2.12 | |
ResNeXt-50+ICD | 1.82 | 2.37 | 2.09 | |
MobileNet [49] | 1.87 | 3.55 | 2.71 | |
Efficientnet [50] | 2.09 | 2.82 | 2.82 | |
Xception Net [51] | 4.01 | 2.33 | 3.19 | |
Full image | ResNeXt-50 [24] | 2.25 | 4.73 | 3.49 |
ResNeXt-50+ECA | 1.15 | 3.55 | 2.35 | |
ResNeXt-50+ICD | 2.42 | 3.21 | 2.81 | |
MobileNet [49] | 1.43 | 3.72 | 2.57 | |
Efficientnet [50] | 1.76 | 3.55 | 2.65 | |
Xception Net [51] | 1.37 | 3.89 | 2.63 |
Patch Size | Method | APCER (%) | NPCER (%) | ACER (%) |
---|---|---|---|---|
32 × 32 | ResNeXt-50 [24] | 2.34 | 1.87 | 2.11 |
ResNeXt-50+ECA | 2.56 | 1.92 | 2.24 | |
ResNeXt-50+ICD | 2.12 | 2.08 | 2.1 | |
MobileNet [49] | 2.45 | 2.15 | 2.3 | |
Efficientnet [50] | 2.67 | 1.78 | 2.23 | |
Xception Net [51] | 2.23 | 2.34 | 2.29 | |
48 × 48 | ResNeXt-50 [24] | 1.83 | 2.81 | 2.32 |
ResNeXt-50+ECA | 2.12 | 1.31 | 1.71 | |
ResNeXt-50+ICD | 0.83 | 2.61 | 1.72 | |
MobileNet [49] | 2.74 | 1.31 | 2.02 | |
Efficientnet [50] | 2.13 | 2.65 | 2.39 | |
Xception Net [51] | 1.81 | 2.15 | 1.98 | |
Full image | ResNeXt-50 [24] | 8.43 | 3.71 | 6.07 |
ResNeXt-50+ECA | 3.02 | 7.51 | 5.27 | |
ResNeXt-50+ICD | 3.76 | 7.6 | 5.68 | |
MobileNet [49] | 6.28 | 8.36 | 7.32 | |
Efficientnet [50] | 8.43 | 4.47 | 6.45 | |
Xception Net [51] | 5.34 | 6.46 | 5.9 |
Model | ACER Mean (%) | STD | 95% CI |
---|---|---|---|
ResNeXt-50 | 5.218 | 0.059 | [5.145, 5.291] |
Our | 2.578 | 0.111 | [2.440, 2.716] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Sun, W.; Li, Z.; Guo, X. Face Anti-Spoofing Based on Adaptive Channel Enhancement and Intra-Class Constraint. J. Imaging 2025, 11, 116. https://doi.org/10.3390/jimaging11040116
Li Y, Sun W, Li Z, Guo X. Face Anti-Spoofing Based on Adaptive Channel Enhancement and Intra-Class Constraint. Journal of Imaging. 2025; 11(4):116. https://doi.org/10.3390/jimaging11040116
Chicago/Turabian StyleLi, Ye, Wenzhe Sun, Zuhe Li, and Xiang Guo. 2025. "Face Anti-Spoofing Based on Adaptive Channel Enhancement and Intra-Class Constraint" Journal of Imaging 11, no. 4: 116. https://doi.org/10.3390/jimaging11040116
APA StyleLi, Y., Sun, W., Li, Z., & Guo, X. (2025). Face Anti-Spoofing Based on Adaptive Channel Enhancement and Intra-Class Constraint. Journal of Imaging, 11(4), 116. https://doi.org/10.3390/jimaging11040116