A Hybrid Framework for Red Blood Cell Labeling Using Elliptical Fitting, Autoencoding, and Data Augmentation
Abstract
1. Introduction
1.1. Background
1.2. Related Works
1.3. Research Gap and Aim
2. Materials and Methods
2.1. Dataset Collection and Image Acquisition
2.2. ROI Selection from WSI
2.3. Single-Cell Patch Extraction
Algorithm 1. Pseudocode of the RBC single-cell extraction and resizing technique |
RBC_Extraction(image_path, output_dir) load image from image_path apply mean-shift filtering to image → shifted convert shifted image to grayscale → gray apply Otsu thresholding to gray → thresh find contours from thresh → cnts for each contour c in cnts do crop image and mask around contour → image_crop, mask_crop if mask_crop is valid then check if cell touches border: if true: save touching cell to “touching” folder else: extract RBC from mask determine RBC size: if size ≤ 16 px: overlay to 32 × 32 and save as “small” else if size ≤ 32 px: overlay to 32 × 32 and save as “32 size” else if size ≤ 128 px: overlay to 128 × 128 and save as “128 size” else if size ≤ 256 px: overlay to 256 × 256 and save as “256 size” else if size ≤ 512 px: overlay to 512 × 512 and save as “512 size” else if size ≤ 1024 px: overlay to 1024 × 1024 and save as “1024 size” else: save as “oversize” else: end for save processing results (original, filtered, gray, mask, contours) return RBC_dataset_summary |
2.4. Latent Feature Learning Using Autoencoders
2.5. Unsupervised Clustering
Algorithm 2. Unsupervised clustering of RBC latent features using k-means |
RBC_Clustering_Encoder(samples, encoder_models, num_clusters_list) for each sample_id in samples do initialize paths for model, images, and outputs create output folders if not exist load pre-trained encoder model for current sample_id load and preprocess RBC images → x_test normalize pixel values (0–1) encode images using encoder → encoded_imgs remove existing clustering score CSV if exists for each num_clusters in num_clusters_list do apply KMeans clustering (num_clusters) compute clustering labels → labels calculate Silhouette Score → sil_score calculate Davies–Bouldin Index → dbi_score save scores to CSV log create cluster folders and copy images based on labels plot silhouette visualization per cluster plot metrics comparison (Silhouette vs. DBI) save plots apply UMAP to reduce encoded_imgs to 2D plot and save UMAP scatter plot with cluster coloring save plots end for compile per-sample clustering report summarizing metrics and plots append results to global clustering summary (multi-sample CSV) end for compute total execution time and display summary return clustering_results_summary |
2.6. Morphological Prior via Ellipse Fitting
Algorithm 3. RBC Morphological classification based on geometric features |
classify_cell(ratio, length, area) if ratio ≤ 1.05: r_group = “Circle 095/” else if ratio ≤ 1.10: r_group = “Circle 090/” else if ratio ≤ 1.20: r_group = “Circle 080/” else if ratio ≤ 1.40: r_group = “Oval 060/” else if ratio ≤ 1.60: r_group = “Oval 040/” else: r_group = “Pencil/” if length < 6.0: l_group = “Micro/” else if length ≤ 8.0: l_group = “Normal/” else: l_group = “Macro/” if area ≤ 0.80: a_group = “Area 080/” else if area ≤ 0.90: a_group = “Area 090/” else if area ≤ 0.95: a_group = “Area 095/” else: a_group = “Area 100/” return concatenation(l_group, r_group, a_group) |
Algorithm 4. Ellipse-based RBC Morphology classification and clustering |
RBC_Ellipse_Fitting_Clustering(data_list, image_path) for each folder in data_list do define folder_path if folder_path exists then for each image_file in folder_path do load image → image_input convert image to grayscale → gray apply Otsu thresholding → binary find contours from binary → contours for each contour cnt in contours do if contour length ≥ 5 then fit ellipse to contour → ellipse extract ellipse parameters: center, major_ax, minor_ax, angle compute major/minor axis lines and endpoints convert axis lengths to micrometers (µm) determine aspect ratio (AR) generate contour and ellipse masks compute overlap region (intersection) → inter_contours calculate area ratio (ER) annotate image with ellipse, axes, ratio, and area metrics classify cell morphology using classify_cell() function define output directories based on classification save annotated and raw images into their respective folders log extracted metrics for statistical analysis append classification results to CSV for later clustering review end for else: print warning (folder not found) end for export full metrics dataset and classification summary return ellipse_classification_results |
2.7. Expert-in-the-Loop Validation
2.8. Synthetic Minority Augmentation
Algorithm 5. Automated data augmentation and centering for RBC image dataset |
Auto_Data_Augmentation(data_list, image_path) for each folder in data_list do define folder_path if folder_path exists then for each image_file in folder_path do load image for each scale_factor in [0.98, 0.99, 1.00, 1.01] do resize image while embedding onto black background save augmented image for each rotation angle based on num_rotations do rotate resized image for each flip_code in [0, 1, −1] do flip rotated image (vertical, horizontal, both) else: Print warning (folder not found) end for for each folder in data_list do define folder_aug for each image_file in folder_aug do load augmented image → image apply mean-shift filtering → shifted convert to grayscale and apply Otsu thresholding → thresh detect contours → cnts for each contour c in cnts do extract ROI with small padding generate binary mask and apply bitwise extraction if extracted cell size < 128×128: embed cell into black 128×128 background, centered save centered image end for generate augmentation report summarizing transformations applied return augmented_dataset_summary |
3. Results
3.1. Preprocessing Results
3.2. Unsupervised Clustering Outcomes
3.3. Ellipse Fitting and Expert-Guided Labeling
3.4. Data Augmentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AR | Aspect Ratio |
CNN | Convolutional Neural Network |
ER | Ellipse-to-cell Area Ratio |
GAN | Generative Adversarial Network |
HbE | Thalassemia Hb E Disease |
HbE Sx | Thalassemia Hb E Disease with Severe Symptoms |
HbH | Hemoglobin H Disease |
Ho HbE | Homozygous Hb E Thalassemia |
HITL | Human-in-the-Loop |
ID | Identifier |
IDA | Iron Deficiency Anemia |
OpenCV | Open Source Computer Vision Library |
PLT | Platelet |
RBC | Red Blood Cell |
ReLU | Rectified Linear Unit |
ROI | Region of Interest |
SVS | Scanned Virtual Slide Format |
TT | Thalassemia Trait |
UMAP | Uniform Manifold Approximation and Projection |
U-Net | U-shaped Convolutional Neural Network |
WBC | White Blood Cell |
WSI | Whole Slide Image |
Appendix A
Appendix A.1
Sample Name | Pixel (µm) | Magnification | Levels | Dimensions (Pixels) |
---|---|---|---|---|
IDA | 0.1658 | 83 | 4 | 34,271 × 74,047 |
TT | 0.1658 | 83 | 4 | 44,743 × 51,260 |
HbH | 0.1658 | 83 | 4 | 46,647 × 52,973 |
HbE/β-thal | 0.1658 | 83 | 4 | 52,359 × 51,740 |
HbE/β-thal Sx | 0.1658 | 83 | 4 | 39,031 × 73,061 |
Homo HbE | 0.1658 | 83 | 4 | 39,983 × 55,429 |
Appendix A.2
Sample | Dimensions (Pixels) | |
---|---|---|
ROI 1 | ROI 2 | |
IDA | 2358 × 2882 | 2489 × 2751 |
TT | 2489 × 3340 | 4575 × 3275 |
HbH | 4519 × 3733 | 3733 × 3471 |
HbE/β-thal | 7991 × 4454 | 4454 × 5043 |
HbE/β-thal Sx | 3144 × 5305 | 3013 × 3471 |
Homo HbE | 5305 × 4061 | 5436 × 3995 |
References
- Parab, M.A.; Mehendale, N.D. Red Blood Cell Classification Using Image Processing and CNN. SN Comput. Sci. 2021, 2, 70. [Google Scholar] [CrossRef]
- Rezatofighi, S.H.; Soltanian-Zadeh, H. Automatic Recognition of Five Types of White Blood Cells in Peripheral Blood. Comput. Med. Imaging Graph. 2011, 35, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Wasi, P.; Pootrakul, S.; Pootrakul, P.; Pravatmuang, P.; Winichagoon, P.; Fucharoen, S. Thalassemia in Thailand. Ann. N. Y. Acad. Sci. 1980, 344, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Panich, V.; Pornpatkul, M.; Sriroongrueng, W. The Problem of Thalassemia in Thailand. Southeast Asian J. Trop. Med. Public Health 1992, 23 (Suppl. 2), 1–6. [Google Scholar]
- Teawtrakul, N.; Chansung, K.; Sirijerachai, C.; Wanitpongpun, C.; Thepsuthammarat, K. The Impact and Disease Burden of Thalassemia in Thailand: A Population-Based Study in 2010. J. Med. Assoc. Thai. 2012, 95 (Suppl. 7), S211–S216. [Google Scholar] [PubMed]
- Paiboonsukwong, K.; Jopang, Y.; Winichagoon, P.; Fucharoen, S. Thalassemia in Thailand. Hemoglobin 2022, 46, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Fucharoen, S.; Winichagoon, P. Thalassemia in Southeast Asia: Problems and Strategy for Prevention and Control. Southeast Asian J. Trop. Med. Public Health 1992, 23, 647–655. [Google Scholar]
- Shahzad, M.; Umar, A.I.; Shirazi, S.H.; Shaikh, I.A. Semantic Segmentation of Anaemic RBCs Using Multilevel Deep Convolutional Encoder-Decoder Network. IEEE Access 2021, 9, 161326–161341. [Google Scholar] [CrossRef]
- Afriyie, Y.; Weyori, B.A.; Opoku, A.A. Classification of Blood Cells Using Optimized Capsule Networks. Neural Process. Lett. 2022, 54, 4809–4828. [Google Scholar] [CrossRef]
- Sazak, H.; Kotan, M. Automated Blood Cell Detection and Classification in Microscopic Images Using YOLOv11 and Optimized Weights. Diagnostics 2025, 15, 22. [Google Scholar] [CrossRef]
- Labati, R.D.; Piuri, V.; Scotti, F. All-IDB: The Acute Lymphoblastic Leukemia Image Database for Image Processing. In Proceedings of the 2011 18th IEEE International Conference on Image Processing (ICIP), Brussels, Belgium, 11–14 September 2011; IEEE: New York, NY, USA, 2011; pp. 2045–2048. [Google Scholar] [CrossRef]
- Buczkowski, M.; Szymkowski, P.; Saeed, K. Segmentation of Microscope Erythrocyte Images by CNN-Enhanced Algorithms. Sensors 2021, 21, 1720. [Google Scholar] [CrossRef]
- Mohapatra, B. BCCD Dataset: Blood Cell Count and Detection. Kaggle Dataset Repository. 2015. Available online: https://www.kaggle.com/datasets/paultimothymooney/blood-cells (accessed on 4 August 2025).
- Alzubaidi, L.; Fadhel, M.A.; Al-Shamma, O.; Zhang, J.; Duan, Y. Deep Learning Models for Classification of Red Blood Cells in Microscopy Images to Aid in Sickle Cell Anemia Diagnosis. Electronics 2020, 9, 427. [Google Scholar] [CrossRef]
- Khalid, U.; Gurung, J.; Doykov, M.; Kostov, G.; Hristov, B.; Uchikov, P.; Kraeva, M.; Kraev, K.; Doykov, D.; Doykova, K.; et al. Artificial Intelligence Algorithms and Their Current Role in the Identification and Comparison of Gleason Patterns in Prostate Cancer Histopathology: A Comprehensive Review. Diagnostics 2024, 14, 2127. [Google Scholar] [CrossRef]
- Long, F.; Peng, J.-J.; Song, W.; Xia, X.; Sang, J. BloodCaps: A Capsule Network Based Model for the Multiclassification of Human Peripheral Blood Cells. Comput. Methods Programs Biomed. 2021, 202, 105972. [Google Scholar] [CrossRef]
- Zhong, A.; Li, X.; Wu, D.; Ren, H.; Kim, K.; Kim, Y.; Buch, V.; Neumark, N.; Bizzo, B.; Tak, W.Y.; et al. Deep Metric Learning-Based Image Retrieval System for Chest Radiograph and Its Clinical Applications in COVID-19. Med. Image Anal. 2021, 70, 101993. [Google Scholar] [CrossRef]
- Nurçin, F.V.; Imanov, E. Segmentation of Overlapping Red Blood Cells for Malaria Blood Smear Images by U-Net Architecture. J. Med. Imaging Health Inform. 2021, 11, 2190–2193. [Google Scholar] [CrossRef]
- Pfeil, J.; Nechyporenko, A.; Frohme, M.; Hufert, F.T.; Schulze, K. Examination of Blood Samples Using Deep Learning and Mobile Microscopy. BMC Bioinform. 2022, 23, 65. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, Y.; Wang, F. scSemiAE: A Deep Model with Semi-Supervised Learning for Single-Cell RNA-Seq Data Analysis. BMC Bioinform. 2022, 23, 439. [Google Scholar] [CrossRef]
- Ahmadzadeh, E.; Jaferzadeh, K.; Lee, J.; Moon, I. Automated three-dimensional morphology-based clustering of human erythrocytes with regular shapes: Stomatocytes, discocytes, and echinocytes. J. Biomed. Opt. 2017, 22, 076015. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.; Moon, I.; Javidi, B. Cell morphology-based classification of red blood cells using holographic imaging informatics. Biomed. Opt. Express 2016, 7, 2385–2399. [Google Scholar] [CrossRef] [PubMed]
- Ersoy, I.; Bunyak, F.; Higgins, J.M.; Palaniappan, K. Coupled Edge Profile Active Contours for Red Blood Cell Flow Analysis. In Proceedings of the 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), Barcelona, Spain, 2–5 May 2012; IEEE: Piscataway, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Naruenatthanaset, K.; Chalidabhongse, T.H.; Palasuwan, D.; Anantrasirichai, N.; Palasuwan, A. Red Blood Cell Segmentation with Overlapping Cell Separation and Classification on Imbalanced Dataset. arXiv 2020, arXiv:2012.01321. [Google Scholar] [CrossRef]
- Tofighi, M.; Guo, T.; Vanamala, J.K.P.; Monga, V. Deep Networks with Shape Priors for Nucleus Detection. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Budd, S.; Robinson, E.C.; Kainz, B. A Survey on Active Learning and Human-in-the-Loop Deep Learning for Medical Image Analysis. IEEE J. Biomed. Health Inform. 2021, 25, 2742–2756. [Google Scholar] [CrossRef]
- Holzinger, A.; Biemann, C.; Pattichis, C.S.; Kell, D.B. What Do We Need to Build Explainable AI Systems for the Medical Domain? arXiv 2017, arXiv:1712.09923. [Google Scholar] [CrossRef]
- Tizhoosh, H.R.; Pantanowitz, L. Artificial Intelligence and Digital Pathology: Challenges and Opportunities. J. Pathol. Inform. 2018, 9, 38. [Google Scholar] [CrossRef]
- Foy, B.H.; Stefely, J.A.; Bendapudi, P.K.; Hasserjian, R.P.; Al-Samkari, H.; Louissaint, A.; Fitzpatrick, M.J.; Hutchison, B.; Mow, C.; Collins, J.; et al. Computer Vision Quantitation of Erythrocyte Shape Abnormalities Provides Diagnostic, Prognostic, and Mechanistic Insight. Blood Adv. 2023, 7, 4621–4630. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.M.; Khoshgoftaar, T.M. Survey on Deep Learning with Class Imbalance. J. Big Data 2019, 6, 27. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Frid-Adar, M.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. Synthetic Data Augmentation Using GAN for Improved Liver Lesion Classification. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Rana, P.; Sowmya, A.; Meijering, E.; Song, Y. Data Augmentation with Improved Regularisation and Sampling for Imbalanced Blood Cell Image Classification. Sci. Rep. 2022, 12, 18101. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects: Ethical Principles for Medical Research Involving Human Subjects. JAMA J. Am. Med. Assoc. 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Bain, B.J. Blood Cells: A Practical Guide, 5th ed.; Wiley-Blackwell: Chichester, UK, 2015. [Google Scholar]
- Aeffner, F.; Zarella, M.D.; Buchbinder, N.; Bui, M.M.; Goodman, M.R.; Hartman, D.J.; Lujan, G.M.; Molani, M.A.; Parwani, A.V.; Lillard, K.; et al. Introduction to Digital Image Analysis in Whole-slide Imaging: A White Paper from the Digital Pathology Association. J. Pathol. Inform. 2019, 10, 9, Erratum in J. Pathol. Inform. 2019, 10, 15. [Google Scholar] [CrossRef]
- Komura, D.; Ishikawa, S. Machine Learning Methods for Histopathological Image Analysis. Comput. Struct. Biotechnol. J. 2018, 16, 34–42. [Google Scholar] [CrossRef]
- Goode, A.; Gilbert, B.; Harkes, J.; Jukic, D.; Satyanarayanan, M. OpenSlide: A Vendor-Neutral Software Foundation for Digital Pathology. J. Pathol. Inform. 2013, 4, 27. [Google Scholar] [CrossRef]
- Beucher, S.; Meyer, F. The morphological approach to segmentation: The watershed transformation. Math. Morphol. Image Process. 1993, 34, 433–481. [Google Scholar] [CrossRef]
- Vincent, L.; Soille, P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 583–598. [Google Scholar] [CrossRef]
- Sadafi, A.; Bordukova, M.; Makhro, A.; Navab, N.; Bogdanova, A.; Marr, C. RedTell: An AI Tool for Interpretable Analysis of Red Blood Cell Morphology. Front. Physiol. 2023, 14, 1058720. [Google Scholar] [CrossRef]
- Chollet, F. Deep Learning with Python; Manning Publications: Shelter Island, NY, USA, 2021. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Müller, A.; Nothman, J.; Louppe, G.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson: New York, NY, USA, 2018. [Google Scholar]
- Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 25, 120–126. [Google Scholar]
- Gupta, A.; Sabirsh, A.; Wahlby, C.; Sintorn, I.-M. SimSearch: A Human-in-the-Loop Learning Framework for Fast Detection of Regions of Interest in Microscopy Images. IEEE J. Biomed. Health Inform. 2022, 26, 4079–4089. [Google Scholar] [CrossRef] [PubMed]
- Holzinger, A.; Langs, G.; Denk, H.; Zatloukal, K.; Müller, H. Causability and Explainability of Artificial Intelligence in Medicine. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1312. [Google Scholar] [CrossRef] [PubMed]
- Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Xu, M.; Papageorgiou, D.P.; Abidi, S.Z.; Dao, M.; Karniadakis, G.E. A deep convolutional neural network for classification of red blood cells in sickle cell anemia. PLoS Comput. Biol. 2017, 13, e1005746. [Google Scholar] [CrossRef] [PubMed]
- Hatton, C.S.R.; Hughes-Jones, N.C.; Hay, D.; Keeling, D. Lecture Notes: Haematology, 9th ed.; Wiley-Blackwell: New Jersey, NJ, USA, 2013. [Google Scholar]
- d’Onofrio, G.; Zini, G. Morphology of Blood Disorders, 2nd ed.; Bain, B.J., Translator; Wiley-Blackwell: New Jersey, NJ, USA, 2014. [Google Scholar]
- Keohane, E.M.; Walenga, J.M.; Smith, L.J. Rodak’s Hematology: Clinical Principles and Applications, 5th ed.; Saunders: Philadelphia, PA, USA, 2015. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 1995, 3361, 255–258. [Google Scholar]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
Method | Advantages | Limitations | References |
---|---|---|---|
WSI and ROI Extraction | High-resolution slides; full context | Lacks adaptive ROI; poor standardization | [16,17] |
Single-Cell Segmentation | Efficient (classic); accurate (DL) | Fails on overlaps; needs dense labels | [18,19] |
Unsupervised Clustering | Reduces labeling cost; latent features | Few RBC studies; limited backbone comparison | [20,21] |
Shape-Based Modeling | Simple; interpretable; ellipse captures geometry | Weak on noisy smears; rarely combined with DL | [22,23,24,25] |
HITL Refinement | Less expert workload; higher trust | Rarely used in RBC; weak integration tools | [26,27,28,29] |
Sample ID | Diagnosis | Abbreviation | Condition Severity |
---|---|---|---|
01 | Iron Deficiency Anemia | IDA | Mild to moderate |
02 | Thalassemia Trait | TT | Carrier (asymptomatic) |
03 | Hb H Disease | HbH | Moderate to severe |
04 | Hb E/β-thalassemia | HbE/β-thal | Variable (mild–moderate) |
05 | Hb E/β-thalassemia with severe symptoms | HbE/β-thal Sx | Severe |
06 | Homozygous Hb E Thalassemia | Homo HbE | Severe |
Sample | Single Cells | Extracted Cells | Overlapping | Small Cells | Touching Edge | Other |
---|---|---|---|---|---|---|
IDA | 733 | 132 | 20 | 168 | 25 | 0 |
TT | 1124 | 65 | 17 | 94 | 50 | 0 |
HbH | 1551 | 379 | 427 | 328 | 70 | 0 |
HbE/β-thal | 5009 | 732 | 476 | 590 | 104 | 0 |
HbE/β-thal Sx | 930 | 445 | 211 | 853 | 63 | 0 |
Homo HbE | 2803 | 148 | 93 | 204 | 68 | 0 |
Total | 12,150 | 1901 | 1244 | 2237 | 380 | 0 |
Sample | Single Cells | Extracted Cells | Overlapping | Small Cells | Touching Edge | Other |
---|---|---|---|---|---|---|
IDA | 785 | 164 | 30 | 853 | 35 | 0 |
TT | 1874 | 239 | 381 | 298 | 59 | 0 |
HbH | 1167 | 270 | 362 | 232 | 68 | 0 |
HbE/β-thal | 2443 | 640 | 496 | 415 | 71 | 0 |
HbE/β-thal Sx | 381 | 280 | 174 | 723 | 49 | 0 |
Homo HbE | 3013 | 240 | 271 | 291 | 66 | 0 |
Total | 9663 | 1833 | 1714 | 2812 | 348 | 0 |
Class Name | Morphological Name | Count | Percentage |
---|---|---|---|
Normocytes | Normocytes * | 805 | 5.75% |
Alteration in staining | Hypochromia + 1 * | 1698 | 12.13% |
Hypochromia + 2 * | 1059 | 7.56% | |
Hypochromia + 3 * | 240 | 1.71% | |
Hypochromia + 4 * | 47 | 0.34% | |
Erythrocyte inclusions | Basophilic stippling | 1 | 0.01% |
HbH inclusions | 0 | 0.00% | |
Diffuse basophilia | 0 | 0.00% | |
Cabot ring | 0 | 0.00% | |
Hb H | 0 | 0.00% | |
Hb C crystal | 0 | 0.00% | |
Hb SC crystal | 0 | 0.00% | |
Heinz bodies | 2 | 0.01% | |
Howell-Jolly bodies | 47 | 0.34% | |
Pappenheimer bodies | 16 | 0.11% | |
Variations in Hb distribution | Codocytes-01 * | 1024 | 7.31% |
Codocytes-02 * | 1050 | 7.50% | |
Eccentrocytes | 202 | 1.44% | |
Spherocytes-01 * | 1718 | 12.27% | |
Spherocytes-02 * | 1205 | 8.61% | |
Stomatocytes | 173 | 1.24% | |
Variations in RBCs shape | Acanthocytes | 16 | 0.11% |
Dacrocytes | 396 | 2.83% | |
Degmacytes | 393 | 2.81% | |
Drepanocytes | 25 | 0.18% | |
Echinocytes | 27 | 0.19% | |
Elliptocytes * | 136 | 0.97% | |
Keratocytes | 7 | 0.05% | |
Knizocytes | 525 | 3.75% | |
Ovalocytes * | 0 | 0.00% | |
Pyknocytes | 603 | 4.31% | |
Schistocytes | 488 | 3.49% | |
Leukocytes | Basophil | 1 | 0.01% |
Eosinophil | 0 | 0.00% | |
Lymphocyte | 21 | 0.15% | |
Monocyte | 2 | 0.01% | |
Neutrophil | 9 | 0.06% | |
Platelets | Platelets-01 * | 312 | 2.23% |
Platelets-02 * | 61 | 0.44% | |
Others | Large-01 * | 766 | 5.47% |
Large-02 * | 537 | 3.84% | |
Small | 117 | 0.84% | |
Other | 271 | 1.94% | |
Total | 14,089 | 100.00% |
Label List | Input | Augmentation | |
---|---|---|---|
1000 Images | 4000 Images | ||
Normocytes | 50 | R (5), F (3) | R (20), F (3) |
Hypochromia + 1 | 50 | R (5), F (3) | R (20), F (3) |
Hypochromia + 2 | 50 | R (5), F (3) | R (20), F (3) |
Hypochromia + 3 | 50 | R (5), F (3) | R (20), F (3) |
Hypochromia + 4 | 25 | R (10), F (3) | R (40), F (3) |
Basophilic stippling | 0 | - | - |
HbH inclusions | 0 | - | - |
Diffuse basophilia | 0 | - | - |
Cabot ring | 0 | - | - |
Hb H | 0 | - | - |
Hb C crystal | 0 | - | - |
Hb SC crystal | 0 | - | - |
Heinz bodies | 2 | R (125), F (3) | S (2), R (250), F (3) |
Howell-Jolly bodies | 25 | R (10), F (3) | R (40), F (3) |
Pappenheimer bodies | 10 | R (25), F (3) | R (100), F (3) |
Codocytes-01 | 250 | R (1), F (3) | R (4), F (3) |
Codocytes-02 | 250 | R (1), F (3) | R (4), F (3) |
Eccentrocytes | 125 | R (2), F (3) | R (4), F (3) |
Spherocytes-01 | 250 | R (1), F (3) | R (4), F (3) |
Spherocytes-02 | 250 | R (1), F (3) | R (4), F (3) |
Stomatocytes | 50 | R (5), F (3) | R (20), F (3) |
Acanthocytes | 10 | R (25), F (3) | R (100), F (3) |
Dacrocytes | 50 | R (5), F (3) | R (20), F (3) |
Degmacytes | 25 | R (10), F (3) | R (40), F (3) |
Drepanocytes | 25 | R (10), F (3) | R (40), F (3) |
Echinocytes | 25 | R (10), F (3) | R (40), F (3) |
Elliptocytes | 50 | R (5), F (3) | R (20), F (3) |
Keratocytes | 5 | R (50), F (3) | R (200), F (3) |
Knizocytes | 125 | R (2), F (3) | R (4), F (3) |
Ovalocytes | 125 | R (2), F (3) | R (4), F (3) |
Pyknocytes | 125 | R (2), F (3) | R (4), F (3) |
Schistocytes | 125 | R (2), F (3) | R (4), F (3) |
Basophil | 0 | - | - |
Eosinophil | 0 | - | - |
Lymphocyte | 25 | R (10), F (3) | R (40), F (3) |
Monocyte | 2 | R (125), F (3) | S (2), R (250), F (3) |
Neutrophil | 10 | R (25), F (3) | R (100), F (3) |
Platelets-01 | 50 | R (5), F (3) | R (20), F (3) |
Platelets-02 | 50 | R (5), F (3) | R (20), F (3) |
Large-01 | 250 | R (1), F (3) | R (4), F (3) |
Large-02 | 250 | R (1), F (3) | R (4), F (3) |
Small | 50 | R (5), F (3) | R (20), F (3) |
Other | 250 | R (1), F (3) | R (4), F (3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angmanee, B.; Wanram, S.; Thedsakhulwong, A. A Hybrid Framework for Red Blood Cell Labeling Using Elliptical Fitting, Autoencoding, and Data Augmentation. J. Imaging 2025, 11, 309. https://doi.org/10.3390/jimaging11090309
Angmanee B, Wanram S, Thedsakhulwong A. A Hybrid Framework for Red Blood Cell Labeling Using Elliptical Fitting, Autoencoding, and Data Augmentation. Journal of Imaging. 2025; 11(9):309. https://doi.org/10.3390/jimaging11090309
Chicago/Turabian StyleAngmanee, Bundasak, Surasak Wanram, and Amorn Thedsakhulwong. 2025. "A Hybrid Framework for Red Blood Cell Labeling Using Elliptical Fitting, Autoencoding, and Data Augmentation" Journal of Imaging 11, no. 9: 309. https://doi.org/10.3390/jimaging11090309
APA StyleAngmanee, B., Wanram, S., & Thedsakhulwong, A. (2025). A Hybrid Framework for Red Blood Cell Labeling Using Elliptical Fitting, Autoencoding, and Data Augmentation. Journal of Imaging, 11(9), 309. https://doi.org/10.3390/jimaging11090309