Donisi, L.; Cesarelli, G.; Castaldo, A.; De Lucia, D.R.; Nessuno, F.; Spadarella, G.; Ricciardi, C.
A Combined Radiomics and Machine Learning Approach to Distinguish Clinically Significant Prostate Lesions on a Publicly Available MRI Dataset. J. Imaging 2021, 7, 215.
https://doi.org/10.3390/jimaging7100215
AMA Style
Donisi L, Cesarelli G, Castaldo A, De Lucia DR, Nessuno F, Spadarella G, Ricciardi C.
A Combined Radiomics and Machine Learning Approach to Distinguish Clinically Significant Prostate Lesions on a Publicly Available MRI Dataset. Journal of Imaging. 2021; 7(10):215.
https://doi.org/10.3390/jimaging7100215
Chicago/Turabian Style
Donisi, Leandro, Giuseppe Cesarelli, Anna Castaldo, Davide Raffaele De Lucia, Francesca Nessuno, Gaia Spadarella, and Carlo Ricciardi.
2021. "A Combined Radiomics and Machine Learning Approach to Distinguish Clinically Significant Prostate Lesions on a Publicly Available MRI Dataset" Journal of Imaging 7, no. 10: 215.
https://doi.org/10.3390/jimaging7100215
APA Style
Donisi, L., Cesarelli, G., Castaldo, A., De Lucia, D. R., Nessuno, F., Spadarella, G., & Ricciardi, C.
(2021). A Combined Radiomics and Machine Learning Approach to Distinguish Clinically Significant Prostate Lesions on a Publicly Available MRI Dataset. Journal of Imaging, 7(10), 215.
https://doi.org/10.3390/jimaging7100215